Read Herstein, Chapter 3, sections 1-2.

1. From Herstein, do these problems:
a) Chapter 1, Section 1.3, page 24: \#10 [i.e. prove both forms of induction using well ordering], \#14 [Hint: If p doesn't divide a, show that the elements $1 \cdot a, 2 \cdot a, \ldots,(p-1) \cdot a$ in \mathbb{Z} / p form a permutation of the elements $1,2, \ldots, p-1$ and so have the same product], \#15 [Hint: First do this for the case $a=1$ and $b=0$, then for $a=0$ and $b=1$, and then combine those to get the general case].
b) Chapter 3, Section 3.2, page 130: \#2 [and also give an example to show that this is not always the same as $\left.a^{2}+2 a b+b^{2}\right]$.
2. a) Applying the Euclidean algorithm (cf. Hersetin, p.24, \#6-7) to the integers 324 and 45 , and then working backwards, solve the Diophantine equation $324 x+45 y=9$ (i.e. find a solution in integers).
b) Do the same for $369 x+324 y=9$.
c) What about the equation $369 x+324 y=1$?
d) What about the equation $121 x+101 y=1$?
e) Use (d) to find a multiplicative inverse for 101 in $\mathbb{Z} / 121 \mathbb{Z}$. Can you find a multiplicative inverse for 324 in $\mathbb{Z} / 369 \mathbb{Z}$, either by using (c) or some other method? Explain.
3. Let R be a ring. Suppose that the elements of $R-\{0\}$ form an abelian group under multiplication. Show that R is a field.
4. a) Show that every subring of \mathbb{R} contains \mathbb{Z} as a subring.
b) Find a ring R that does not contain (a copy of) \mathbb{Z} as a subring.
5. Which of the following are rings? For that that are: are they commutative? integral domains? fields? Explain.
i) $M_{3}(\mathbb{Z} / 2)$
ii) $G L_{3}(\mathbb{Z} / 2)$
iii) $\mathbb{Z} / 27$
iv) $\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$
v) $\{a+b \sqrt[3]{3} \mid a, b \in \mathbb{Z}\}$
vi) $\mathbb{Z} \times \mathbb{Z}$ under the addition law $(a, b)+(c, d)=(a+c, b+d)$ and multiplication law $(a, b) \cdot(c, d)=(a c, b d)$
vii) $\mathbb{R} \times \mathbb{R}$ under the addition law $(a, b)+(c, d)=(a+c, b+d)$ and multiplication law $(a, b) \cdot(c, d)=(a c-b d, a d+b c)$.
