Instructions: This exam consists of ten problems. Do all ten, showing your work and explaining your assertions. Allow yourself two hours. Each problem is worth 10 points, for a total of 100 points.

1. Let $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & c & 0\end{array}\right) \in M_{3}(\mathbb{R})$ where $c \in \mathbb{R}$ is a scalar.
a) Using determinants, find all values of c for which A is invertible.
b) Find all values of c for which there is a unique solution to this system of equations:

$$
\begin{array}{rlll}
x & +2 y & -z & =17 \\
y & +2 z & =18 \\
x & +c y & & =19
\end{array}
$$

2. Find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ whose kernel consists of the multiples of the vector $(1,2,3)$. Find the image of T.
3. Let V be the vector space of continuous functions $\mathbb{R} \rightarrow \mathbb{R}$. Define $T: V \rightarrow V$ by $T(f)=f \circ \sin$. Determine whether T is a linear transformation, whether it is injective, whether it is surjective, and whether it is an isomorphism.
4. Find the monic polynomial of least degree in the ideal of $\mathbb{R}[x]$ generated by $x^{3}+x$ and $x^{4}-1$.
5. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ by $T(a, b, c)=(a-b, b-c, c-a, 2 a-b-c)$. Find the rank and the nullity of T. Do the same for the induced linear transformation $T^{\mathrm{t}}:\left(\mathbb{R}^{4}\right)^{*} \rightarrow\left(\mathbb{R}^{3}\right)^{*}$ on the dual spaces.
6. Prove that the real matrices $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ and $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5\end{array}\right)$ are not similar.
7. Determine whether the matrix $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10\end{array}\right)$ is diagonalizable. If it is, find a diagonal matrix that is similar to A. Justify your assertions.
8. For $v=(a, b)$ and $w=(c, d)$ in \mathbb{R}^{2}, define $\langle v, w\rangle=a c-a d-b c+2 b d$. Show that this is an inner product, and find an orthonormal basis of \mathbb{R}^{2} with respect to this inner product.
9. Find real numbers a, b such that with respect to the usual inner product (dot product) on \mathbb{R}^{3}, there is an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors of $\left(\begin{array}{ccc}1 & 0 & a \\ 0 & 2 & b \\ -1 & 3 & 0\end{array}\right)$.
10. a) Find the eigenvalues of $A=\left(\begin{array}{cc}3 & 4 \\ 4 & -3\end{array}\right)$.
b) Show that there is a real matrix B such that $B^{5}=A$.
