Instructions: This exam consists of five problems. Do all five, showing your work and explaining your assertions. Allow yourself 50 minutes. Each problem is worth 10 points, for a total of 50 points.

1. Let A, B, C be $n \times n$ matrices over a field F, with C invertible and $B=C^{-1} A C$. Show that A and B have the same rank and have the same nullity.
2. Let $V=\mathbb{R}^{3}$, with basis i, j, k, and let x, y, z be the dual basis of V^{*}. Find a basis for the annihilator of the subspace of V spanned by $3 i-j$.
3. Define $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ by $f(x) \mapsto\left(x^{2}+1\right) f(x)$. Also, define $\psi: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ by $f(x) \mapsto f(x)^{2}$. Determine whether ϕ and ψ are linear transformations, and whether they are algebra homomorphisms.
4. Let V be the real vector space of polynomials $f(x) \in \mathbb{R}[x]$ of degree at most 4 . Define $T: V \rightarrow \mathbb{R}^{4}$ by $T(f)=(f(1), f(2), f(3), f(4))$. Find the kernel and image of T.
5. a) Is there a linear transformation of \mathbb{R}-vector spaces $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose kernel is

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x=2 y\right\} ?
$$

If so, find one. If there isn't one, explain why.
b) Is there a homomorphism of \mathbb{R}-algebras $T: \mathbb{C} \rightarrow \mathbb{C}$ whose kernel is

$$
\{x+i y \in \mathbb{C} \mid x, y \in \mathbb{R}, x=2 y\} ?
$$

If so, find one. If there isn't one, explain why.

