Note: Those who would like an extension on this assignment may hand it in to their TA no later than noon on Friday, May 2.

Reminder: The final exam will be held on Wednesday, May 7, from 9-11 am, in Skirkanich Auditorium.

Read Hoffman and Kunze, Chapter 8, Sections 1-5.

1. From Hoffman and Kunze, Chapter 6, do these problems: Page 198, \#2,5,6.
2. From Hoffman and Kunze, Chapter 8, do these problems: Page 276, \#9, 12. [Hint for $\# 12$: Define $T: V \rightarrow \mathbb{R}^{n}$ by $\alpha \mapsto\left(\left(\alpha \mid \alpha_{1}\right), \ldots,\left(\alpha \mid \alpha_{n}\right)\right)$. Is T an isomorphism?] Pages 288-289, \# 1, 3. Page 298, \#1. Page 310, \#8. Page 317, \#9. [Hint for $\# 9$: Consider problem 6 of PS 13.]
3. For each of the following matrices, find the characteristic polynomial and the minimal polynomial; determine whether the matrix is similar to a real diagonal matrix and whether it is similar to a real triangular matrix; also whether it is similar to a complex diagonal or triangular matrix. In each case find the diagonal matrix it is similar to, if it exists.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
1 & 0 & 3
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 3
\end{array}\right), \quad C=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

4. Let V be an inner vector space.
a) Show that if W is a subspace of V, then $W \subset\left(W^{\perp}\right)^{\perp}$.
b) Show that $W=\left(W^{\perp}\right)^{\perp}$ if V is finite dimensional. [Hint: If $\operatorname{dim} V=n$ and $\operatorname{dim} W=d$, then what is $\operatorname{dim} W^{\perp}$? $\operatorname{dim}\left(W^{\perp}\right)^{\perp}$?]
5 . In \mathbb{R}^{4}, let V be the span of $(1,0,1,0)$ and $(1,1,3,1)$.
a) Find an orthonormal basis of V. [Hint: Gram-Schmidt.]
b) Find the point on V closest to $(1,2,3,4)$.
c) Express $(1,2,3,4)=v_{1}+v_{2}$ explicitly, where $v_{1} \in V$ and $v_{2} \in V^{\perp}$.
d) Find an orthonormal basis of V^{\perp}.
5. Over \mathbb{R}, which of the following matrices have an orthonormal basis of eigenvectors? What about over \mathbb{C} ? Also, which of these matrices are symmetric? orthogonal? Hermitian? unitary?

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 / 5 & -4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
$$

