Read Hoffman and Kunze, Chapter 6, Sections 1-3.

1. From Hoffman and Kunze, Chapter 6, do these problems: Page 189, \#1,3,5.
2. Let $c_{1}, \ldots, c_{k} \in F$ be distinct elements in a field F.
a) Show that there is no non-zero vector $\left(b_{0}, \ldots, b_{k-1}\right) \in F^{k}$ such that $\sum_{j=0}^{k-1} b_{j} c_{i}^{j}=0$ for all $i=1, \ldots, k$. [Hint: Consider roots of the polynomial $f(x)=\sum_{j=0}^{k-1} b_{j} x^{j}$.]
b) Let $a_{1}, \ldots, a_{k} \in F$. Using part (a), show that the matrix

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{k} \\
a_{1} c_{1} & a_{2} c_{2} & \ldots & a_{k} c_{k} \\
a_{1} c_{1}^{2} & a_{2} c_{2}^{2} & \ldots & a_{k} c_{k}^{2} \\
\vdots & \vdots & & \vdots \\
a_{1} c_{1}^{k-1} & a_{2} c_{2}^{k-1} & \ldots & a_{k} c_{k}^{k-1}
\end{array}\right)
$$

is invertible, unless some $a_{i}=0$.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ take $(a, b) \mapsto(17 a-30 b, 9 a-16 b)$.
a) Find the matrix of T with respect to the standard basis e_{1}, e_{2}.
b) Find the matrix of T with respect to the basis $f_{1}=(1,1), f_{2}=(1,-1)$.
c) Find a basis of \mathbb{R}^{2} for which the matrix of T is the diagonal matrix $\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$.
d) Is there a basis of \mathbb{R}^{2} for which T has matrix $\left(\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right)$? Explain.
4. Let $T: V \rightarrow V$ be a linear transformation, and let S be the set of eigenvectors of T (including 0).
a) Show that if c is an eigenvalue of T, then the eigenspace $W_{c}=\{v \in V \mid T(v)=c v\}$ is really a subspace of V, but that S is not always a subspace of V. Can S ever be a subspace of V ?
b) Let W be the span of S. Show that W is invariant under T, i.e. $T(W) \subset W$. Must $W=V$?
5. Let \mathcal{P}_{2} be the real vector space of polynomials in $\mathbb{R}[x]$ of degree at most 2 . Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the linear transformation given by $T(f)=g$ where $g(x)=(x+1) f^{\prime}(x)$. Find the eigenvalues and eigenvectors of T. Do this in two different ways, namely:
i) Find the matrix of T relative to the basis $\left\{1, x, x^{2}\right\}$ and use that.
ii) Instead, use separation of variables to solve the differential equation $(x+1) \cdot \frac{d y}{d x}=c y$, where c is a constant.
6. a) Show that if $T: V \rightarrow V$ is a linear transformation, and $v \in V$ is an eigenvector for T with eigenvalue c, then v is also an eigenvector for T^{k}, with eigenvalue c^{k}.
b) Use this to find the eigenvalues and corresponding eigenvectors of A^{253}, where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & -2 \\
0 & 0 & -1
\end{array}\right)
$$

[Note: You are not required to find the entries of the matrix A^{253}.]

