Math 370

Read Hoffman and Kunze, Chapter 6, Sections 1-3.

- 1. From Hoffman and Kunze, Chapter 6, do these problems: Page 189, #1,3,5.
- 2. Let $c_1, \ldots, c_k \in F$ be distinct elements in a field F.

a) Show that there is no non-zero vector $(b_0, \ldots, b_{k-1}) \in F^k$ such that $\sum_{j=0}^{k-1} b_j c_i^j = 0$ for all $i = 1, \ldots, k$. [Hint: Consider roots of the polynomial $f(x) = \sum_{j=0}^{k-1} b_j x^j$.]

b) Let $a_1, \ldots, a_k \in F$. Using part (a), show that the matrix

$$\begin{pmatrix} a_1 & a_2 & \dots & a_k \\ a_1c_1 & a_2c_2 & \dots & a_kc_k \\ a_1c_1^2 & a_2c_2^2 & \dots & a_kc_k^2 \\ \vdots & \vdots & & \vdots \\ a_1c_1^{k-1} & a_2c_2^{k-1} & \dots & a_kc_k^{k-1} \end{pmatrix}$$

is invertible, unless some $a_i = 0$.

- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ take $(a, b) \mapsto (17a 30b, 9a 16b)$.
 - a) Find the matrix of T with respect to the standard basis e_1, e_2 .
 - b) Find the matrix of T with respect to the basis $f_1 = (1, 1), f_2 = (1, -1).$
 - c) Find a basis of \mathbb{R}^2 for which the matrix of T is the diagonal matrix $\begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$.
 - d) Is there a basis of \mathbb{R}^2 for which T has matrix $\begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}$? Explain.

4. Let $T: V \to V$ be a linear transformation, and let S be the set of eigenvectors of T (including 0).

a) Show that if c is an eigenvalue of T, then the eigenspace $W_c = \{v \in V | T(v) = cv\}$ is really a subspace of V, but that S is not always a subspace of V. Can S ever be a subspace of V?

b) Let W be the span of S. Show that W is *invariant* under T, i.e. $T(W) \subset W$. Must W = V?

5. Let \mathcal{P}_2 be the real vector space of polynomials in $\mathbb{R}[x]$ of degree at most 2. Let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be the linear transformation given by T(f) = g where g(x) = (x+1)f'(x). Find the eigenvalues and eigenvectors of T. Do this in *two different* ways, namely:

i) Find the matrix of T relative to the basis $\{1, x, x^2\}$ and use that.

ii) Instead, use separation of variables to solve the differential equation $(x+1) \cdot \frac{dy}{dx} = cy$, where c is a constant.

6. a) Show that if $T: V \to V$ is a linear transformation, and $v \in V$ is an eigenvector for T with eigenvalue c, then v is also an eigenvector for T^k , with eigenvalue c^k .

b) Use this to find the eigenvalues and corresponding eigenvectors of A^{253} , where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -2 \\ 0 & 0 & -1 \end{pmatrix}.$$

[Note: You are not required to find the entries of the matrix A^{253} .]