Read Hoffman and Kunze, Chapter 5 (sections 5 and 7 are optional).

1. From Hoffman and Kunze, Chapter 5, do these problems:

Page 148-149, \#3,5. Page 155, \#2, 7. Page 162, \#1 (just the second matrix), 2(a), 4.
2. Let $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & c\end{array}\right) \in M_{n}(F)$ where $c \in F$ is a scalar.
a) Find A^{-1}, using row reduction.
b) Using part (a), determine for which $c \in F$ there is an inverse for A.
c) Compute the determinant of A.
d) Using part (c), determine for which $c \in F$ there is an inverse for A, and compute A^{-1} using the formula for inverses in terms of determinants. Does this agree with your answers to parts (a) and (b)?
3. Let A be a 3×2 matrix and let B be a 2×3 matrix. Find $\operatorname{det}(A B)$. Explain your answer, and explain the connection to problem 3 on Problem Set $\# 6$. Can anything be said about $\operatorname{det}(B A)$?
4. Recall that if F if a field, then $\mathrm{GL}_{n}(F)$ consists of the invertible matrices in $\mathrm{M}_{n}(F)$. Consider the following subsets of $\mathrm{GL}_{n}(F): \mathrm{SL}_{n}(F)$ consists of the matrices with determinant equal to $1 . \mathrm{GL}_{n}^{+}(F)$ consists of the matrices with positive determinant. $\mathrm{GL}_{n}^{-}(F)$ consists of the matrices with negative determinant. $\mathrm{O}_{n}(F)$ consists of the matrices A such that $A A^{t}=I$ (orthogonal matrices). $\mathrm{S}_{n}(F)$ consists of the matrices $A \in \mathrm{GL}_{n}(F)$ such that $A=A^{t}$ (symmetric invertible matrices).
a) Show that $\mathrm{GL}_{n}(F)$ is a group under matrix multiplication.
b) Determine which of the subsets $\mathrm{SL}_{n}(F), \mathrm{GL}_{n}^{+}(F), \mathrm{GL}_{n}^{-}(F), \mathrm{O}_{n}(F), \mathrm{S}_{n}(F)$ of $\mathrm{GL}_{n}(F)$ are groups under matrix multiplication (and hence subgroups of $\mathrm{GL}_{n}(F)$).
5. Consider the system of linear equations $A X=B$, where

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-3 & 2 & 0 \\
2 & 0 & 1
\end{array}\right), \quad X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad B=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) .
$$

Solve this system in three different ways:
a) By row reduction on the augmented matrix $(A \mid B)$.
b) By finding A^{-1} and writing $X=A^{-1} B$.
c) By Cramer's Rule.

