Math 370

Read Hoffman and Kunze, Chapter 5 (sections 5 and 7 are optional).

1. From Hoffman and Kunze, Chapter 5, do these problems:

Page 148-149, #3,5. Page 155, #2, 7. Page 162, #1 (just the second matrix), 2(a), 4.

2. Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & c \end{pmatrix} \in M_n(F)$$
 where $c \in F$ is a scalar.

a) Find A^{-1} , using row reduction.

b) Using part (a), determine for which $c \in F$ there is an inverse for A.

c) Compute the determinant of A.

d) Using part (c), determine for which $c \in F$ there is an inverse for A, and compute A^{-1} using the formula for inverses in terms of determinants. Does this agree with your answers to parts (a) and (b)?

3. Let A be a 3×2 matrix and let B be a 2×3 matrix. Find det(AB). Explain your answer, and explain the connection to problem 3 on Problem Set #6. Can anything be said about det(BA)?

4. Recall that if F if a field, then $\operatorname{GL}_n(F)$ consists of the invertible matrices in $\operatorname{M}_n(F)$. Consider the following subsets of $\operatorname{GL}_n(F)$: $\operatorname{SL}_n(F)$ consists of the matrices with determinant equal to 1. $\operatorname{GL}_n^+(F)$ consists of the matrices with positive determinant. $\operatorname{GL}_n^-(F)$ consists of the matrices with negative determinant. $\operatorname{O}_n(F)$ consists of the matrices A such that $AA^t = I$ (orthogonal matrices). $\operatorname{S}_n(F)$ consists of the matrices $A \in \operatorname{GL}_n(F)$ such that $A = A^t$ (symmetric invertible matrices).

a) Show that $GL_n(F)$ is a group under matrix multiplication.

b) Determine which of the subsets $SL_n(F)$, $GL_n^+(F)$, $GL_n^-(F)$, $O_n(F)$, $S_n(F)$ of $GL_n(F)$ are groups under matrix multiplication (and hence subgroups of $GL_n(F)$).

5. Consider the system of linear equations AX = B, where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -3 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}.$$

Solve this system in three different ways:

- a) By row reduction on the augmented matrix $(A \mid B)$.
- b) By finding A^{-1} and writing $X = A^{-1}B$.
- c) By Cramer's Rule.