Reminder: Exam \#2 will take place in class on Monday, March 31, on the material covered in class up through Friday, March 28, and on homeworks up through PS 10. Sample Exam 2 is available on the course web page.
Read Hoffman and Kunze, Chapter 4, Section 4.

1. From Hoffman and Kunze, Chapter 4, do these problems: Page 123, \#7, 8. Page 126, \#1. Page 134, \#1, 3 .
2. Let \mathcal{A} be an algebra over a field F.
a) Show that $0 \cdot a=0$ for all $a \in \mathcal{A}$, where $0 \in \mathcal{A}$ is the additive identity in \mathcal{A}.
b) Suppose that \mathcal{A} has a multiplicative identity $1 \in \mathcal{A}$. Prove that $(-1) \cdot a=-a$ for all $a \in \mathcal{A}$ (where $-a \in \mathcal{A}$ denotes the additive inverse of $a \in \mathcal{A}$).
3. a) Let F be a field, let $f(x) \in F[x]$, and let A be an $n \times n$ matrix over F. Suppose that $f(x)=f_{1}(x) f_{2}(x)$ in $F[x]$. Prove that $f(A)=f_{1}(A) f_{2}(A)$ as matrices.
b) Let $f(x, y) \in F[x, y]$, the algebra of polynomials in x and y with coefficients in F. Let A, B be $n \times n$ matrices over F. Suppose that $f(x, y)=f_{1}(x, y) f_{2}(x, y)$ in $F[x, y]$. Show that $f(A, B)$ is not necessarily equal to the matrix $f_{1}(A, B) f_{2}(A, B)$. [Hint: Let $f(x, y)=x^{2}-y^{2}$ and pick two 2×2 matrices.]
c) Explain where your proof for (a) breaks down in (b).
4. Show that the division algorithm for polynomials (Hoffman \& Kunze, §4.4, Theorem 4) does not remain true if the coefficient field F is replaced by \mathbb{Z}. What goes wrong in carrying over the proof from the case that F is a field?
5. Which of the following are homomorphisms of \mathbb{R}-algebras? For those that are not, why not? For those that are, what are the kernels and images?
a) $\phi: \mathbb{R}[x] \rightarrow \mathbb{R}, \phi\left(\sum a_{i} x^{i}\right)=\sum a_{i} 3^{i} \quad\left(a_{i} \in \mathbb{R}\right)$
b) $\phi: \mathbb{C} \rightarrow \mathbb{C}, \phi(a+b i)=a-b i \quad(a, b \in \mathbb{R})$
c) $\phi: \mathbb{C} \rightarrow \mathbb{C}, \phi(a+b i)=a \quad(a, b \in \mathbb{R})$
