Math 370

Reminder: Exam #2 will take place in class on Monday, March 31, on the material covered in class up through Friday, March 28, and on homeworks up through PS 10. Sample Exam 2 is available on the course web page.

Read Hoffman and Kunze, Chapter 4, Section 4.

1. From Hoffman and Kunze, Chapter 4, do these problems: Page 123, #7, 8. Page 126, #1. Page 134, #1, 3.

2. Let \mathcal{A} be an algebra over a field F.

a) Show that $0 \cdot a = 0$ for all $a \in \mathcal{A}$, where $0 \in \mathcal{A}$ is the additive identity in \mathcal{A} .

b) Suppose that \mathcal{A} has a multiplicative identity $1 \in \mathcal{A}$. Prove that $(-1) \cdot a = -a$ for all $a \in \mathcal{A}$ (where $-a \in \mathcal{A}$ denotes the additive inverse of $a \in \mathcal{A}$).

3. a) Let F be a field, let $f(x) \in F[x]$, and let A be an $n \times n$ matrix over F. Suppose that $f(x) = f_1(x)f_2(x)$ in F[x]. Prove that $f(A) = f_1(A)f_2(A)$ as matrices.

b) Let $f(x,y) \in F[x,y]$, the algebra of polynomials in x and y with coefficients in F. Let A, B be $n \times n$ matrices over F. Suppose that $f(x,y) = f_1(x,y)f_2(x,y)$ in F[x,y]. Show that f(A, B) is not necessarily equal to the matrix $f_1(A, B)f_2(A, B)$. [Hint: Let $f(x,y) = x^2 - y^2$ and pick two 2×2 matrices.]

c) Explain where your proof for (a) breaks down in (b).

4. Show that the division algorithm for polynomials (Hoffman & Kunze, §4.4, Theorem 4) does not remain true if the coefficient field F is replaced by \mathbb{Z} . What goes wrong in carrying over the proof from the case that F is a field?

5. Which of the following are homomorphisms of \mathbb{R} -algebras? For those that are not, why not? For those that are, what are the kernels and images?

a) $\phi : \mathbb{R}[x] \to \mathbb{R}, \ \phi(\sum a_i x^i) = \sum a_i 3^i \ (a_i \in \mathbb{R})$

b) $\phi : \mathbb{C} \to \mathbb{C}, \ \phi(a+bi) = a - bi \ (a, b \in \mathbb{R})$

c) $\phi : \mathbb{C} \to \mathbb{C}, \ \phi(a+bi) = a \ (a, b \in \mathbb{R})$