Read Hoffman and Kunze, Chapter 3, Sections 5 and 6.

- 1. From Hoffman and Kunze, Chapter 3, do these problems: Pages 105-107, #4, 11, 12, 17.
- 2. Let V be a vector space, let W be a subspace of V, and let S be a subset of V.
- a) If S is a linearly independent subset of V, must $S \cap W$ be a linearly independent subset of W?
 - b) If S spans V, must $S \cap W$ span W?
 - c) If S is a basis of V, must $S \cap W$ be a basis of W?
 - d) If $\operatorname{ann}(W) \subset \operatorname{ann}(S)$, must $S \subset W$?
 - e) If $ann(S) \subset ann(W)$, must $W \subset S$?
- 3. If X, Y are subspaces of a vector space V, write $V = X \oplus Y$ if every element $v \in V$ can be written in exactly one way as v = x + y with $x \in X$ and $y \in Y$.
- a) If $V = \mathbb{R}^3$ and X is the x-axis, find a subspace $Y \subset V$ such that $V = X \oplus Y$. Find the dimensions of V, X, Y, V^* , ann(X), ann(Y). What relationships do you notice among these dimensions?
- b) Let V be any finite dimensional vector space with subspaces X, Y. Show that $V = X \oplus Y$ if and only if the following two conditions both hold: X + Y = V and $X \cap Y = 0$.
- c) Let V be a finite dimensional vector space with subspaces X,Y, such that $V=X\oplus Y.$
 - i) Show that if \mathcal{A} is a basis of X and \mathcal{B} is a basis of Y, then $\mathcal{A} \cup \mathcal{B}$ is a basis of V.
 - ii) Prove that the numerical relationships you noticed in part (a) hold.
 - iii) Show that $V^* = \operatorname{ann}(X) \oplus \operatorname{ann}(Y)$.
- 4. For any finite dimensional vector space V with basis $\mathcal{B} = \{v_1, \ldots, v_n\}$, and corresponding dual basis $\mathcal{B}^* = \{\delta_1, \ldots, \delta_n\}$ of V^* , define $\phi_{V,\mathcal{B}} : V \to V^*$ by $\sum_{1}^{n} a_i v_i \mapsto \sum_{1}^{n} a_i \delta_i$. Also let $\psi_{V,\mathcal{B}} = \phi_{V^*,\mathcal{B}^*} \circ \phi_{V,\mathcal{B}} : V \to V^{**}$.
- a) Show that $\phi_{V,\mathcal{B}}: V \to V^*$ is an isomorphism, but that it depends on the choice of basis \mathcal{B} . [Hint: For the second part, choose two different bases $\mathcal{B}, \mathcal{B}'$ of some vector space V; e.g. take V to be the one-dimensional space \mathbb{R} . Then compare the two maps $\phi_{V,\mathcal{B}}$ and $\phi_{V,\mathcal{B}'}$, and verify that they are not the same.]
- b) Explain what $\psi_{V,\mathcal{B}}$ does to each basis vector of V, and show that $\psi_{V,\mathcal{B}}: V \to V^{**}$ is an isomorphism. Also show that $\psi_{V,\mathcal{B}}$ is the same as the isomorphism $\mathrm{ev}: V \to V^{**}$ given by $v \to \mathrm{ev}_v$, where $\mathrm{ev}_v(f) = f(v)$ for $f \in V^*$. (Hint: Show $\psi_{V,\mathcal{B}}(v_i) = \mathrm{ev}_{v_i}$ for all i.) Then deduce that $\psi_{V,\mathcal{B}}$ does not depend on the choice of basis \mathcal{B} (and in that sense is "natural").