Math 370

Read Hoffman and Kunze, Chapter 3, Sections 2 and 3.

1. From Hoffman and Kunze, Chapter 3, do these problems: Page 83, #3. Pages 85-86, #1,6,7.

2. Let $T: V \to W$ and $S: W \to X$ be linear transformations of vector spaces. What inequalities (i.e. \leq) can you find relating these quantities: rank(T), rank(S), rank $(S \circ T)$, dim(V), dim(W), dim(X)? (For example, can you relate rank $(S \circ T)$ to all the other quantities?)

3. Let A be a 2×3 matrix. Show that there cannot be any 3×2 matrix B such that BA is the 3×3 identity matrix. But also show that (depending on A) it may be possible to find a 3×2 matrix B such that AB is the 2×2 identity matrix. (Hint: Problem 2 may help.)

4. Let $W \subset \mathbb{R}^3$ be the subspace given by x + y + z = 0. Find a basis of W and extend it to a basis of \mathbb{R}^3 . Find another basis of \mathbb{R}^3 that does not contain *any* vector in W.

5. Let $T: V \to V$ be a linear transformation. Show that $\operatorname{image}(T) \subset \operatorname{kernel}(T) \Leftrightarrow T^2 = 0$.

6. Let *n* be a non-negative integer, and let $\alpha_1, \ldots, \alpha_{n+1}$ be distinct real numbers. Let \mathcal{P}_n be the vector space of real polynomials f(x) of degree $\leq n$. Define $F : \mathcal{P}_n \to \mathbb{R}^{n+1}$ by $f \mapsto (f(\alpha_1), \ldots, f(\alpha_{n+1}))$.

a) Show that F is an isomorphism. [Hint: dim $(\mathcal{P}_n) = ?$ kernel(F) = ?]

b) Explicitly find $F^{-1}(e_1), \ldots, F^{-1}(e_{n+1})$ (where e_1, \ldots, e_{n+1} are the standard basis vectors in \mathbb{R}^{n+1}) in the case n = 2 and $\alpha_j = j$ for j = 1, 2, 3. [Hint: Where does (x-a)(x-b) vanish?]

c) In general, deduce that $F^{-1}(e_1), \ldots, F^{-1}(e_{n+1})$ form a basis of \mathcal{P}_n . In the special case done in (b), express the polynomial x as a linear combination of these basis elements.