Read Hoffman and Kunze, Chapter 3, Sections 2 and 3.

1. From Hoffman and Kunze, Chapter 3, do these problems:

Page 83, \#3. Pages 85-86, \#1,6,7.
2. Let $T: V \rightarrow W$ and $S: W \rightarrow X$ be linear transformations of vector spaces. What inequalities (i.e. \leq) can you find relating these quantities: $\operatorname{rank}(T), \operatorname{rank}(S), \operatorname{rank}(S \circ T)$, $\operatorname{dim}(V), \operatorname{dim}(W), \operatorname{dim}(X)$? (For example, can you relate $\operatorname{rank}(S \circ T)$ to all the other quantities?)
3. Let A be a 2×3 matrix. Show that there cannot be any 3×2 matrix B such that $B A$ is the 3×3 identity matrix. But also show that (depending on A) it may be possible to find a 3×2 matrix B such that $A B$ is the 2×2 identity matrix. (Hint: Problem 2 may help.)
4. Let $W \subset \mathbb{R}^{3}$ be the subspace given by $x+y+z=0$. Find a basis of W and extend it to a basis of \mathbb{R}^{3}. Find another basis of \mathbb{R}^{3} that does not contain any vector in W.
5. Let $T: V \rightarrow V$ be a linear transformation. Show that image $(T) \subset \operatorname{kernel}(T) \Leftrightarrow T^{2}=0$.
6. Let n be a non-negative integer, and let $\alpha_{1}, \ldots, \alpha_{n+1}$ be distinct real numbers. Let \mathcal{P}_{n} be the vector space of real polynomials $f(x)$ of degree $\leq n$. Define $F: \mathcal{P}_{n} \rightarrow \mathbb{R}^{n+1}$ by $f \mapsto\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n+1}\right)\right)$.
a) Show that F is an isomorphism. $\left[\operatorname{Hint}: \operatorname{dim}\left(\mathcal{P}_{n}\right)=? \operatorname{kernel}(F)=\right.$?]
b) Explicitly find $F^{-1}\left(e_{1}\right), \ldots, F^{-1}\left(e_{n+1}\right)$ (where e_{1}, \ldots, e_{n+1} are the standard basis vectors in \mathbb{R}^{n+1}) in the case $n=2$ and $\alpha_{j}=j$ for $j=1,2,3$. [Hint: Where does $(x-a)(x-b)$ vanish?]
c) In general, deduce that $F^{-1}\left(e_{1}\right), \ldots, F^{-1}\left(e_{n+1}\right)$ form a basis of \mathcal{P}_{n}. In the special case done in (b), express the polynomial x as a linear combination of these basis elements.

