Math 370

Reminder: Exam #1 will take place in class on Monday, February 17, on the material covered in class up through Friday, February 14, and on homeworks up through PS 5. Sample Exam 1 is available on the course web page.

Read Hoffman and Kunze, Chapter 3, Section 2.

1. From Hoffman and Kunze, Chapter 3, do these problems: Pages 73-74, #2,8,12. Page 83, #1,5.

2. Let $S : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation taking $(x, y) \in \mathbb{R}^2$ to $(a, b, c) \in \mathbb{R}^3$ whenever

/1	2	$\left(m\right)$	(a)	
2	4	$\begin{pmatrix} x \\ \vdots \end{pmatrix} =$	b	
$\sqrt{\frac{1}{3}}$	$\left(\frac{4}{6}\right)$	$\begin{pmatrix} y \end{pmatrix} =$	(c)	

Find the kernel and image of S, describing them both geometrically and in terms of equations.

3. Let V be a real vector space, and suppose that $S: V \to \mathbb{R}$ and $T: V \to \mathbb{R}$ are linear transformations. Define $P: V \to \mathbb{R}^2$ by P(v) = (S(v), T(v)).

- a) Show that P is a linear transformation.
- b) Find the kernel of P in terms of the kernels of S and T.
- 4. For each of the following, either give an example or explain why no such example exists: a) A linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ whose kernel is one-dimensional.
 - b) A linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ whose kernel is trivial.
 - c) A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ taking (1, 2, 3) to (4, 5).

5. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Show that the kernel of T is contained in the kernel of $T^2 = T \circ T$. Can the two kernels ever be equal? Can they ever be unequal? Explain (with examples).