Reminder: Exam \#1 will take place in class on Monday, February 17, on the material covered in class up through Friday, February 14, and on homeworks up through PS 5. Sample Exam 1 is available on the course web page.

Read Hoffman and Kunze, Chapter 3, Section 2.

1. From Hoffman and Kunze, Chapter 3, do these problems:

Pages 73-74, \#2,8,12. Page 83, \#1,5.
2. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation taking $(x, y) \in \mathbb{R}^{2}$ to $(a, b, c) \in \mathbb{R}^{3}$ whenever

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right)\binom{x}{y}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Find the kernel and image of S, describing them both geometrically and in terms of equations.
3. Let V be a real vector space, and suppose that $S: V \rightarrow \mathbb{R}$ and $T: V \rightarrow \mathbb{R}$ are linear transformations. Define $P: V \rightarrow \mathbb{R}^{2}$ by $P(v)=(S(v), T(v))$.
a) Show that P is a linear transformation.
b) Find the kernel of P in terms of the kernels of S and T.
4. For each of the following, either give an example or explain why no such example exists:
a) A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose kernel is one-dimensional.
b) A linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ whose kernel is trivial.
c) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ taking $(1,2,3)$ to $(4,5)$.
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Show that the kernel of T is contained in the kernel of $T^{2}=T \circ T$. Can the two kernels ever be equal? Can they ever be unequal? Explain (with examples).

