Read Hoffman and Kunze, Chapter 2, Sections 4-6, and Chapter 3, Section 1.

- 1. From Hoffman and Kunze, Chapter 2, do these problems: Pages 48-49, #6-7. Page 55, #2. Page 66, #3.
- 2. From Hoffman and Kunze, Chapter 3, do these problems: Pages 73-74, #1,4,5,9,10.
- 3. Which of the following are linear transformations?
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^4$ sending $(x, y, z) \mapsto (x y, y z, z x, 0)$.
 - b) $M: \mathbb{R}^2 \to \mathbb{R}$ sending $(x,y) \mapsto xy$. (Here we view $\mathbb{R} = \mathbb{R}^1$.)
- c) $R: Z \to Z$ (where Z is the vector space of sequences of real numbers) sending $(a_1, a_2, a_3, \ldots) \mapsto (0, a_1, a_2, a_3, \ldots)$.
 - d) $L: Z \to Z$ (where Z is as in part (c)) sending $(a_1, a_2, a_3, \ldots) \mapsto (a_2, a_3, a_4, \ldots)$.
- e) $I: W \to \mathbb{R}$ (where W is the vector space of continuous real-valued functions on the closed interval [0,1]) sending $f \mapsto \int_0^1 f(x) dx$.
- f) $D: V \to V$ (where V is the vector space of infinitely differentiable functions on \mathbb{R}) sending $f \mapsto f'$.
 - g) $E: V \to \mathbb{R}$ (where V is as in part (f)) sending $f \mapsto f(0)$.
 - h) $Q: V \to V$ (where V is as in part (f)) sending $f \mapsto f^2$.
 - i) $S: V \to V$ (where V is as in part (f)) sending $f(x) \mapsto f(x) \sin(x)$.
- 4. For each of the maps in #3 that is a linear transformation, find the following:
- a) The range of the map, also known as the *image*. (The range of a linear transformation $T: V \to W$ is by definition $\{w \in W \mid w = T(v) \text{ for some } v \in V\}$.)
- b) The nullspace of the map, also known as the kernel. (The nullspace of a linear transformation $T: V \to W$ is by definition $\{v \in V \mid T(v) = 0\}$.)
- 5. Let V, W, Z be vector spaces. Let $T: V \to W, S: V \to W$, and $U: W \to Z$ be linear transformations. Let c be a scalar.
- a) Consider the map $T+S:V\to W$ given by sending $v\mapsto T(v)+S(v)$. Is this a linear transformation?
- b) Consider the map $cT:V\to W$ given by sending $v\mapsto cT(v)$. Is this a linear transformation?
- c) Consider the map $U \circ T : V \to Z$ by given sending $v \mapsto U(T(v))$. Is this a linear transformation?