Read Hoffman and Kunze, Chapter 2, Sections 4-6, and Chapter 3, Section 1.

1. From Hoffman and Kunze, Chapter 2, do these problems: Pages 48-49, \#6-7. Page 55, \#2. Page 66, \#3.
2. From Hoffman and Kunze, Chapter 3, do these problems:

Pages 73-74, \#1,4,5,9,10.
3. Which of the following are linear transformations?
a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ sending $(x, y, z) \mapsto(x-y, y-z, z-x, 0)$.
b) $M: \mathbb{R}^{2} \rightarrow \mathbb{R}$ sending $(x, y) \mapsto x y$. (Here we view $\mathbb{R}=\mathbb{R}^{1}$.)
c) $R: Z \rightarrow Z$ (where Z is the vector space of sequences of real numbers) sending $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)$.
d) $L: Z \rightarrow Z$ (where Z is as in part (c)) sending $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto\left(a_{2}, a_{3}, a_{4}, \ldots\right)$.
e) $I: W \rightarrow \mathbb{R}$ (where W is the vector space of continuous real-valued functions on the closed interval $[0,1]$) sending $f \mapsto \int_{0}^{1} f(x) d x$.
f) $D: V \rightarrow V$ (where V is the vector space of infinitely differentiable functions on \mathbb{R}) sending $f \mapsto f^{\prime}$.
g) $E: V \rightarrow \mathbb{R}$ (where V is as in part (f)) sending $f \mapsto f(0)$.
h) $Q: V \rightarrow V$ (where V is as in part (f)) sending $f \mapsto f^{2}$.
i) $S: V \rightarrow V$ (where V is as in part (f)) sending $f(x) \mapsto f(x) \sin (x)$.
4. For each of the maps in $\# 3$ that is a linear transformation, find the following:
a) The range of the map, also known as the image. (The range of a linear transformation $T: V \rightarrow W$ is by definition $\{w \in W \mid w=T(v)$ for some $v \in V\}$.)
b) The nullspace of the map, also known as the kernel. (The nullspace of a linear transformation $T: V \rightarrow W$ is by definition $\{v \in V \mid T(v)=0\}$.)
5. Let V, W, Z be vector spaces. Let $T: V \rightarrow W, S: V \rightarrow W$, and $U: W \rightarrow Z$ be linear transformations. Let c be a scalar.
a) Consider the map $T+S: V \rightarrow W$ given by sending $v \mapsto T(v)+S(v)$. Is this a linear transformation?
b) Consider the map $c T: V \rightarrow W$ given by sending $v \mapsto c T(v)$. Is this a linear transformation?
c) Consider the map $U \circ T: V \rightarrow Z$ by given sending $v \mapsto U(T(v))$. Is this a linear transformation?

