1. Show that there are infinitely many primes of the form $6 k-1$, with k a positive integer.
2. Convert each of these decimal numbers to base 3 :
a) $(31)_{10}$
b) $(.1111 \ldots)_{10}$
3. Find the g.c.d. and l.c.m. of 231 and 154.
4. Find all solutions, $\bmod 158$, to the congruence $68 x \equiv 2(\bmod 158)$.
5. Find the least non-negative residue of $16^{12001} \bmod 13$.
6. Find the inverse of $35 \bmod 52$, or else show that there is no such inverse.
7. Find all solutions to the system of simultaneous congruences

$$
x \equiv 1(\bmod 2), x \equiv 2(\bmod 3), x \equiv 3(\bmod 5)
$$

8. Find the order of $3 \bmod 23$. Is 3 a primitive root $\bmod 23$?
9. Find all roots of the congruence $x^{2} \equiv 14(\bmod 125)$.
10. Find the values of $\phi(42), \sigma(42), \tau(42), \mu(42)$.
11. Suppose that $f(n)$ is an arithmetic function with the property that for all positive integers n, we have that $\sum_{d \mid n} f(d)=[\sqrt{d}]$. (Here the sum is over the positive divisors, and $[x]$ means the greatest integer in x.) Find the value of $f(20)$.
12. Explain what a digital signature is, what its purpose is, and how it works.
13. Determine if 2 is a square $\bmod 57$.
14. Determine whether 25 is a fourth power $\bmod 37$.
15. a) Find the continued fraction expansion for $27 / 16$.
b) Do the same for $1+\sqrt{3}$.
