Instructions: These are additional study problems for Exam \#3. To practice for the exam, do all of these problems, showing your work and explaining your assertions. Allow yourself 10 minutes per problem. These problems supplement the problems on Sample Exam \#3.

1. Prove that the real matrices $\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6\end{array}\right)$ and $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5\end{array}\right)$ are not similar.
2. a) Find the eigenvalues of $A=\left(\begin{array}{cc}3 & 4 \\ 4 & -3\end{array}\right)$.
b) Show that there is a real matrix B such that $B^{5}=A$.
3. Find all diagonal matrices that are similar to $A=\left(\begin{array}{ccc}3 & 1 & 0 \\ 1 & 3 & 0 \\ -1 & -1 & 2\end{array}\right)$. Explain.
4. Let A be an $n \times n$ matrix. Show that A is not invertible if and only if 0 is an eigenvalue of A.
5. Explicitly find all 2×2 diagonalizable matrices over \mathbb{C} whose only eigenvalue is 2 . Justify your assertion.
6. With respect to the usual dot product on \mathbb{R}^{3}, find an orthogonal basis for the subspace W of \mathbb{R}^{3} that is spanned by the two vectors $(1,1,1)$ and $(1,2,3)$. Also find a basis for the orthogonal complement W^{\perp} of W.
7. a) Is there an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors of $A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 3 & 0 \\ 2 & 0 & 1\end{array}\right)$?
b) Is there an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors of $B=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 1\end{array}\right)$? Explain.
