Instructions: These are additional study problems for Exam \#2. To practice for the exam, do all of these problems, showing your work and explaining your assertions. Allow yourself 10 minutes per problem. These problems supplement the problems on Sample Exam \#2.

1. Let A, B, C be $n \times n$ matrices over a field F, with C invertible and $B=C^{-1} A C$. Show that A and B have the same rank and have the same nullity.
2. Let $T: V \rightarrow W$ and $S: W \rightarrow V$ be linear transformations of finite dimensional vector spaces, such that $S \circ T$ is the identity on V. Must T be an isomorphism of V with W ? Either show that this is the case, or give a counterexample.
3. Let $V=\mathbb{R}^{3}$, with basis i, j, k, and let x, y, z be the dual basis of V^{*}. Find a basis for the annihilator of the subspace of V spanned by $3 i-j$.
4. Show that if V is a finite dimensional vector space, and $v, w \in V$ are linearly independent, then there exists $f \in V^{*}$ such that $f(v)=1$ and $f(w)=2$. What if v, w are instead linearly dependent?
5. Let $V=\mathbb{R}^{4}$ with coordinates x_{1}, \ldots, x_{4}, and let W be the subspace of V given by $x_{1}+\cdots+x_{4}=0$. Let $T: V \rightarrow V / W$ be the linear transformation taking $v \in V$ to the coset $v+W \in V / W$. Find a subspace $X \subset V$ such that the restriction of T to X is an isomorphism $X \rightarrow V / W$, and show that $V=W \oplus X$.
6. Let $T: V \rightarrow W$ be a linear transformation, and let $T^{*}: W^{*} \rightarrow V^{*}$ be its transpose. Show that $\operatorname{ker}\left(T^{*}\right)=\operatorname{ann}(\operatorname{im}(T))$.
7. Compute the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
0 & 1 & 8 & 2 \\
0 & 0 & 4 & 0 \\
2 & 0 & -5 & 0
\end{array}\right)
$$

and determine if this matrix has an inverse. [Hint: Some rows or columns may be easier than others to expand about.] Does your answer depend on the field of scalars?

