Instructions: These are additional study problems for Exam #1. To practice for the exam, do all five problems, showing your work and explaining your assertions. Allow yourself 50 minutes.

1. Is $\{(x, y) \in \mathbb{R}^2 | xy = 0\}$ a subspace of \mathbb{R}^2 ? Justify your assertion.

2. Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ whose image (range) consists of the scalar multiples of the vector (1,3). Explain.

3. Let V be the real vector space consisting of all 2×2 real matrices. Let $W \subset V$ consist of the symmetric matrices in V. Determine whether W is a subspace of V. If it is, find its dimension and find a basis of W.

4. Let S, T be finite subsets of \mathbb{R}^n , with $S \subset T$. Suppose that S spans \mathbb{R}^n and that T is linearly independent. Show that S = T.

5. Consider the vectors $d_1 = (2, 1)$ and $d_2 = (0, 2)$ in \mathbb{R}^2 . Show that d_1, d_2 form a basis of \mathbb{R}^2 , and find the coordinates of the vector (2, 0) in this basis.