Instructions: These are additional study problems for Exam \#1. To practice for the exam, do all five problems, showing your work and explaining your assertions. Allow yourself 50 minutes.

1. Is $\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$ a subspace of \mathbb{R}^{2} ? Justify your assertion.
2. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose image (range) consists of the scalar multiples of the vector $(1,3)$. Explain.
3. Let V be the real vector space consisting of all 2×2 real matrices. Let $W \subset V$ consist of the symmetric matrices in V. Determine whether W is a subspace of V. If it is, find its dimension and find a basis of W.
4. Let S, T be finite subsets of \mathbb{R}^{n}, with $S \subset T$. Suppose that S spans \mathbb{R}^{n} and that T is linearly independent. Show that $S=T$.
5. Consider the vectors $d_{1}=(2,1)$ and $d_{2}=(0,2)$ in \mathbb{R}^{2}. Show that d_{1}, d_{2} form a basis of \mathbb{R}^{2}, and find the coordinates of the vector $(2,0)$ in this basis.
