Instructions: This is a sample exam for Exam \#3 in Math 314 (held on Wednesday, May 1). Like the actual exam, it consists of five problems. Do all five, showing your work and explaining your assertions. Each problem is worth 10 points, for a total of 50 points. Partial credit is given as appropriate on the exam.

Note: Extra credit will be given to those who hand in this sample exam in lecture on Mon., April 29, or who submit it to their TA by 8:30pm on Tuesday, April 30 (e.g. at the Tuesday lab, which all are invited to).

1. Let $A=\left(\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right)$. Find the characteristic and minimal polynomials of A over \mathbb{R}. Is A diagonalizable over \mathbb{R} ? If it is, find a diagonal matrix that is similar to A. Justify your assertions.
2. Show that if a 2×2 real matrix A has the property that $A^{2}=-I$, then A cannot be diagonalized over \mathbb{R} but that it can be diagonalized over \mathbb{C}.
3. Let $V=\mathrm{M}_{3}(\mathbb{R})$ be the vector space of real 3×3 matrices. Define $P: V \rightarrow V$ by $P(A)=\frac{1}{2}\left(A-A^{\mathrm{t}}\right)$.
a) Show that P is a linear transformation.
b) Show that P is a projection, i.e. $P^{2}=P$.
c) Determine the kernel and image of P, and find their dimensions.
4. For $v=(a, b)$ and $w=(c, d)$ in \mathbb{R}^{2}, define $\langle v, w\rangle=a c-a d-b c+2 b d$. Show that this is an inner product, and find an orthonormal basis of \mathbb{R}^{2} with respect to this inner product.

5 . Find real numbers a, b such that with respect to the usual inner product (dot product) on \mathbb{R}^{3}, there is an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors of $\left(\begin{array}{ccc}1 & 0 & a \\ 0 & 2 & b \\ -1 & 3 & 0\end{array}\right)$. Explain.

