Read Hoffman and Kunze, Chapter 6, Section 8; Chapter 7, Sections 1-3; and Chapter 8, Section 1.

1. From Hoffman and Kunze, do these problems: Chapter 6, pages 225-226, \#1,3,6,15; Chapter 7, pages 230-231, \#1,2,4; pages 241-244, \#1,4(a); pages 249-251, \#3.
2. From Hoffman and Kunze, Chapter 8, do these problems: pages 275-277, \#1,3,4,9.
3. Find the rational canonical form of a 3×3 Jordan block.
4. Let V be a finite dimensional vector space over \mathbb{R}, let $T: V \rightarrow V$ be a linear transformation such that $T^{r}=I$ for some $r \geq 1$, and let $W \subset V$ be a T-invariant subspace.
a) Show that there is a projection map P of V onto W. [Hint: Pick a basis of W.]
b) For your map P, define $P^{\prime}: V \rightarrow V$ by

$$
P^{\prime}(v)=\frac{1}{r} \sum_{i=0}^{r-1} T^{-i}\left(P\left(T^{i}(v)\right)\right) .
$$

Show that P^{\prime} is also a projection of V onto W. [Hint: What is the restriction of P^{\prime} to W ? What is the image of P^{\prime} ? Also explain why T is invertible and T^{-i} exists.]
c) Prove that for any $v \in V, P^{\prime}(T(v))=T\left(P^{\prime}(v)\right)$, and deduce that $\operatorname{ker}\left(P^{\prime}\right)$ is T invariant.
d) Use part (c) to show that $V=W \oplus W^{\prime}$ for some T-invariant subspace $W^{\prime} \subset V$.
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Show that T preserves length (i.e. $\|T(x)\|=\|x\|$ for all $x \in \mathbb{R}^{n}$) if and only if T preserves inner product (i.e. $T(x) \cdot T(y)=x \cdot y$ for all $x, y \in \mathbb{R}^{n}$). [Hint: $\|x\|^{2}=x \cdot x$, so $\|T(x+y)\|^{2}=\cdots$.]

