Read Hoffman and Kunze, Chapter 6, Sections 5-7.

1. From Hoffman and Kunze, Chapter 6, do these problems: Pages 205-206, \#1-3,6,8; page 208, $\# 1(\mathrm{a}), 2$; page $213, \# 1,4$; pages 218-219, $\# 2,3$.
2. Let $A \in M_{n}(\mathbb{R})$. Suppose that A is triangularizable over \mathbb{R}, and that it is diagonalizable over \mathbb{C}. Prove that A is diagonalizable over \mathbb{R}.
3. Suppose that $A \in M_{5}(\mathbb{R})$ has characteristic polynomial equal to $(x-1)\left(x^{2}+2\right)(x-3)^{2}$.
a) Can A be diagonalizable over \mathbb{R} ?
b) If A is diagonalizable over \mathbb{C}, find the minimal polynomial of A.
c) If A is not diagonalizable over \mathbb{C}, find the minimal polynomial of A. Explain.
4. Find the smallest field containing \mathbb{Q} with the property that the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{array}\right)
$$

is triangularizable. Determine whether A is diagonalizable over that field.
5. Determine which of the following matrices are diagonalizable over \mathbb{R}. For each of them, do this in two ways: first by using the criterion in terms of the characteristic polynomial and the dimensions of the eigenspaces, and second by using the criterion in terms of the minimal polynomial.

$$
A=\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & -1 \\
0 & 0 & 2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

