Read Hoffman and Kunze, Chapter 6, Sections 3-4.

1. From Hoffman and Kunze, Chapter 6, do these problems: Pages 197-198, \#1,2,5,6,7,8; pages 205-206, \#5,7,10.
2. For each of the following matrices, find the characteristic polynomial and the minimal polynomial; determine whether the matrix is similar to a real diagonal matrix and whether it is similar to a real triangular matrix; also whether it is similar to a complex diagonal or triangular matrix. In each case find the diagonal matrix it is similar to, if it exists.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
1 & 0 & 3
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 3
\end{array}\right), \quad C=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

3. Let $T: V \rightarrow V$ be a linear transformation, and let S be the set of eigenvectors of T (including 0).
a) Show that S is not always a subspace of V. Can S ever be a subspace of V ? How does this relate to eigenspaces, and to problem 6 on Problem Set 2?
b) Let W be the span of S. Show that W is invariant under T, i.e. $T(W) \subset W$. Must $W=V$?
4. Let A be an $n \times n$ matrix over \mathbb{R} that has n distinct eigenvalues.
a) Show that there is a cube root of A; i.e. a matrix $B \in M_{n}(\mathbb{R})$ such that $B^{3}=A$.
b) Find necessary and sufficient conditions on the eigenvalues in order for A to have a square root in $M_{n}(\mathbb{R})$.
c) Determine whether the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \in M_{2}(\mathbb{R})
$$

has a square root in $M_{2}(\mathbb{R})$, and whether it has a cube root in $M_{2}(\mathbb{R})$. In each case, if such a root exists, find one.
5. a) Given a complex matrix A and a sequence of complex matrices $A_{1}, A_{2}, A_{3}, \ldots$, we say that $\lim _{i \rightarrow \infty} A_{i}=A$ if each entry of A is the limit of the corresponding entries of the matrices A_{i}. Show that every matrix A in $M_{2}(\mathbb{C})$ is the limit of some sequence of diagonalizable matrices A_{i} in $M_{2}(\mathbb{C})$. [Hint: An $n \times n$ matrix is diagonalizable if it has n distinct eigenvalues.]
b) Use this to give a different proof of the Cayley-Hamilton theorem for $M_{2}(\mathbb{C})$; and then for $M_{2}(\mathbb{R})$. [Hint: For the first part, observe that Cayley-Hamilton holds for diagonal matrices; and for the second part, use that the characteristic polynomial doesn't change upon field extension.]
c) $\left[\right.$ Optional] Generalize parts (a) and (b) to $M_{n}(\mathbb{C})$ and $M_{n}(\mathbb{R})$.

