In Hoffman and Kunze, read Chapter 3, Section 7; and Chapter 4 (all).

1. From Hoffman and Kunze, Chapter 3, do these problems: pages 105-107, \#11, 12, 17; pages $115-116, \# 1,7$. From Chapter 4, do these problems: pages $122-123, \# 1(\mathrm{a}), 4,6,7$.
2. a) Show that if $T: V \rightarrow W$ is a surjective linear transformation of finite dimensional vector spaces with kernel N, then $\operatorname{dim}(V / N)=\operatorname{dim}(V)-\operatorname{dim}(N)$. [Hint: Consider $\operatorname{dim}(W)$.
b) Illustrate this with the example $V=\mathbb{R}^{3}, W=\mathbb{R}, T(x, y, z)=x+y+z$.
3. Let $T: V \rightarrow W$ and $S: W \rightarrow Z$ be linear transformations of finite dimensional vector spaces. Consider the transpose transformations, $T^{*}: W^{*} \rightarrow V^{*}$ and $S^{*}: Z^{*} \rightarrow W^{*}$.
a) Show that $T^{*}=0$ if and only if $T=0$.
b) Show that $(S \circ T)^{*}=T^{*} \circ S^{*}$, and deduce that if $S \circ T=0$ then $T^{*} \circ S^{*}=0$. [You can do this either using the linear transformations or the corresponding matrices.]
c) Show that if T is surjective then T^{*} is injective. [Hint: What is the kernel of T^{*} ?]
d) Show that if T is injective then T^{*} is surjective. [Hint: Pick a basis \mathcal{B} of V, and show that $T(\mathcal{B}) \subset W$ extends to a basis of W.]
e) Conclude that T is an isomorphism if and only if T^{*} is an isomorphism.
4. Let \mathcal{A} be an algebra over a field F.
a) Show that $0 \cdot a=0$ for all $a \in \mathcal{A}$, where $0 \in \mathcal{A}$ is the additive identity in \mathcal{A}.
b) Suppose that \mathcal{A} has a multiplicative identity $1 \in \mathcal{A}$. Prove that $(-1) \cdot a=-a$ for all $a \in \mathcal{A}$ (where $-a \in \mathcal{A}$ denotes the additive inverse of $a \in \mathcal{A}$).
5. a) Let F be a field, let $f(x) \in F[x]$, and let A be an $n \times n$ matrix over F. Suppose that $f(x)=f_{1}(x) f_{2}(x)$ in $F[x]$. Prove that $f(A)=f_{1}(A) f_{2}(A)$ as matrices.
b) Let $f(x, y) \in F[x, y]$, the algebra of polynomials in x and y with coefficients in F. Let A, B be $n \times n$ matrices over F. Suppose that $f(x, y)=f_{1}(x, y) f_{2}(x, y)$ in $F[x, y]$. Show that $f(A, B)$ is not necessarily equal to the matrix $f_{1}(A, B) f_{2}(A, B)$. [Hint: Let $f(x, y)=x^{2}-y^{2}$ and pick two 2×2 matrices.]
c) Explain where your proof for (a) breaks down in (b).
