In Hoffman and Kunze, read Chapter 3, Sections 5 and 6; and Appendix A.4.

1. From Hoffman and Kunze, Chapter 3, do these problems: pages 105-107, \#1-5; page 111, \#1.
2. Let m, n be positive integers and consider vectors $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$. Show that these vectors are linearly independent as vectors in \mathbb{R}^{n} over the field of scalars \mathbb{R} if and only if they are linearly independent as vectors in \mathbb{C}^{n} over the field of scalars \mathbb{C}. (Hint: One direction is easy. For the other direction, consider the following question: If A is an $m \times n$ matrix with reduced row echelon form R, then how can one tell from R whether the rows of A are linearly independent?)
3. Let V be a vector space, let W be a subspace of V, and let S be a subset of V.
a) If S is a linearly independent subset of V, must $S \cap W$ be a linearly indendent subset of W ?
b) If S spans V, must $S \cap W$ span W ?
c) If S is a basis of V, must $S \cap W$ be a basis of W ?
d) If $\operatorname{ann}(W) \subset \operatorname{ann}(S)$, must $S \subset W$?
e) If $\operatorname{ann}(S) \subset \operatorname{ann}(W)$, must $W \subset S$?
4. If X, Y are subspaces of a vector space V, write $V=X \oplus Y$ if every element $v \in V$ can be written in exactly one way as $v=x+y$ with $x \in X$ and $y \in Y$.
a) If $V=\mathbb{R}^{3}$ and X is the x-axis, find a subspace $Y \subset V$ such that $V=X \oplus Y$. Find the dimensions of $V, X, Y, V^{*}, \operatorname{ann}(X), \operatorname{ann}(Y)$. What relationships do you notice among these dimensions?
b) Let V be any finite dimensional vector space with subspaces X, Y. Show that $V=X \oplus Y$ if and only if the following two conditions both hold: $X+Y=V$ and $X \cap Y=0$.
c) Let V be a finite dimensional vector space with subspaces X, Y, such that $V=X \oplus Y$.
i) Show that if \mathcal{A} is a basis of X and \mathcal{B} is a basis of Y, then $\mathcal{A} \cup \mathcal{B}$ is a basis of V.
ii) Prove that the numerical relationships you noticed in part (a) hold.
iii) Show that $V^{*}=\operatorname{ann}(X) \oplus \operatorname{ann}(Y)$.
5. For any finite dimensional vector space V with basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$, and corresponding dual basis $\mathcal{B}^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ of V^{*}, define $\phi_{V, \mathcal{B}}: V \rightarrow V^{*}$ by $\sum_{1}^{n} a_{i} v_{i} \mapsto \sum_{1}^{n} a_{i} f_{i}$. In particular, since V^{*} is finite dimensional with basis \mathcal{B}^{*}, we can also consider the map $\phi_{V^{*}, \mathcal{B}^{*}}: V^{*} \rightarrow V^{* *}$. Let $\psi_{V, \mathcal{B}}=\phi_{V^{*}, \mathcal{B}^{*}} \circ \phi_{V, \mathcal{B}}: V \rightarrow V^{* *}$.
a) Show that $\phi_{V, \mathcal{B}}: V \rightarrow V^{*}$ is an isomorphism, but that it depends on the choice of basis \mathcal{B}. [Hint: For the second part, choose two different bases $\mathcal{B}, \mathcal{B}^{\prime}$ of some vector space V; e.g. take V to be the one-dimensional space \mathbb{R}. Then compare the two maps $\phi_{V, \mathcal{B}}$ and $\phi_{V, \mathcal{B}^{\prime}}$, and verify that they are not the same.]
b) Explain what $\psi_{V, \mathcal{B}}$ does to each basis vector of V, and show that $\psi_{V, \mathcal{B}}: V \rightarrow V^{* *}$ is an isomorphism. Also show that $\psi_{V, \mathcal{B}}$ is the same as the isomorphism ev: $V \rightarrow V^{* *}$ given by $v \rightarrow \operatorname{ev}_{v}$, where $\operatorname{ev}_{v}(f)=f(v)$ for $f \in V^{*}$. (Hint: Show $\psi_{V, \mathcal{B}}\left(v_{i}\right)=\mathrm{ev}_{v_{i}}$ for all i.) Then deduce that $\psi_{V, \mathcal{B}}$ does not depend on the choice of basis \mathcal{B} (and in that sense is "natural").
