In Hoffman and Kunze, read Chapter 3, Section 4.

1. From Hoffman and Kunze, Chapter 3, do these problems: pages 83-84, #3, 5; pages 85-86, #7; pages 95-97, # 1(a), 5, 8.

2. Suppose that A and B are similar $n \times n$ matrices (i.e. $B = C^{-1}AC$ for some invertible $n \times n$ matrix C).

- a) Show that A^n and B^n are similar.
- b) Show that if f(x) is a polynomial, then f(A) and f(B) are similar.
- c) Show that if f(x) is a polynomial such that f(A) = 0, then f(B) = 0.

3. Let $T: V \to V$ be a linear transformation, where V is a finite dimensional vector space. Let T^n denote $T \circ T \circ \cdots \circ T$ (with n factors of T) and let $r_n = \operatorname{rank}(T_n)$. Prove that $r_{n+1} \leq r_n$ for all n, and deduce that the sequence r_1, r_2, r_3, \ldots is eventually constant. (Hint: See Problem Set 5, #3.)

4. Let *n* be a non-negative integer, and let $\alpha_1, \ldots, \alpha_{n+1}$ be distinct real numbers. Let \mathcal{P}_n be the vector space of real polynomials f(x) of degree $\leq n$. Define $F : \mathcal{P}_n \to \mathbb{R}^{n+1}$ by $f \mapsto (f(\alpha_1), \ldots, f(\alpha_{n+1}))$.

a) Show that F is an isomorphism. [Hint: $\dim(\mathcal{P}_n) = ?$ kernel(F) = ?]

b) Explicitly find $F^{-1}(e_1), \ldots, F^{-1}(e_{n+1})$ (where e_1, \ldots, e_{n+1} are the standard basis vectors in \mathbb{R}^{n+1}) in the case n = 2 and $\alpha_j = j$ for j = 1, 2, 3. [Hint: Where does (x-a)(x-b) vanish?]

c) In general, deduce that $F^{-1}(e_1), \ldots, F^{-1}(e_{n+1})$ form a basis of \mathcal{P}_n . In the special case done in (b), express the polynomial x as a linear combination of these basis elements.

5. Let \mathcal{P}_n be the vector space of real polynomials f(x) of degree at most n. Define $T: \mathcal{P}_2 \to \mathcal{P}_2$ by $f(x) \mapsto f(x) - (x-1)f'(x)$, where f'(x) is the derivative of f(x).

a) Show that T is a linear transformation.

- b) Find the kernel of T. (Hint: Differential equations.)
- c) Find the matrix of T with respect to the basis $\{1, x, x^2\}$ of \mathcal{P}_2 .

d) Find the matrix of T with respect to the basis $\{f_1, f_2, f_3\}$ of \mathcal{P}_2 , where $f_i = F^{-1}(e_i)$ as in problem 4.