In Hoffman and Kunze, read Chapter 3, Section 4.

1. From Hoffman and Kunze, Chapter 3, do these problems: pages 83-84, \#3, 5; pages 85-86, \#7; pages 95-97, \# 1(a), 5, 8.
2. Suppose that A and B are similar $n \times n$ matrices (i.e. $B=C^{-1} A C$ for some invertible $n \times n$ matrix $C)$.
a) Show that A^{n} and B^{n} are similar.
b) Show that if $f(x)$ is a polynomial, then $f(A)$ and $f(B)$ are similar.
c) Show that if $f(x)$ is a polynomial such that $f(A)=0$, then $f(B)=0$.
3. Let $T: V \rightarrow V$ be a linear transformation, where V is a finite dimensional vector space. Let T^{n} denote $T \circ T \circ \cdots \circ T$ (with n factors of T) and let $r_{n}=\operatorname{rank}\left(T_{n}\right)$. Prove that $r_{n+1} \leq r_{n}$ for all n, and deduce that the sequence $r_{1}, r_{2}, r_{3}, \ldots$ is eventually constant. (Hint: See Problem Set 5, \#3.)
4. Let n be a non-negative integer, and let $\alpha_{1}, \ldots, \alpha_{n+1}$ be distinct real numbers. Let \mathcal{P}_{n} be the vector space of real polynomials $f(x)$ of degree $\leq n$. Define $F: \mathcal{P}_{n} \rightarrow \mathbb{R}^{n+1}$ by $f \mapsto\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n+1}\right)\right)$.
a) Show that F is an isomorphism. [$\operatorname{Hint}: \operatorname{dim}\left(\mathcal{P}_{n}\right)=? \operatorname{kernel}(F)=$?]
b) Explicitly find $F^{-1}\left(e_{1}\right), \ldots, F^{-1}\left(e_{n+1}\right)$ (where e_{1}, \ldots, e_{n+1} are the standard basis vectors in \mathbb{R}^{n+1}) in the case $n=2$ and $\alpha_{j}=j$ for $j=1,2,3$. [Hint: Where does $(x-a)(x-b)$ vanish?]
c) In general, deduce that $F^{-1}\left(e_{1}\right), \ldots, F^{-1}\left(e_{n+1}\right)$ form a basis of \mathcal{P}_{n}. In the special case done in (b), express the polynomial x as a linear combination of these basis elements.
5. Let \mathcal{P}_{n} be the vector space of real polynomials $f(x)$ of degree at most n. Define $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ by $f(x) \mapsto f(x)-(x-1) f^{\prime}(x)$, where $f^{\prime}(x)$ is the derivative of $f(x)$.
a) Show that T is a linear transformation.
b) Find the kernel of T. (Hint: Differential equations.)
c) Find the matrix of T with respect to the basis $\left\{1, x, x^{2}\right\}$ of \mathcal{P}_{2}.
d) Find the matrix of T with respect to the basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ of \mathcal{P}_{2}, where $f_{i}=F^{-1}\left(e_{i}\right)$ as in problem 4.
