In Hoffman and Kunze, read Chapter 2, Sections 5-6, and Chapter 3, Section 1.

1. From Hoffman and Kunze, do these problems:
a) In Chapter 2, pages $48-49, \# 7$; page $55, \# 2$; page $66, \# 3$.
b) In Chapter 3, pages $73-74, \# 1,5,8,9,10$.
2. Which of the following are linear transformations?
a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ sending $(x, y, z) \mapsto(x-y, y-z, z-x, 0)$.
b) $M: \mathbb{R}^{2} \rightarrow \mathbb{R}$ sending $(x, y) \mapsto x y$. (Here we view $\mathbb{R}=\mathbb{R}^{1}$.)
c) $R: Z \rightarrow Z$ (where Z is the vector space of sequences of real numbers) sending $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)$.
d) $L: Z \rightarrow Z$ (where Z is as in part (c)) sending $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto\left(a_{2}, a_{3}, a_{4}, \ldots\right)$.
e) $I: W \rightarrow \mathbb{R}$ (where W is the vector space of continuous real-valued functions on the closed interval $[0,1])$ sending $f \mapsto \int_{0}^{1} f(x) d x$.
f) $D: V \rightarrow V$ (where V is the vector space of infinitely differentiable functions on \mathbb{R}) sending $f \mapsto f^{\prime}$.
g) $E: V \rightarrow \mathbb{R}$ (where V is as in part (f)) sending $f \mapsto f(0)$.
h) $Q: V \rightarrow V$ (where V is as in part (f)) sending $f \mapsto f^{2}$.
i) $S: V \rightarrow V$ (where V is as in part (f)) sending $f(x) \mapsto f(x) \sin (x)$.
3. For each of the maps in $\# 2$ that is a linear transformation, find the following:
a) The range of the map, also known as the image. (The range of a linear transformation $T: V \rightarrow W$ is by definition $\{w \in W \mid w=T(v)$ for some $v \in V\}$.)
b) The nullspace of the map, also known as the kernel. (The nullspace of a linear transformation $T: V \rightarrow W$ is by definition $\{v \in V \mid T(v)=0\}$.)
4. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation taking $(x, y) \in \mathbb{R}^{2}$ to $(a, b, c) \in \mathbb{R}^{3}$ whenever

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right)\binom{x}{y}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Find the kernel and image of S, describing them both geometrically and in terms of equations.
5. Let V be a real vector space, and suppose that $S: V \rightarrow \mathbb{R}$ and $T: V \rightarrow \mathbb{R}$ are linear transformations. Define $P: V \rightarrow \mathbb{R}^{2}$ by $P(v)=(S(v), T(v))$.
a) Show that P is a linear transformation.
b) Find the kernel of P in terms of the kernels of S and T.

