In Hoffman and Kunze, Chapter 2, review Section 3 and read Section 4.

1. This problem concerns vectors in \mathbb{R}^{3}.
a) Express $u=(7,-1,5)$ as a linear combination of $v=(3,-1,2)$ and $w=(1,1,1)$.
b) Show that $z=(0,0,1)$ is not a linear combination of v and w.
c) Can z be expressed as a linear combination of the vectors u, v, w ? (Hint: You don't need to do any computations for this part, once you've done the previous two parts. Note that you are not asked to find a linear combination, but just to determine if one exists.)
d) Can the vector $(\pi, e, \sqrt{2})$ be expressed as a linear combination of the vectors v, w, z ? (Same hint as in the previous part.)
2. a) Find all real numbers α such that the vectors $(\alpha, 1,0),(1, \alpha, 1),(0,1, \alpha)$ are linearly independent in \mathbb{R}^{3}. (Hint: A linear dependency relation gives a homogeneous system of three equations in three unknowns, if one writes out the coordinates. When does such a system have a non-trivial solution?)
b) Does your answer change if instead you work over the rational vector space \mathbb{Q}^{3} or over the complex vector space \mathbb{C}^{3} (and allow α to be in \mathbb{Q} or \mathbb{C} respectively)?
3. Show that if a vector space V is not finite dimensional, then there is an infinite linearly independent subset $\left\{v_{1}, v_{2}, v_{3}, \ldots\right\}$ of V. (Hint: Does V have a finite spanning set? Use your answer to find appropriate vectors $v_{1}, v_{2}, v_{3}, \ldots$ successively.)
4. Let $v_{0}, v_{1}, \ldots, v_{n}$ be vectors in a vector space V, such that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, and such that v_{0} is not in the span of v_{1}, \ldots, v_{n-1}. Prove that $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ is a basis of V.
5. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{4}. Suppose that the set $S=\left\{v_{1}, v_{2}\right\}$ is linearly independent, and that the set $S^{\prime}=\left\{v_{3}, v_{4}\right\}$ is also linearly independent. Suppose also that $\operatorname{span}(S) \cap \operatorname{span}\left(S^{\prime}\right)=O$. Prove that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of \mathbb{R}^{4}.
