In Hoffman and Kunze, Chapter 2, review Section 3 and read Section 4.

- 1. This problem concerns vectors in \mathbb{R}^3 .
 - a) Express u = (7, -1, 5) as a linear combination of v = (3, -1, 2) and w = (1, 1, 1).
 - b) Show that z = (0, 0, 1) is not a linear combination of v and w.

c) Can z be expressed as a linear combination of the vectors u, v, w? (Hint: You don't need to do any computations for this part, once you've done the previous two parts. Note that you are not asked to find a linear combination, but just to determine if one exists.)

d) Can the vector $(\pi, e, \sqrt{2})$ be expressed as a linear combination of the vectors v, w, z? (Same hint as in the previous part.)

2. a) Find all real numbers α such that the vectors $(\alpha, 1, 0)$, $(1, \alpha, 1)$, $(0, 1, \alpha)$ are linearly independent in \mathbb{R}^3 . (Hint: A linear dependency relation gives a homogeneous system of three equations in three unknowns, if one writes out the coordinates. When does such a system have a non-trivial solution?)

b) Does your answer change if instead you work over the rational vector space \mathbb{Q}^3 or over the complex vector space \mathbb{C}^3 (and allow α to be in \mathbb{Q} or \mathbb{C} respectively)?

3. Show that if a vector space V is not finite dimensional, then there is an infinite linearly independent subset $\{v_1, v_2, v_3, \ldots\}$ of V. (Hint: Does V have a finite spanning set? Use your answer to find appropriate vectors v_1, v_2, v_3, \ldots successively.)

4. Let v_0, v_1, \ldots, v_n be vectors in a vector space V, such that $\{v_1, \ldots, v_n\}$ is a basis of V, and such that v_0 is not in the span of v_1, \ldots, v_{n-1} . Prove that $\{v_0, v_1, \ldots, v_{n-1}\}$ is a basis of V.

5. Let v_1, v_2, v_3, v_4 be vectors in \mathbb{R}^4 . Suppose that the set $S = \{v_1, v_2\}$ is linearly independent, and that the set $S' = \{v_3, v_4\}$ is also linearly independent. Suppose also that $\operatorname{span}(S) \cap \operatorname{span}(S') = O$. Prove that $\{v_1, v_2, v_3, v_4\}$ is a basis of \mathbb{R}^4 .