Read Hoffman and Kunze, Chapter 2, Sections 2 and 3.

1. a) Suppose that F is a field, and $a, b \in F$. Prove that if $a b=0$, then either $a=0$ or $b=0$. (Hint: Multiply on the left by a suitable element.)
b) Suppose that V is a vector space over the field of scalars F, and that $c \in F$. Prove that $c O=O$. (Hint: Use the same strategy as was used to prove that $0 v=O$ for $v \in V$.)
c) Suppose that V is a vector space over the field of scalars F, and that $c \in F$ and $v \in V$. Prove that if $c v=O$, then either $c=0$ or $v=O$. (Hint: See parts (a) and (b).)
2. For each of the following, determine whether W is a subspace of the vector space V over the real numbers. Explain your assertions. For each W that is not a subspace, explicitly describe the span of W in V.
a) $V=\mathbb{R}^{2}$, $W=\{(x, y) \in V \mid x y \geq 0\}$.
b) $V=\mathbb{R}^{2}, W=\left\{(x, y) \in V \mid x^{2}-2 x y+y^{2}=0\right\}$.
c) $V=\mathbb{R}^{4}, W=\{(x, y, z, t) \in V \mid x+y+2 z=0, y+z+2 t=0\}$.
d) V is the set of solutions to the differential equation $f^{\prime \prime}(x)+f^{\prime}(x)-2 f(x)=0$, and W is the set of solutions to the differential equation $f^{\prime}(x)=f(x)$.
e) V is the set of differential real-valued functions on \mathbb{R}, c is a fixed real number, and $W=W_{c}$ is the set of $f \in V$ such that $f(1)=0$ and $f^{\prime}(2)=c$. (Your answer should depend on the value of c.)
f) V is the set of convergent sequences $a_{1}, a_{2}, a_{3}, \ldots$ of real numbers, and W is the set of sequences $a_{1}, a_{2}, a_{3}, \ldots$ of real numbers such that the series $\sum_{i=1}^{\infty} a_{i}$ converges.
3. Prove that the functions $e^{x}, e^{2 x}, e^{3 x}$ are linearly independent in the real vector space V consisting of all the real-valued differentiable functions on \mathbb{R}. (Hint: If not, then take a linear relation and differentiate twice. What three relations do you get? What happens if you set $x=0$ in those relations?)
4. Let S be a linearly independent subset of a vector space V. Let $v \in V$ with $v \notin S$, and let $S^{\prime}=S \cup\{v\}$. Prove the following: S^{\prime} is linearly independent if and only if v is not in the span of S.
5. Let $A=\left(a_{i j}\right)$ be an $n \times n$ lower triangular matrix; i.e., $a_{i j}=0$ for $i<j$. Suppose that B is an $n \times n$ matrix such that $A B$ is the $n \times n$ identity matrix. Prove that
(i) B is also lower triangular.
(ii) the diagonal elements of A are all non-zero.
(Hint: First do this with $n=2$, and then do $n=3$, in order to see the pattern.)
6. Let V be a vector space. Suppose that W_{1}, W_{2} are subspaces of V, with the property that neither is contained in the other. Prove that the union $W_{1} \cup W_{2}$ is not a subspace of V. (Hint: Take an element $w_{1} \in W_{1}$ that is not in W_{2}, and vice versa. What happens if you add those two elements? Where does the sum lie?)
