Math 314

Read Hoffman and Kunze, Chapter 2, Sections 2 and 3.

1. a) Suppose that F is a field, and $a, b \in F$. Prove that if ab = 0, then either a = 0 or b = 0. (Hint: Multiply on the left by a suitable element.)

b) Suppose that V is a vector space over the field of scalars F, and that $c \in F$. Prove that cO = O. (Hint: Use the same strategy as was used to prove that 0v = O for $v \in V$.)

c) Suppose that V is a vector space over the field of scalars F, and that $c \in F$ and $v \in V$. Prove that if cv = O, then either c = 0 or v = O. (Hint: See parts (a) and (b).)

2. For each of the following, determine whether W is a subspace of the vector space V over the real numbers. Explain your assertions. For each W that is *not* a subspace, explicitly describe the span of W in V.

a) $V = \mathbb{R}^2$, $W = \{(x, y) \in V | xy \ge 0\}$.

b) $V = \mathbb{R}^2$, $W = \{(x, y) \in V | x^2 - 2xy + y^2 = 0\}$.

c) $V = \mathbb{R}^4$, $W = \{(x, y, z, t) \in V \mid x + y + 2z = 0, y + z + 2t = 0\}.$

d) V is the set of solutions to the differential equation f''(x) + f'(x) - 2f(x) = 0, and W is the set of solutions to the differential equation f'(x) = f(x).

e) V is the set of differential real-valued functions on \mathbb{R} , c is a fixed real number, and $W = W_c$ is the set of $f \in V$ such that f(1) = 0 and f'(2) = c. (Your answer should depend on the value of c.)

f) V is the set of convergent sequences a_1, a_2, a_3, \ldots of real numbers, and W is the set of sequences a_1, a_2, a_3, \ldots of real numbers such that the series $\sum_{i=1}^{\infty} a_i$ converges.

3. Prove that the functions e^x, e^{2x}, e^{3x} are linearly independent in the real vector space V consisting of all the real-valued differentiable functions on \mathbb{R} . (Hint: If not, then take a linear relation and differentiate twice. What three relations do you get? What happens if you set x = 0 in those relations?)

4. Let S be a linearly independent subset of a vector space V. Let $v \in V$ with $v \notin S$, and let $S' = S \cup \{v\}$. Prove the following: S' is linearly independent if and only if v is not in the span of S.

5. Let $A = (a_{ij})$ be an $n \times n$ lower triangular matrix; i.e., $a_{ij} = 0$ for i < j. Suppose that B is an $n \times n$ matrix such that AB is the $n \times n$ identity matrix. Prove that

(i) B is also lower triangular.

(ii) the diagonal elements of A are all non-zero.

(Hint: First do this with n = 2, and then do n = 3, in order to see the pattern.)

6. Let V be a vector space. Suppose that W_1, W_2 are subspaces of V, with the property that neither is contained in the other. Prove that the union $W_1 \cup W_2$ is not a subspace of V. (Hint: Take an element $w_1 \in W_1$ that is not in W_2 , and vice versa. What happens if you add those two elements? Where does the sum lie?)