Read Hoffman and Kunze, Chapter 1, and Section 1 of Chapter 2. (The material in Chapter 1 after Section 1 is a review of material from Math 240.)

1. a) Is \mathbb{R} a vector space over the field \mathbb{Q} ?
b) Is \mathbb{Q} a vector space over the field \mathbb{R} ?
c) Is the set of purely imaginary complex numbers a vector space over \mathbb{R} ? (A complex number $a+b i$ is called "purely imaginary" if $a=0$. Here b is real.)
d) Is the set of complex numbers of absolute value 1 a vector space over the field \mathbb{R} ?
e) Is the set of symmetric 3×3 real matrices (i.e. matrices with $a_{i j}=a_{j i}$ for all i, j) a vector space over \mathbb{R} ?
f) Is the set of invertible 3×3 real matrices a vector space over \mathbb{R} ? (A matrix A is called "invertible" if there is a matrix B such that $A B$ and $B A$ are both the identity matrix.)
2. Which of the following sets is a field? For those that are, why? For those that are not, why not?
a) the set of 2×2 real matrices (under matrix addition and multiplication).
b) the set of irrational real numbers (under addition and multiplication of real numbers).
c) the set of complex numbers of the form $a+b i$ with a, b each rational (under addition and multiplication of complex numbers).
d) the set \mathbb{R}^{2} under the usual addition of vectors, and with multiplication defined by $(a, b) \cdot(c, d)=(a c-b d, a d+b c)$. (Hint: You've seen this set before, but it's in disguise here.)
3. Let c be a fixed real number. Let $f_{0}(x), f_{1}(x), f_{2}(x)$ be real-valued differentiable functions. Let V_{c} be the set of all 3-times differentiable functions $y(x)$ that are solutions to the homogeneous linear differentiable equation

$$
y^{\prime \prime \prime}+f_{2}(x) y^{\prime \prime}+f_{1}(x) y^{\prime}+f_{0}(x) y=c .
$$

Show that V_{c} is a vector space over the field of scalars \mathbb{R} if and only if $c=0$.
4. a) Write down the addition and multiplication tables of a field having exactly three elements.
b) Do the same for a finite field of some other number of elements, greater than three and less than ten. (Caution: You want to be sure that what you write down is a field. For example, every element other than 0 must have a multiplicative inverse.)

