Chap. 6
Eigenvalues, eiginuoctes, diagmalintion, triangeterititan

$$
T: \underset{\substack{B \\ \text { basis }}}{V} \rightarrow \underset{\sim}{\mathcal{B}} \rightarrow \underset{m x}{A} \rightarrow T
$$

Chare basis \sim change $m x$ of T mex A, B wot two bases

$$
\Leftrightarrow A, B \text { are simile. } \quad A \sim B
$$

$B=C^{-1} A C$ for some C
Som min are essie to work with them others.
es. to compute dot - - rank

Guat:

Does then exist a basis of V fo which the $m x$ of T is diagmin? -or at lear, tr iangler?
Dismal:

$$
T: V \rightarrow V \quad n \sin
$$

(B) boil, $w m_{x} A \in M_{n}(F)$ ls there a die, oud mr $D \sim A$?
If so, what in D ? What is the new boris?

$$
\text { If } A \sim D=\left(\begin{array}{cc}
c_{i}, & O \\
O \cdot c_{n}
\end{array}\right)
$$

$$
\text { The } T\left(v_{2}\right)=c_{2} v_{j}
$$

If we fie lin ind vader v. in v_{0} st $T\left(v_{i}\right)=c_{1} v_{j} f_{0}$, sem $c_{2} \in F$ the $D=\left(0 ; c_{0}\right)$ iris T wet $\left[v_{1}, v_{3}\right]$ $A \sim D$.
The $\operatorname{dx} A=\operatorname{det} D=\pi C$ i rk $A=r k D=\#$ of ambo $c i s$.
$T: V \rightarrow V$
If $v \in V, c \in F, T(v)=c v$ call V an eigenvecte of T. ("cheocterist: Vuafo)
If $v \in V$ is a navo eijemath. w.th $T(v)=c v$ $c \in F$ we coll c the correspandin, eigenvalun of T.
("cheracterisitivaluei) $\stackrel{n \times n}{a} T$. adinl So to digg $m>A<B$: Fing n lin ind eignoctor, $v:$ fo. T otheis corrap eigavalues s.

$$
\text { Tha: } A \sim D=\left(\begin{array}{ll}
c_{1} & 0 \\
0 & 1 \\
0 & c_{n}
\end{array}\right)
$$

uot beirs $v_{i}-v_{n}$ of V.
How to frine the engeveates $V=\left(x_{1}, \ldots, x_{0}\right)$ f eigmechas c ?
A $n \times n$. $\quad A(v)=c[v]$

Sive $A\left(\begin{array}{l}x_{1} \\ \vdots \\ x_{1} \\ i\end{array}\right)=c\left(\begin{array}{l}x \\ \vdots \\ i_{n}\end{array}\right)$
Equin $A\left(\begin{array}{l}x \\ i \\ x_{1}\end{array}\right)=\operatorname{co}\left(\begin{array}{c}x_{1} \\ \vdots \\ \vdots\end{array}\right)$
" $\underbrace{A-c I}_{n \times n})\left(\begin{array}{l}x_{1} \\ i \\ i\end{array}\right)=0$

This deperma.
If thishypas: c is anergaiche
$f\left(x,-x_{-}\right)=0$ is the comip. Rigavecte.
Ex. $A=\left(\begin{array}{ll}1 & 7 \\ 4 & 4\end{array}\right) \leftrightarrow T \cdot \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
A-c I=\left(\begin{array}{cc}
1-c & 7 \\
4 & 4-c
\end{array}\right)
$$

$\operatorname{dx}(A-c I)=(1-c)(4-c)-7.4$

$$
=c^{2}-5 c-2 y
$$

$$
=(c-p)(c+3)
$$

$$
\begin{aligned}
& d t=0 \Leftrightarrow c=8,-3 . \leftarrow \text { eignvalues. }
\end{aligned}
$$

(Here, $V_{1} \leftrightarrow 8, \quad V_{2} \rightarrow-3$,

$$
T\left(v_{1}\right)=8 v_{1}, \quad T\left(v_{2}\right)=-3 v_{2}
$$

$\therefore V_{1}, V_{2}$ cre at mults of e.ah othe; lin i=e. in \mathbb{R}^{2}

$$
\therefore \text { fore a beris. } \therefore A \sim D \text {. }
$$

Fiel vi, va:
Jnom-0 solus + $(A-c I)\binom{x}{y}=\binom{0}{0}$. Fiel! \cdot from

$$
\begin{gathered}
\frac{c=8:}{x-y=0} \quad A \cdot c I=\left(\begin{array}{cc}
-7 & 7 \\
4 & -4
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & -1 \\
4 & -4
\end{array}\right) \mapsto\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \\
x=y \quad(1,1)
\end{gathered}
$$

Take $v_{1}=(1,1) \leftrightarrow 8$

$$
C=-3: A-c I=\left(\begin{array}{ll}
4 & 7 \\
4 & 7
\end{array}\right) \leadsto\left(\begin{array}{ll}
1 & 1 / 4 \\
4 & 7
\end{array}\right) \sim\left(\begin{array}{cc}
1 \\
1 & 1 / 4 \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Soln's th hom, ar, } x+\xi y=0 \\
& y=\frac{-4}{7} x \\
& V_{2}=(7,-4) \text { is a } 5.1 \\
& \int_{-3}^{c} \quad \text { (also its miltores) }
\end{aligned}
$$

V_{1}, V_{2} are lis.ins; besiciof \mathbb{R}^{2} In this besis: $m x$ of T is $D=\left(\begin{array}{ll}8 & 0 \\ 0 & -3\end{array}\right)$

Che., of basis m>C:
Expons V_{1}, V_{2} intern of e_{1}, e_{2} C.lu... of C K

$$
\begin{aligned}
& v_{1}=(1,1)=e_{1}+e_{2} \longleftarrow \\
& v_{2}=(7,-4)=7 e_{1}-4 e_{-} \longleftarrow \\
& C=\left(\begin{array}{cc}
1 & 7 \\
1 & -4 \\
\hat{\imath} & 1 \\
v_{1} & v_{2}
\end{array} \quad D=C^{-1} A C\right.
\end{aligned}
$$

\ln sidi $A=\left(a_{i j}\right) \in M_{n}(F)$

$$
\frac{\hat{\imath}}{T}: F^{n} \rightarrow F^{n}
$$

To fire ergnvelu., c

+ ecgnvad. V of A.
- if \exists hasis of F^{n}

Consisti-i of elpuedors of T
the diojom. li\& A.
$w a t c$ st. $\operatorname{det}(A-c I)=0$

$$
\Leftrightarrow \operatorname{det}(c I-A)=0
$$

$\operatorname{dd}(x I-A) \quad \in F(x), d y=n$ monis

$$
=\operatorname{dot}\left(\begin{array}{cccc}
x-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
\vdots & x-a_{22} & & \vdots \\
a_{11} & \vdots & \ddots & x-a_{n n}
\end{array}\right)
$$

Cheracteriste p ol, of $A, P_{A}(x)$
(*) Elgureluen if A ard The
routr if $P_{A}(x) \in F[x]$
\uparrow monie, dymin
$P_{A}(x)=0$ fo $x=C, \quad$ eyenects
$(A x)(A-c I) X=0$ hes an-0 sol,

$$
?_{\text {eignicion }} \quad X=(0)
$$

$A[v]=c(u) . \quad$ Fin $c:$ rocto of $P_{A}(x)$.
Fiev: soles to $(* *)$.
Apd, of dejean hes $\leq n$ raots,i: F.
Say: $P_{A}(x)$ hes n roots i: $\begin{aligned} & \text { distict. }\end{aligned}$
$c_{1}, \ldots e_{n}$; get $v_{1 . \ldots} v_{n}$
eiprolu..s caroang eignvidor
We wald like to we V.r-va es in berir of ergnolues of F^{n}.

Then: wot this baris, $m x$ of T is $D=\left(\begin{array}{lll}c & & \\ & & \\ & c_{n}\end{array}\right)$
How de we kaw if $V_{1,}$ - Va are a besis? Iff v_{1}, v_{a} are lin.ine.
PryIf V_{1}, V_{k} are ineigevectors fon $A \in M_{n}$ (F) corroup to dertrint eigea values $c_{1},-c_{k}$, the vi.- v_{k} are lis ade.
$\left.\begin{array}{l}\therefore \text { If we hase } U_{1},-V \text { as aboes } \\ \text { the abcsis: } A \text { is diegonclizable. }\end{array}\right] \leftarrow$ Pf of Prop
If not a lwaydong take a mimin.l Counterancaple (smellest k) $C_{1}, \rightarrow C_{k} \in F \quad$ distait e, anvil....
 f. A

So: $V_{1,-} v_{k}$ are lin. dy.
(*) $a_{1} v_{1} \ldots \ldots a_{k} v_{k}=0$

$$
a_{i} \in F
$$

Siac.. thir is mind,
$n_{0} a_{i}=0$
(on: co.ld onit it)
$A \hookrightarrow T=T_{A}: F^{n} \rightarrow F^{n}$
Arpi, T, T_{1}^{2}, T^{k-1}
to (*)

$$
\begin{aligned}
& a_{1} v_{1}+\cdots+a_{k} v_{k}=0 \\
& a_{1} c_{1} v_{1}+\cdots-\cdots a_{k} c_{k} y_{k}=0 \\
& a_{1} c_{1}^{2} v_{1}+\cdots-+a_{k} c_{k}^{2} v_{k}=0 \\
& a_{1} c_{1}^{k-1} v_{1}+\cdots-+a_{k} c_{k}^{k-1} v_{k}=0 \\
& \left(\begin{array}{c}
a_{1} \\
a_{1} c_{1}
\end{array} \cdots \cdots \cdots a_{k}-\cdots a_{k} c_{k}\right)\left(\begin{array}{l}
v_{1} \\
a_{1} c_{1}^{2} \\
\vdots \\
a_{1} c_{1}^{k-1}
\end{array} \cdots \cdots a_{k} c_{k}^{k-}\right)\left(\begin{array}{c}
c_{1}^{2} \\
\vdots \\
v_{k}
\end{array}\right)=0
\end{aligned}
$$

By PS10: if all $a_{i} \neq 0$ fore th:s Then thir ma is invertible.
Mclt m laft b_{1} inewras $\left(\begin{array}{c}v_{i} \\ \vdots \\ v_{k}\end{array}\right)=0$ But $v_{i} \neq 0$. Condredictio.
S.: If A nnn,
$\longrightarrow+P_{A}(x)$ has n distiat rost, $c_{1 .}-c_{n}$ the A is diasible. $A \sim\left(\begin{array}{lll}C_{1} & 0 \\ 0 & \ddots & c_{n}\end{array}\right)$
What if $P_{A}(x)$ hes $<n$ voots in?
(i.e. A her $<n$ distrint eignselues)
\rightarrow Is A diasible?
(ix. J? besis of ei guveoders)

More cmplicatn.
Ex1. $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
C hor polt $P_{A}(x)=\operatorname{det}(x I-A)$

$$
=\operatorname{det}\left(\begin{array}{cc}
x-2 & 0 \\
0 & x-2
\end{array}\right)=(x-2)^{2}
$$

Onl, ons: reat (repental)
Ever, $V \in F^{2}$ is a- eigavede fo A

$$
T(v)=2 v \quad A=2 I
$$

Ste bais eife io a besis In fact. A is alra.d, diagmel.

$$
E x 2 \cdot A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Cher poli: $P_{A}(x)=\operatorname{det}\left(\begin{array}{cc}x & 1 \\ -1 & x\end{array}\right)$ $=x^{2}+1$.
a) $\operatorname{Sa} F=\mathbb{R}$.

$$
\begin{array}{ll}
S \text { eg } F & =\mathbb{R}, \\
x^{2}+1 & \text { hes ao ro.ts }
\end{array} \therefore \mathbb{R}
$$

No eigavelos, no egnuctros $\neq 0$ Cait be diagmaliad (aur \mathbb{R}) (can rotetio hy 90\%)
b)

$$
\begin{aligned}
& F=\mathbb{C} \\
& x^{2}+1=(x+i)(x-i)
\end{aligned}
$$

2 disthat routs. $c=i,-i$.

$$
\text { so diagible/ } \mathbb{C} A \sim\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

$$
\begin{aligned}
E_{x^{3}} . A & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
P_{A}(\lambda) & =\operatorname{dx}\left(\begin{array}{cc}
x-1 & -1 \\
0 & x-1
\end{array}\right)=(x-1)^{2}
\end{aligned}
$$

one root, $c=1$. (ropetix) Eignuadors?

$$
(A-c I)\binom{x}{y}=\binom{0}{0}
$$

$$
\begin{aligned}
& \left(A^{\prime \prime}-I\right)\left(\left.\begin{array}{l}
x \\
y
\end{array} \right\rvert\,\right. \\
& A-I=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { rou ralece. } \\
& y=0 . \quad(x-b)
\end{aligned}
$$

Eignoubrai $(1,0)+$ mittiples.
No horisi eij-Genters.
Not dicgble. (over a, fice)
Criterion? Yar - using mind poly.

$$
T: V \longrightarrow V_{1 \rightarrow 2} 1 i=r
$$

Besis $\sim A$
A. minhenis $\sim B$$\quad A \sim B$
$P_{A}(x), P_{B}(x)$. chy of Ralatioshir?

$$
\begin{aligned}
x I-B & =x I-C^{-1} A C \\
& =C^{-1}(x I) C-C^{-1} A C \\
& =C^{-1}(x I-A) C \\
x I-B & \sim x I-A \\
P_{D}(x) & =\operatorname{det}(x I-B) \\
& =\operatorname{det}(x I-A)=P_{A}(x)
\end{aligned}
$$

So: $P_{A}(x)=P_{D}(x)$.
Can rafer to $P_{T}(x) \quad\binom{c h e r}{p \sim 1, f T}$ (ang one of thene).

Sa Ais dios ble.

$$
A \backsim D=\left(\begin{array}{lll}
c_{1} & 0 \\
0 & 0 \\
0 & c_{n}
\end{array}\right)
$$

$A_{1} D$ repreint same listo T (wot diff. basen)

$$
\begin{aligned}
& P_{A}(x)=P_{\partial}(x)=\operatorname{det}(x I-D) \\
& =\operatorname{det}\left(\begin{array}{cc}
x-c_{1} & 0 \\
0 & \cdots \\
& x \cdot c_{1}
\end{array}\right)=\prod_{i=1}^{n}\left(x-c_{i}\right)
\end{aligned}
$$

Conclusi:: If A is dies'ble, When $P_{A}(x)$ is a paode.t of lineer ficates $x-c$ ce.jimell... (p.ssibl, rapertae)

List distinat ergmoclues

$$
m \leq n .
$$

A cobithor.
If $P_{A}(x)$ is a pridect of l in foeders each is $X-\lambda: 0$ eccurs d ithias

$$
\begin{array}{ll}
l_{\operatorname{coh}} \text { is } x-\lambda i ; & d_{i} \geq 1 \\
d_{1}+\ldots+d_{m}=n &
\end{array}
$$

$d_{y}=n$.

$$
\underset{n \times \infty}{ } \longleftrightarrow T
$$

$$
P_{A}(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{d_{i}}
$$

$$
\lambda_{.}, \lambda_{m} \in F \quad \text { dishat }
$$

$L A W_{i}=\left\{e_{i j e m e c a t o r s ~ f o r ~}^{\lambda_{i}}\right\}$
Clair $W: C V$ is a subspece.

$$
\left(\begin{array}{l}
w_{h} ? ? \quad / f \quad v_{1}, v_{2} \in W_{i} \\
T\left(v_{1}\right)=\lambda_{i} v_{1} \\
T\left(v_{1}+v_{2}\right)=T\left(v_{2}\right)=\lambda_{i} v_{2}
\end{array}\right.
$$

$$
\left(T\left(c v_{1}\right)=\lambda_{i}\left(c v_{1}\right) \quad \text { sin. } 1, l_{1} .\right.
$$

Call W: the eigenspeae corrosp to λ_{i}

$$
\begin{aligned}
& S_{i} A \underline{m} \text { di,ible. } A \sim D=\left(\begin{array}{cc}
c_{i} & v \\
0 & c_{n}
\end{array}\right) \\
& v_{1}-v_{n} \\
& P_{D}(x)=P_{A}(x)=\prod_{i=1}^{m}\left(x-\lambda_{!}\right)^{d_{i}} \\
& \prod_{i=1}^{n}(x-(i) \sim
\end{aligned}
$$

So: d_{1} of the c_{i} 's ore $=\lambda_{1}$

$$
d_{2}----=\lambda_{2}
$$

et.
Can orle V.... Va so that
If d_{1} if the ore eigenvectors fo λ,
Wast d - - Net. $-\lambda_{0}$
$V_{1,}, V_{d_{1}}$ are $a l l$ e.gnventer fri λ_{1}
In $\operatorname{span}\left(v_{1, \ldots} v_{d_{1}}\right)$: all are..-

$$
\begin{aligned}
& \hat{W}_{1} \uparrow c_{\text {dim }}=d_{1} \\
& c_{n} \text { this bi bi, sone? }
\end{aligned}
$$

Ans: No.

To see this:
Say $w \in W_{1} \subset F^{n}$ WTS $\quad \omega \in \operatorname{spa}\left(v_{1}, \ldots, v_{d_{1}}\right)$ $v_{1}, \ldots, v_{d_{1}}, \ldots v_{a}$. besis of F^{n}

$$
W_{1} \ni w=\frac{a_{1} v_{1}+\cdots+a_{a_{1}} v_{d_{1}}}{\prod_{w_{1}} \in W_{1}} \geqslant \prod_{w_{2}}^{\cdots}-w_{w_{2}}^{\cdots} w_{m}
$$

$\omega=\omega_{1}+w_{2}+\cdots+w_{m} \quad \omega_{i} \in \omega_{1}$

(destint) $\lambda_{1} \lambda_{1} \cdots \lambda_{m}$
So $w_{1}-\infty, w_{2},-w_{m}$: lin. i.l. Sin is 0 . \because thir, all 0 . ifnm- 0 .

$$
\begin{aligned}
& w_{1}=\omega \\
& a_{1}^{\prime \prime} u_{1}+a_{2} v_{2}, c \operatorname{sp}^{n}\left(v_{1}-v_{1}\right)
\end{aligned}
$$

 $A \sim D$ dies.

Conderim: $W_{1}=\operatorname{spn}\left(v_{1},-v_{1}\right)$

$$
\left.w_{2}=s p .\left(v_{d_{1}+1}\right) \ldots v_{d_{1+d_{1}}}\right)
$$

$$
\begin{aligned}
d_{\text {in }} W_{i}= & d_{i}=\text { et. } \\
& =\operatorname{egrol} \text { do } \lambda_{i} \lambda_{i} \\
= & \exp \cdot \text { unt of } x-\lambda_{i} \\
& \text { in } P_{A}(x) .
\end{aligned}
$$

Pron Su din $V \leftrightarrows$ ws/F

$$
T: V \rightarrow V, d_{i} \text { ajible }
$$

Sey by D, whose distait dieg entries are $\lambda_{1},-\lambda_{m}$ w.th λ : appearing d. times. (So $\left.n=\sum_{i=1}^{m} d i\right)_{m}$
Then $P_{T}(x)=\prod_{i=1}^{i=1}\left(x-\lambda_{i}\right)^{d i}$, of degree n, t din if the ergenspace W_{i} of A_{i} is d_{i}.

Con sat nec. t siff cond'n for dio, 'ble:

Pror $V n-\operatorname{din} u s / F$,
$T: V \rightarrow V$, with eignoclued $\lambda_{1 .}-\lambda_{m} \in F$ bith corosp. eugnspece $W_{1}-W_{0} \subset V$. Th TFAE:
i) T is diajble, by e diag, $n>D$ e.ch of whose dieg sutrics is me of $\lambda_{1}, \lambda_{\text {- }}$.
(i)

$$
{ }_{P_{T}}-\lambda_{-}(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{d_{i}} \leftharpoonup
$$

$$
\text { win } d:=\operatorname{din} W_{i} \text {. }
$$

$\left.i_{i}\right) \sum_{i=1}^{m} d_{i n} w_{i}=n$.
Pf. (i) \Rightarrow (ii) by prev por.

$$
\begin{aligned}
&\left(i i l \Rightarrow(i u) \quad \sum_{i=2}^{n} d_{i-} w_{i}=\sum d_{i}\right.=\operatorname{deg} P_{T}(x) \\
&=n n \\
&(\ddot{c i}) \Rightarrow(i):
\end{aligned}
$$

As in prev pf take a bess of each wa: $\begin{array}{llll}v_{1}, & v_{d} & f o & W_{1} \\ v_{d_{1}, n}, ? & v_{2, d,} & \lambda_{1}, W_{2} & \lambda_{2} \\ v, \cdots & v_{n} & \text { f. } W_{m} & \lambda_{m}\end{array}$

Clain: The set V_{1} - V_{n} is lis iod

$$
\begin{aligned}
& \text { (t. a besis of } V \text {) } \\
& \text { Say } 0=\sum a_{i} V_{i}
\end{aligned}
$$

In iid of n erigneentors for destiant
$-\therefore$ lad brecketelterm $=0$.

$$
\begin{aligned}
& a_{1} v_{1}++a_{d} v_{d}=0 . \\
& v_{1}, v_{d}: b_{c i s}, \delta(1, \quad \text { lin ind } \\
& \therefore a_{1}=-\quad a_{d,}=0 . \\
& \therefore \text { all } a_{i}=0, \quad \text { fo. Claim. }
\end{aligned}
$$ egnuclus

S. $h_{\text {e, a beirs consitions of }}^{v_{1}-=v_{n}}$ eigave.tors for T. - d diagble

Back to examples:

$$
E \times 1 . A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), d i c s
$$

$$
\begin{aligned}
& P_{A}(x)=(x-2)^{2} \underset{\text { (i) }}{ } \mathcal{L}_{1} \rightarrow W_{1}=2=\operatorname{din} V \\
& \lambda_{1}=2 \text {. } \\
& \text { (ciec) holer }
\end{aligned}
$$

Ex 2. $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
$O_{v .} \mathbb{R}_{1}$ not dics'ble.

$$
P_{A}(x)=x^{2}+1
$$

not a po.d
No mono eigevectors. of $1:$ f.t,
(ii) fill,
(ciil fails.
(Over C, all hola)
Ex3 $A=\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right)$, not dies: (i) fails.
One $\lambda, \quad \lambda=1 . \quad P_{A}(x)=(\alpha-1)^{2} \uparrow$

$$
W_{1}=\operatorname{sp}-(1,0)=x-\text { axis. }
$$

$d_{1}-w_{1}=1 . \neq 2 \xrightarrow[\text { wil fils. }]{ }$ (iial fais

Can still chark if it. D'ble.
(ear: $t \sim$ loun Δr)
(reooler batir pactues.

In Ex 3 chuod: $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
Not diejble. But D'r.

$$
P_{A^{(x)}}=(x-1)^{2}
$$

L proe. of lin factors.
In $E x 2$ abo..: $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, oor \mathbb{R}
Not diajble. $P_{A}(x)=x^{2}+1$ Not a prodof li factor/R.
Nut Jble: No rootr: \mathbb{R}. No eijevilian.

Gemerl condition:
Proo A is $\Delta b l_{/ F} \Leftrightarrow P_{A}(x)$ is a
prodet if lis factars e.e. $F, \prod_{i=1}^{n}\left(x-\lambda_{i}\right)^{d_{i}}$

Pf. \Rightarrow :
$A \sim U$, uppen $\Delta r m x$

$$
\begin{aligned}
& P_{A}(x)=P_{v}(x)=\operatorname{det}\left(\begin{array}{cc}
x-c_{1} & \\
0 & * \\
0 & \ddots
\end{array}\right) \\
& =\prod_{i=1}^{n}\left(x-c_{i}\right)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{d_{i}} \\
& \sum_{i=1}^{m} d_{i}=n
\end{aligned}
$$

$\lessdot: U_{s e}$ induation on n.
$n=1:$ Even 1×1 mx is Sble. Indection stey: assume resilt holds for $n-1$; wTS: holls for n.
$A \in M_{n}(F)$,
suppose $P_{A}(x)=$ prod. of lin. fectrs.
LTS: A is A 'ble /F.
Take a linee fore, s, $x-c_{1}$.
C_{1} is an eignvalie, for some
now. 0 eismvente $V_{1} \cdot \quad T\left(v_{1}\right)=c_{1} v_{1}$
Ca extae to a besis
$V_{1}, V_{2}^{\prime}, \ldots, V_{n}^{\prime}$ of F^{n}.
$A \longleftrightarrow T: F^{n} \longrightarrow F^{n}$
In this nee basis $m x$ for T is

$$
A^{\prime}=\left(\begin{array}{c|c}
c_{1} & * \\
0 & B \\
\vdots & B
\end{array}\right) \quad \begin{array}{ccc}
\\
v_{1} & v_{2}^{\prime} \ldots v_{n}^{\prime}
\end{array} \quad \begin{array}{cc}
& \\
n-1 & \times n-1
\end{array}
$$

W at do check; $P_{B}(x)$ is a

$$
\begin{aligned}
& \text { Prodatof lineer fators. } \\
& A \sim A^{\prime} \\
& P_{A}\left(x \mid=P_{A^{\prime}}(x)=\operatorname{det}\left(x I-A^{\prime}\right)\right. \\
& \text { expacelay }\left.\right|_{x} \text { sr colinn } \\
& =\left(x-c_{1}\right) \underbrace{d \operatorname{do}(x I-B)}_{P_{B}(x)} \\
& P_{A}(x)=\left(x-c_{1}\right) P_{D}(x) .
\end{aligned}
$$

$P_{A}(x)=$ pr.e. of lini.e fedes

$$
\begin{aligned}
& \quad\left(x-c_{1}\right)\left(x-c_{1}\right)-\left(x-c_{n}\right) \\
& P_{B}(x)=\text { prolef iin facter: }
\end{aligned}
$$

B is an $n-1 \times n-1$ mo, FT.
Ind $h_{\text {ip }}: B$ is Δ ble.

$$
\begin{aligned}
& \exists v_{2}, \ldots, v_{a} \text { of this v.s. }
\end{aligned}
$$

st m_{2} of S is Δr.

$$
B^{c_{1}}=\left(\right)
$$

Nou tak. V_{1}, V_{2}, V_{n}

$$
\text { Bars of } F^{\prime}
$$

M_{x} of T in this basis

$$
\left(\begin{array}{c|cc}
c_{1} & \cdots \cdots * \\
\hline 0 & c_{2} & * \\
i & 0 & * \\
u_{1} & v_{2} & c_{n}
\end{array}\right): s^{\prime} r .
$$

This use: $F^{-}=V_{1} \oplus V_{2}<d^{w n-n-1}$.

Anothe cappriach:

$$
\begin{array}{cc}
V_{1} \subset F^{n}, & W=F^{n} / V \\
1 & n-1 \\
& \text { wotk wirthis } \\
B \cdot B! \\
\text { If } F=\mathbb{C}:
\end{array}
$$

Yhen: every nin mo $A \in M,(a)$ c. be Δd are \mathbb{C}.
b/c swn $f(x) \in \mathbb{C}(x)$

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { is a pros. of link. fuates } \\
\text { ble evor, } f(x) \in \mathbb{C}[x) \\
\text { has a root. }
\end{array}\right.
\end{aligned}
$$

This holes mare gmer.lly for a fied F st every nom-const. pol, i $F[x]$ hes a ...t in F.
ies evary ma in Ma (F)
can be Δ 'd oor F.
$\hat{\imath}$
Then ficts ari callos
algesraicilly
closes.
\mathbb{C} is als.closes.
\mathbb{R} is unt als closes. $\left(x^{2}+1\right)$
\mathbb{F}_{2}. $-\cdots\left(x^{2}-x-1\right)$
$F=\bar{Q}=\{\alpha \in \mathbb{C} \mid \alpha$ is algebraic $\}$

fiels, alg. close. transcadeate.

Ever, falle F is containal i: a_{n} alg. close fiele.

- stut woth F, adjo.s roots of all the polis / F.
Smillost suah: elgebraie clos.o. of $F ; \quad \bar{F}$.

Char pol, $P_{A}(x)=\operatorname{det}(x I-A)$ des $=n$, mmic.
Key propet: $P_{A}(A)=0$.

$$
\text { i.e. } P_{A}(x) \in I=\{f(x) \in F(x) \mid f(A)=0\} \text {. }
$$

This shoun $I \neq\{0\}$.
We aree to show:
Juni= $p_{11} p_{A}(x)$, of $d_{y}=d$
$0<d \leq n$
$p_{A}(x) \in I$, anaic, Smallest $d y \cdot I$,
of $p_{\alpha}(x) \mid f(x)$ for $a \cdot l l f(x) \in I$.
Still neal to shaw: $P_{A}(x) \in I$ i.e $P_{A}(A)=0$.

Cayley-Ha.lfor Thim
HoK, \&6.3, Thy, Pp.194-196.
A different $p f$:
1 st care: A is $\Delta r: A=\left(\begin{array}{cc}c_{1} & \\ \vdots & \\ 0 & \\ c_{n}\end{array}\right)$

$$
\begin{aligned}
& P_{A}(x)=\prod_{i=1}^{n}\left(x-c_{i}\right) \\
& P_{i}(x)=x-c_{i} \quad \rightarrow P_{A}(x)=\prod_{i=1}^{n} P_{i}(x) \\
& P_{A}(A)=\prod_{i=1}^{n} P_{i}(A) N_{A-c i I}(P S 8+5 a) \\
& \text { Pug ur mx, o in ciels.t } \\
& =0(b, \text { ind oo } n) \\
& \text { (Ex } n=2 \quad\left(\begin{array}{ll}
* & * \\
0 & \alpha \\
0
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & * \\
0 & x
\end{array}\right)\left(\begin{array}{ll}
* & * \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \therefore .
\end{aligned}
$$

2^{p} cos: A in $\Delta^{\prime} b l e$.
$A \sim U$, up $\Delta^{\circ}-$

$$
P_{A}(x)=P_{0}(x)
$$

$$
P_{A}(A)=P_{U}(A) \sim P_{U}(U)
$$

$A \sim v, \|_{0}^{\binom{P 56}{\# 2}}$
B_{y} IT.cm.
3^{D} cen: A cob.
If F is als. clom: oks, cers 2.
If F is not als closes,

$$
\begin{gathered}
F<E \quad A \text { i } \Delta b_{l} / E . \\
P_{A}(x)=d x(x I-A) \in F(x] \subset E[x] \\
11<h_{1} \text { worki.g } / E . \\
0 \quad / F \\
\hline \begin{array}{c}
C-H \\
P_{A}(A)=0
\end{array}
\end{gathered}
$$

$P_{A}(x)$ anaikilates A.

$$
P_{A}(x) \in \underset{\hat{n}}{ }=\{f(x) \in F[x] \mid f(A)=0\}
$$

$\left.\tau_{\text {idul }}^{\text {2m." "tple, of }} p_{A}(x)\right\}$

$$
\therefore P_{A}(x) \mid P_{A}(x)
$$

Abse pf of $C-H$ usse: if $A \in M_{n}(f)+F_{\text {fikle }} \subset E$
then $P_{A}(x)$ is same /F are/E.

$$
\operatorname{det}^{\prime \prime}(x I-A)
$$

Q: If $A, E \subset F$ as above,
"PA(t) the same $/ F$ as $/ E$?
Als: Yes.
Pro. If $A \in M_{n}(F),+F_{\text {fices }} \subset E$,
the $P_{A}(x)$ is the sum $/ F$ \&e $/ E$.
PS. Wrise $P_{A F}(x) P_{A E}$ (x)for thene mine polys.

$$
\begin{aligned}
& P_{A, F}(x \in F[x]<E(x) \\
& P_{A, F}(A)=0 . \quad \therefore P_{A, F}(x) \in\{f(x) \in \in(x) \mid f(A)=0\} \\
& \therefore P_{A, E}(x) \mid P_{A, F}(x) \quad m \cdot\left(A_{0}^{\prime}+P_{A, E}(x)\right.
\end{aligned}
$$

thit $\hat{\imath}$ y \leq this domeri + deypur are $=$ iff $\mathrm{pol}_{7} s$ are $=$.
CTS degraes are $=(+$ at $<)$
Let $d=\operatorname{daj} P_{A, E}(x)$.
wTs A sctisfis, poly of dyd our-F.

$$
\begin{aligned}
& \quad P_{A, E}(x)=a_{0}+a_{0} x+a_{2} x^{2}+\cdots+a_{2} x^{d} \in E[x] \\
& D=P_{A, \varepsilon}(A)=a_{0} I+a_{1} A+\cdots+a_{2} A^{d} \\
& \text { Su } I, A, A_{1}, A^{d} \in M_{n}(F) \approx F^{n^{2}}
\end{aligned}
$$

ar. lin. dep. over E; i.e. is

$$
M_{n}(E) \simeq E^{n^{2}} .
$$

By PST\#2 (for $\mathbb{R} \subset \mathbb{C}$, but Some aog worls in ginl)

$$
I, A, \ldots, A^{d} \text { lin dp i } M_{n}(F) \& F^{n} \text {. }
$$

So $\exists b_{0},-b_{d} \in F$, uot $a l l 0$, st $\sum b: A^{i}=0$.

$$
A \text { satiok. } f(x)=\sum_{i=0}^{d} b i x i
$$

$\therefore \min p \cdot 4 P_{A, F}(x)$ hes $d_{3} \leq d$. Sow: —. $\geq d$.

$$
C-H \Rightarrow p_{A}(x) \mid P_{A}(x)
$$

S. ever root of $p_{A}(x)$

$$
\begin{array}{ll}
\text { is a " } & P_{A}(x) \\
& \hat{\imath} \text { eagnanalues of } \hat{\lambda}
\end{array}
$$

\therefore Every root of $p_{A}(x)$ is as eigenvalue of A.)
Q: Car easel),
$=$ Is ever, eijavelus of A a root of $p_{A}(x)$?
Ans Yes!
$\left.\right|^{\text {sr }}$ a lean.
Coma If $T: V \rightarrow V / F$
hos on e'gaveeto V, with eigenvalue c,

+ if $f(x) \in F[x]$ th

$$
f(T)(v)=f(c) v
$$

$$
\begin{aligned}
& \text { Pf. } \quad f(x)=\sum b i x^{i} \in F(x] \\
& f(T)(v)=\sum b \cdot T^{i}(v)=\sum b_{i} c^{i} v=f(c) v . \\
& \left(b / c T^{i}(v)=c^{i} v\right)
\end{aligned}
$$

Mow: to show: every eijnvalua of $A^{\rho^{T}}$ is a cot $f \quad P_{A}(x)=P_{\tau}(x)$

For this.
Let c ba
an eignuelin
of $A^{\text {at }}$ ore F.
S: $\exists \mathrm{nm}$ - 0 eigaviedrevfor c.

$$
\begin{aligned}
P_{A}(T)=0, \quad 0 & =P_{A}(T) V \\
& =\underbrace{P_{A}(c) V}_{\in F} \uparrow \neq 0
\end{aligned}
$$

Sol the roots of $\rho_{A}(\lambda)$ ara pracisel) the eijevalues of A.
S.: $P_{A}(x), P_{A}(x$ have the same roots
(bat poss. with different multiplicities)
Exarch, - start with earp con$n \times n$ max with n distrait eignvones.

Exo. $n=2 . \quad A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
Cigmuclues: 1,2 .

$$
\begin{aligned}
& P_{A}(x)=(x-1)(x-2) \quad \text { di.j. } \\
& \therefore P_{A}(x)=(x-1)(x-2)=P_{A}(x) .
\end{aligned}
$$

Whatif $d_{n=2}$ theve n distaif e egavicuen?
$E \times 1 . \quad A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ dics,
just one eiganclue (2). $P_{A}(x)=(x-2)^{2}$ $P_{A}(x)=(x-2)$, b/e $A-2 I=0$.

$$
E \times 2 \cdot A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Over $\mathbb{R}: ~$ no ergerilu..

$$
P_{A}(x)=x^{2}+1, \text { no root } \therefore \mathbb{R} .
$$

$$
p_{A}(x) \mid P_{A}(x) \quad \therefore \beta_{A}(x)=x^{2}+1=P_{A}(x) \text {. }
$$

Over $\mathbb{C}: P_{A}(x)=x^{2}+1=(x+i)(x-i)$ 2 distrinat eegancloes, $\therefore,-2 . A \sim\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$

$$
\therefore P_{A}(x)=(x+i)(x-i)=x^{2}+1=P_{A}(x) \text {. }
$$

(same $P_{n} P_{A}$ al /R)
$E \times 3$. $A=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, and, engatolue $=1$.
Not dieiblef an g file.

$$
P_{A}(x)=(x-1)^{2} .
$$

$P_{A}(x) \int P_{A}(\lambda)$, same root.
$\hat{\imath}$ either $x-1$ or $(x-1)^{2}$.

$$
A-I \neq 0 .
$$

not $p_{A}(x)$.

$$
P_{A}(x)=P_{A}(x)=(x-1)^{2} .
$$

Can use this approcen to fig $p_{A}(x)$:

$$
\begin{gathered}
\text { Ex. } A \in M_{4}(\mathbb{R}), P_{A}(x)=(x-1)(x-2)(x-3)^{2} \\
\text { Yes } p_{A}(x)=(x-1)(x-2)(x-2) \\
\text { or }(x-1)(x-2)(x-3)^{2}
\end{gathered}
$$

Ss: Plies : A into $(x-1)(x-2)(x-3)$.
If get O, then this is $P_{A}(x)$. If ant, the $(x-1)(x-2)(x-3)^{2}$.

Ex 2 over \mathbb{R} is a bit defferad:
$P_{A}(x)=x^{2}+1$ hes n. roots in \mathbb{R}.
$P_{A^{(x)}}$ is the same $/ \mathbb{R}+/ \mathbb{C}$.
$P_{A}(x)$
Can work/ C $+\operatorname{set} P_{A}(x)=x^{2}+1$
In geill, ecen ivod fouteof $P_{A}(x)$ or.r \mathbb{R} mist be en" " " $P_{A}(x)$, over \mathbb{R} - Surne reasn.
More Searoll:: true $/$ a.l fere F :
Reasm: pass to cbigeo firle wher. the iorel finter has notb

- e.s. algebcaic closure of F

Conclusim: the iroad ficters/F of $P_{A}(x), P_{A}(x)$ are the same. (exc. for m.ltiplicitul

$$
\begin{aligned}
& E x . A \in M_{r}(\mathbb{R}) \\
& P_{A}(x)=(x-1)^{2}\left(x^{2}+1\right)\left(x^{2}+2\right)^{2}
\end{aligned}
$$

$$
\text { Th } p_{p_{A}(x)}=(x-1)^{102}\left(x^{2}+1\right)\left(x^{2}+2\right)^{2^{10-2}}
$$

To fire $\beta_{n}(x)$ stert u.th

$$
\begin{aligned}
& P_{n}(x) \text { stot w.th los } \\
& (x-1)\left(x^{2}+1\right)\left(x^{2}+2\right),<_{10}
\end{aligned}
$$

If A satisfies, this, this of $f_{A}(x)$.
If at, t_{1} an exp of 2 an
$(x-1)$, the $-(b-t a x(x-1)+2)$.

then $p_{A}(x)=P_{A}(x)$.
We sau:
A \triangle ble $/ F \Leftrightarrow P_{A} \leftrightarrow 1 s$ a pood of $1:$ foters $/ F$

$$
\Leftrightarrow \beta_{A}(\lambda) \ldots \ldots
$$

the $(H+K$, th $6, P 204)$
A is diajble \Leftrightarrow
$P_{n}(x)$ is a pood of disthet linat fators.

Rec.ll: If $P_{A}(x)$ is a prodet of distanit lines fotere, th A is dijgble. - bat not caversy.

Ledi, chk the agaiit the exaples: In Ex $0, E_{x}$, Exz/C, $P_{n}(x)$ is a prod of distriat lineof fatere $+A$ is $d i$.jble. $\ln E \times 2 / \mathbb{R},+E \times 3$, $p_{A}|x|$ is a prod. of distrit limer fo-ters, an A ir out diajble.

$$
\operatorname{Re}{ }^{\prime} \Rightarrow \text { ' in the: }
$$

lat D be an $n \times n$ diegnx.

- dies entrik: $\lambda_{2}=\lambda_{m}$ (distided)
m. Itrilichan: $\quad a_{1}-d d^{\prime}$

$$
P_{D}(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)^{d_{i}}
$$

$$
\rightarrow P_{D}(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right) \text {, po. d. of }
$$

Reerm: $D-\lambda_{i} I$ her a o ot evorn dies entry where
(1) ha, $\lambda:$.
(als. 0 off the diog.)

$$
\prod_{i n}^{n}\left(D-\lambda_{i} I\right)=0
$$

i.e. $\prod_{i=1}^{m}\left(x-\lambda_{i}\right)$ beca.s. 0 If we sat $x=D$.
What if A is diejbly?
Yhe $A \sim D<d_{i, 1}$.

$$
P_{A}(x)=\rho_{D}(x)
$$

$$
\text { (b/e if } A \sim B \text {, th } f(A) \sim f(B))
$$

$\therefore P_{A}(x)$ in c po.s.f distrait lin. fuctors.
Th:, shoss ' \Rightarrow ' of ther. Will come hat tothis.
)ST: discussim of inveriat subspece:
$T: V \rightarrow V$ lin to $/ F$ $W \subset V$ susspaca.
Can restrict T to W

$$
T_{w}: W \longrightarrow V
$$

rentrictio of $T+W$
$T l_{w}, \operatorname{Tiw}$ (shriik $d_{\text {main) }}$
Im.g. might be saller.
If $\quad i m T_{w}=T(w)$
is cartainal $\therefore W$, syy
W is invorinat unter T
Cor: T-mvorinal)
th: Tw: $W \rightarrow W$

Commatation diegram
$W \subset V$ laveriat u.le- $T: V \rightarrow V$

$$
V / W=\{\cos x \operatorname{s} \cdot f W \operatorname{in} V\}
$$

quatiot spece $\quad V+W$

$$
v \in V
$$

plane $\frac{\bar{v} b^{\pi}}{\left(v^{0}+W\right)+\left(v^{\prime}+W\right)}=\left(v_{n+\infty} \approx v^{\prime}\right)+W^{(1) r}$

$$
\begin{gathered}
c(v+W)=c v+W \\
T: V \rightarrow V, \quad W \subset V \\
\\
\\
\\
T \text {-inveriat. }
\end{gathered}
$$

We get

$$
\begin{aligned}
F: V / w & \longrightarrow V / w \\
v+W & \longrightarrow T(v)+W
\end{aligned}
$$

Wall defies?
What if V, V^{\prime} are in the same cord?

$$
\begin{aligned}
& \begin{array}{ll}
V+W=v^{\prime}+W & v^{\prime}=v+w \\
I & ? \\
T(v)+W \in W
\end{array} \\
& \Delta=\searrow \\
& \begin{array}{l}
T^{\prime \prime}(v)+\underbrace{T(w)}_{\text {in } W}+W \text { by raveriacice }
\end{array} \\
& T(0)+W
\end{aligned}
$$

S. get $F: V / w \rightarrow V / w$. $E_{\text {al }}$: lin. transf.
$S_{\text {q }}: \bar{T}$ is the mop on V / W indued $b_{7} T$.

Have a conn diego:

If $f(x) \in F[x]$

$$
\text { and } f(T)=0 \text {. }
$$

thin: $f(\bar{T})=0.5^{0+w}$
Re...:

$$
\begin{aligned}
f(\bar{T})(v+w) & =f(T)(w)+w \\
& =0+w=w \\
& 0-21+\therefore V / w
\end{aligned}
$$

$$
\text { Take } f=\rho_{T}(x) \text {, set } p_{T}(T)=0 \text {. }
$$

$$
\because P_{T}(x) \mid P_{T}(x)^{\prime}
$$

Use this to prove the ' \Leftarrow ' of the theorem:

If $\rho_{T}(x)=$ porl of diotnit then T is diajble. (an V, n eiéos

$$
p_{T}(x)=\left(x-c_{1}\right) \ldots\left(x-c_{h}\right)
$$

$c_{1},-c_{M} \operatorname{din}+i$
eisandanes of T.
$c_{i} \leadsto W_{i}$, e.gnsj...
Let $W=$ spa. $f=W_{1}=w_{1} \cdots \cdots W_{n}$

$$
=\therefore \text { all cijporates }
$$

$$
=w_{1}+\cdots+w_{n} .
$$

W is inveriact ualer $T(P S \| 1, \# 3 b)$
\therefore get $F: V / w \rightarrow V / \omega$
If we shou $W=V$ then
V is span.es b its eiginventers.
So \exists beir, O, V consicta, of
\therefore elgaventers of T.
$\therefore T$ is dig'ble. So-dme.

To prove $W=V$, assume not.
If $W \neq V, \quad W \underset{\neq}{ } W$,
the V/W $\neq 0$
$F: V / \omega \rightarrow V / \omega$
Min pily $p_{T}(x)$ Ser \bar{T}
$P_{\bar{T}}(x) \mid P_{\tau}(x)$, sam noot.
$\hat{\imath}$ र́prod. if distant lis fotes.
". "Sme of the $X-c_{i}$'s.
After ruorderin c_{i}, WMA $\left(x-c_{1}\right) p_{i}(x)$.
$\therefore C$, is an eigancilue of \bar{T}.
Falce a non 0 eignient$\bar{v}=V+W \in V / W \quad v \in V$ for \bar{T}, woth e.gmo.k. C_{1}.

$$
\begin{aligned}
& \bar{v} \neq 0 \quad v+W \neq 0+W=W \\
& \therefore v \notin W
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}(\bar{v})=c_{1} \bar{v} . \quad \bar{v} \neq 0 \in V / W \\
& \text { If } c^{\prime} \neq c_{1} \text { yh. } \bar{T}(\bar{v}) \neq c^{\prime} \bar{v}
\end{aligned}
$$

$c_{1}--c_{k}$ are distaict. $\quad c_{2},-c_{k} \neq c_{1}$.

$$
\begin{gathered}
\left(\bar{T}-c_{2} I\right) \bar{v}=\underbrace{\bar{T} \bar{v}}_{c_{1} \bar{\sigma}}-c_{2} \bar{v} \neq 0 \\
\underbrace{}_{\substack{c_{1}-c_{2}}} \bar{v} \neq 0 .
\end{gathered}
$$

Non 0 marto
Anothe nons eegnuedr fur \bar{T} with eigandle C_{1}.
Repert; usi, $\bar{T}-C_{3} I,-, \bar{T}-C_{1} I$: Gat

$$
\begin{aligned}
& \left(\bar{T}-(, I) \cdots \cdot\left(\bar{T}-c_{0}\right) \bar{v}=a \bar{v}\right. \\
& / \quad a \neq 0, \quad a=\prod_{i=2}\left(c_{1}-c_{i}\right) \leqslant
\end{aligned}
$$

nor o erjenecte i- V / ω for \bar{T} coith eigunathe C_{1}.

$$
\begin{aligned}
& a_{\bar{v}}=a v+w \neq 0+w=w \\
& \hat{v} / w \quad \text { av } \neq w .
\end{aligned}
$$

$$
\begin{aligned}
& a=\prod_{i=c}^{h}\left(c_{1}-c_{i}\right) \\
& a \bar{v}=\prod_{i=2}^{h}\left(T-c_{i} I\right) v+W \neq 0 \in V / w \\
& \prod_{i=2}^{h}\left(T-c_{i} I\right) v \notin W .
\end{aligned}
$$

1
个 catri:, all e'gaveaters of T
\therefore this is an an eipneectr of T
But: $0=P_{T}(T)(v)$

$$
\begin{align*}
& =\prod_{i=1}^{\lambda_{h}}\left(T-C_{i} I\right) \tag{v}\\
& =\left(T-C_{1} I\right) \prod_{i=2}^{h}\left(T-c_{i} I\right) \\
& 0=(T-c, I) v^{\prime} . \\
& \begin{array}{l}
=T v^{\prime}-c_{1} v^{\prime} \\
\therefore \text { Tras }{ }^{\prime}=c_{1} v^{\prime} \\
\text { Cadr_dictin. }
\end{array}
\end{align*}
$$

Thi, cumplese, the pf it the th:
Th $(H+K$, Th $6, p 20 y$) (d.ff.jf.)

To use this to de teran..
diog'biln: (omF)
$A \underset{f_{0} x}{\longrightarrow} P_{A}(x)$.
W. eole the fie $P_{A}(x)$:

Factr $P_{\text {an w on }} F$,
tant prodets: of ircal fieters taki-, Rech at kest mes.
Can do even hasal
Factu $P_{A}(x)$ ouar F;
10.k at iriose facder.

If anc irras factor of $P_{A}(x)$
is am.liaker, then A is not dia, ble.
If cll of the ivios ficters of $P_{A}(x)$ are liaere. the:

$$
P_{A}(x)=\prod_{i=1}^{p_{i}}\left(x-\lambda_{i}\right)^{d i}
$$

$\lambda_{1 .} . \lambda_{1}$ distiat.

Test $f(x)=\prod_{i=0}^{n}\left(x-\lambda_{i}\right)$:
If $f(A)=0$ the $f_{t r j} p_{A}(x)$,
$+A$ is dioghl.
If $f(A) \neq 0$, the $p_{A}(x)$ he, a focter wich a. expound $>$!, So mat a probut of disting line.e fooms, tso A is not diog'ble.

Adder realt about diegn $+D_{\text {in: }}$
Sa, have a collectin of lin troufi)

$$
T: V \longrightarrow \widehat{V}_{\text {flows }} / F
$$

(or carroup mis A:)
Suppone thet each is Sbl.
(ia. \forall : \exists besic B : of V mak. Ti (A il D_{n})
Q : Is there a Singk hess B tha mokes the all Jir. (Simltanem Sin)

In guel No. Buts
Th (Th?, Itok, p2ol):
If Ti's (or Aïs)
Cormate with each othe $\left(\forall i, j \quad T_{i} T_{j}=T_{j} T_{i}\right)$ then yes.
The $p f$ is relate to the pf^{f}
that lis to. is Sble \propto mipot is a padef lis. fators.
Cor ($C_{0}+$ Th 7 chare):
If F is als. clow (m. $F=\mathbb{C}$),
if $T_{i}: V \rightarrow V$ conole, $\leftrightarrow A:$
Th: $\exists C$, rnoens. st $C^{-1} A_{i} C$ is upp-Dir $\forall i$
Alse1 a.oles of rescit for diaglitin: (Th 8, Hok, p207 flos If
If T_{i} or aficily of di.ghle commotion lin.t: $\dot{U} \rightarrow v$

Simaltomas diasin.
Pf uses similom iens, to pur. then.
Cas phoo.e in tremed mans A_{i}
instad of lim dis T_{i}

