Chapter 5
Determinents
Recall: 2×2

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \operatorname{det} A=a d-b c \\
& \text { U } \\
& \left.\begin{array}{l}
a \\
a \\
c
\end{array} \right\rvert\,
\end{aligned}
$$

$\operatorname{det} A=0 \Leftrightarrow A$ is sinjlic. (wat injertisu) (T_{A} has am. 0 kar.el)
de $A \neq 0 \Leftrightarrow A$ invertisu (T_{A} inv)
\Leftrightarrow rous are lis ine

3×3 det

$$
\begin{aligned}
& \text { Ex. } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0
\end{array}\right) \\
& \operatorname{det}= \\
& (2+0+6) \\
& -(0+0+8)=8-8=0
\end{aligned}
$$

S. single.

Ruws lis dy a clis.

$$
\begin{array}{r}
2 R_{1}-R_{2}-3 R_{3}=0 \\
C_{1}-2 C_{2}+C_{3}=0
\end{array}
$$

Or: evalu.te dat b, expandin cloy a ran. all tusios minows/ C.f.ders.

$$
\left(\begin{array}{l}
+{ }^{-t} \\
+ \pm \\
+
\end{array}\right)_{2 \times 2} \quad A=\left(a_{i j}\right) \quad 3 \times 3
$$

$i, 2 \quad \operatorname{minus}^{2 \times 2} M_{i j}$: delef a in m

$$
\text { C. foct. } \pm M_{2} \subset 0
$$

$$
\text { Cofocte } \quad \pm M_{i j}
$$

$$
(-1)^{i+j}
$$

To expant alon in an ${ }^{(n \times a l}$

Agren a in other anetod

$$
\text { for } 3 \times 3
$$

U siay minies: ecsice if have 0 ! - expand clo., comecol wactos.

$$
\begin{aligned}
& \operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+i} a_{i j}\left(\operatorname{det} M_{i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sinclot : for } 2^{\text {th }} \text { colan. }
\end{aligned}
$$

4×4: Expe.d aloz …e.col
4 teras, eas is - 3×3 det.

$$
5 \times 5:
$$

5 teras, - - $4 * 42 x$.
"Generlize Quar" to fir de G. $n+n$:

$$
\begin{aligned}
& \text { Ex } 4 \times 4 \\
& \text { 4! choras }
\end{aligned}
$$

One eatr fomene rontancel $n \times n$: $n!$ of these.
Take prodets of terms;

$$
\begin{gathered}
\text { cle up, uin t's } t=0 \text {. } \\
(n>1) \\
\text { which? } \\
\text { Sign of a perantation }
\end{gathered}
$$

Sign of a permetatis::
Every pe-m. Can be ob teiail by a segcence of transpesitions.
interchage twi

3 stys: are $(-1)^{3}=-1$
1el o le perm.
If mstrs: $\rightarrow m$ ever: (-け) $=1$
erm porn

$$
\rightarrow m \text { o18: }(-1)^{m}=-1
$$

Use this sijo.
This is wall efpin, \#-fites claeys hes the save perit,

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=(-1)^{2}=-1 \\
& 3142 \text {, para: } 3 \text { stro. } \\
& \text { ose. Ge -1. } \\
& \text { Ge }
\end{aligned}
$$

$1 / 2$ are eld
$\frac{1}{2}$ ore eor

$$
\begin{aligned}
& \frac{n!}{2} \\
& \frac{n!}{2}
\end{aligned}
$$

Key proyortan of det: Get same ressit whether expund alons ar.o., occol..., or use "goline dieg.".

A $n \times n$

$$
\begin{aligned}
& \operatorname{det} A=0 \Leftrightarrow A \text { singsics (atini) } \\
& \Leftrightarrow k i T_{A} \neq 0(T \operatorname{sing}(a)
\end{aligned}
$$

\Leftrightarrow corroup h mon is ($A x=4$) has nom-trivies soles
$\Longleftrightarrow 习$ inham.s sis, $(A X=B)$

$$
\begin{aligned}
& \text { win } \rightarrow 1 \text { s. } 1 \text {. } \\
& \Leftrightarrow \text { im } T_{A} \text { is } u \boldsymbol{j} \text { cll of } F^{n} \\
& \text { (rkTA<n) } \\
& \Leftrightarrow \text { col 's of } A \text { dan't spa. } F^{\prime} \\
& \Leftrightarrow c o l \text { ok (} A \text {) <n } \\
& \text { (col's are depalua) } \\
& \Leftrightarrow \operatorname{rav} r k(A)<n \\
& \text { (rows dy) }
\end{aligned}
$$

\Leftrightarrow rows dait spon F :

$$
\operatorname{det}(I)=1
$$

If we fix ell the rows except one, The the $d x$ is lines it that ran
$d x\binom{\overline{a_{i}}-\overline{-a}}{\vdots=}+d x\binom{\overline{-}=\overline{5}}{\hdashline-\overline{6}}$

$$
\begin{aligned}
& =d t\left(a+\frac{=-a+1}{-a}\right)
\end{aligned}
$$

$d t$ in a aultilineer function
of the rows.

$$
\left(d t A=d t A^{t}\right.
$$

S dee is at maltiliner facts of th cols. duet is a_{n} clteraction f of the rows: (f tu. rows are $\Rightarrow d x=0$.
(ble rous are deyomeat,
$m x$ is singule-)
Con segumce:
If interchaage two rows, then det is replacal by -et.
Reason: WTS

$\operatorname{dat}\binom{a_{1} \cdots-a_{n}}{\overline{a_{1}}-\cdots a_{n}}+\operatorname{dat}\binom{b_{1} \cdots-b_{n}}{b_{1}=-b_{n}}=0$
Adde this to LHS of lor eyin.
Get

$$
\operatorname{det}\binom{\dot{a}_{1}=-a_{0}}{a_{0}+b_{0}=-a_{0}+b_{0}}+\operatorname{det}\binom{\dot{b}_{1}=-b_{n}}{a_{1}+b_{0}=-a_{0}+b_{0}}
$$

WTS this is $0 . \uparrow$

$$
=\operatorname{det}\left(\begin{array}{l}
a_{1}+b_{1}-1 \\
a_{1}+b_{1}- \\
a_{n}+b_{-} \\
-
\end{array}\right) \stackrel{a_{n}+b_{0}}{=} 0
$$

$\operatorname{dx} A=\operatorname{dx} A^{+}$
\Rightarrow If tocols are $\Rightarrow d$ th $=0$
\rightarrow If intercho.,. twe cols, detwont
Doter proertis:

$$
\begin{aligned}
& \operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{de} B) \\
& \Rightarrow \operatorname{de}(A B)=\operatorname{dx}(B A) \\
& \text { b/c ecu }=(\operatorname{dex} A)(\operatorname{de} B)
\end{aligned}
$$

\Rightarrow If A is invertible the $\operatorname{dx}\left(A^{-1}\right)=(\operatorname{lot} A)^{-1}$

Recs.:

$$
\begin{aligned}
(\operatorname{dx} A)\left(\operatorname{dx} A^{-1}\right) & =\operatorname{dt}\left(A A^{-1}\right) \\
& =\operatorname{dx} I=1
\end{aligned}
$$

Amone consegunce:
If A is simile to B

$$
\text { (i.e. } \exists C_{\text {1acotck }} \text { s.t } A=C^{-1} B C \text {) }
$$

the $\operatorname{dex}^{10 \cdots A}=d x$

Re...;

$$
\begin{aligned}
\operatorname{dt} A & =\operatorname{da}\left(C^{-1}\right)(d x B)(d+C) \\
& =(\operatorname{det} C)^{-1}(d+B)(d d C) \\
& =d \times B-.
\end{aligned}
$$

$$
\text { Rec.ll: } T: V \rightarrow V \text { lisd. }
$$

$$
C h
$$

busis $T \hookrightarrow B$
A, B sinille (uà chap, of basis -x)
C.a.afu + dat
dx A f. an $A \rightarrow T$
Son becor leas + mis
whin dir are easiee tocupote.
$d x(A+B)$ cand be exprouse
in trim of da A ane dar B.

$$
\begin{aligned}
& \text { Ex }\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+(\because i)=\binom{0}{0} \\
& \text { (} \left.0: 1 C_{0}^{0} 01\right)=(0 i 1)
\end{aligned}
$$

Opposite for trice:

$$
\begin{aligned}
& \operatorname{tr}\left(a_{i j}\right)=a_{11}+\cdots+a_{1 n} \\
& \operatorname{tr}(A+B)=\operatorname{ta}(A)+\operatorname{tr}(B) \\
& \operatorname{det} O=0
\end{aligned}
$$

det (diegal m) x pooduat of

$$
\left(\begin{array}{cc}
* & 0 \\
0 & \gamma^{*}
\end{array}\right)
$$

$$
\operatorname{det}(\Delta \cdot m x)=\text { product of }
$$

upper $\Delta^{\prime}=\binom{* \cdot *}{0^{*}-*}^{\text {dieg atries. }}$
lover Ar: $\left(\begin{array}{ll}x & 0 \\ x^{\prime} & \ddots\end{array}\right)$
Ralatiartip batwe $d \times A$ as $d+A^{7}$
§
Formale f. A^{-1} in teeno-f $d d^{\text {? }}$
If $\operatorname{dax} A=0: \quad A^{-1}$ does not exist
If da $A \neq 0:$ formilel

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\hat{\imath}_{n \times a}\right)
$$

$$
\text { whose (i, } \dot{j} \text {)-ety is the }
$$

$$
\text { co focte } A_{11}=
$$

$$
(-1)^{i+j} \operatorname{dot}\left(M_{j, i}\right)
$$

"Cofecte netrix" "elassical aljoint"
"adjuact"

$$
E_{x . n}=2 \quad A=\binom{a b}{c d}
$$

$$
A^{-1}=\frac{1}{a d-k}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \text { as us-a }
$$

Ca. use determinents
to fies. feracie for sole to na.gajoce syster of n ens in n ubls;

$$
\begin{aligned}
& A X=B \\
& n_{x n} \text { ? ? } \quad d x A \neq 0 \\
& \cdots=\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{1}
\end{array}\right)
\end{aligned}
$$

Cocois R.k:

$$
x_{i}=\frac{\operatorname{da} B_{i}}{\operatorname{da} A}
$$

$B_{i}=m x$-btaines b_{1} roplecis.
$g^{\text {a }}$
b_{0} of A by col unctu.

$$
\left.\begin{array}{rl}
E \times \begin{array}{l}
5 x_{1}+3 x_{2}=11 \\
3 x_{1}+2 x_{2}
\end{array}=12
\end{array}\right\} \quad A x=B
$$

$\operatorname{det} A=5-2-3.7=1$ $x_{1}=\frac{-14}{1}=-14$
$d \times B_{1}=22-36=-14$
dut $B_{2}=60-33=27$

$$
x_{2}=\frac{27}{7}=27
$$

Fo, a leog. syite $A X=B$,
poo bulution is forte.
($A \mid B$)
Foo 100. of a lage ax
No... if foten (A|I)

$$
\rightarrow\left(I \mid A^{-1}\right)
$$

For finders da of (aga mix: row ras. is forte.

How to une con rase to fis depa?
$A \sim \rightarrow \cdots \cdots \rightarrow$ If of oo of is: $d x=0$. Othmis.
3 tipes of ar ops:
(1) Inteecherge tus rows: det \rightarrow-det
(3) M.It a \cdots by $C \neq 0$ det is milt bic.
(5) Sobtocet a malt of one rou from enother:
\rightarrow deet 15 unchangel.
Ke.p trank, set $d x A$.
Enongh to get into up. A: form

$$
d_{e}=\pi \text { diag.enties }^{7}
$$

Recom for C$)$:
A.ther rasson fo (() (3):

Elem. roo op $\longrightarrow m_{1}(t$. by elan ax.
Effect of roo op: milt de by

$$
\begin{aligned}
& \text { dep of elem. ma. } \\
& \text { Ex. }\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 8 \\
3 & 5 & 7
\end{array}\right) \quad d_{t} t=2 \text {. } \\
& R_{2}-2 R_{1}\left\{R_{3}-3 R_{1}\right\} \\
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 2 \\
0 & -1 & -2
\end{array}\right) \quad \operatorname{det}=2 \\
& R_{2} \leadsto R_{3} \text { \} } \\
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & 2
\end{array}\right) \quad \operatorname{Dr} m x \quad \operatorname{det}=1(-1)(2)=-2
\end{aligned}
$$

This works over an fall F.

Cese $F=\mathbb{R}$: geom interp of $d x$ $\mathbb{R}^{2} \quad \operatorname{dex}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\mathbb{R}^{2}=\stackrel{\text { sigines }}{V} \text { vol a proctlel.pipion }
$$

forme h_{1} the rows. (an solin)
\sim chg of vbls formila for moltintajotai

$$
\begin{aligned}
x_{1, \frown} \quad x_{0} \quad & y_{1} \ldots y_{0} \\
& f_{5} \neq x^{\prime} .
\end{aligned}
$$

$$
\begin{aligned}
& z=f\left(x_{1}, x_{1}\right)=g\left(y_{1}, x_{1}\right) \\
& \int \cdots g\left(y_{1}-y_{1}\right) \frac{d y_{1} \wedge \ldots \wedge d y_{1}}{} \\
& =\int \cdots \int f\left(x_{1}, \cdots, x_{1}\right) d\left(\frac{\left(y_{i}\right)}{\Delta x_{j}}\right) d x_{1} \wedge \ldots \wedge d x_{n}
\end{aligned}
$$

१Jacosin det

Why cll matuols of computios det give same a-swes:
Show ell menols gioe f.,
$M_{n}(f) \rightarrow F$ with three peretois: $\hat{\gamma}$
Vien as $\underbrace{F^{n} x \cdot-x F^{n}}_{n} \longrightarrow F$
(1) M_{n} Hitil.ai.. ${ }^{n}$
(2) Alteracti:
(3) $I \rightarrow 1 \quad\left(e_{1}, e_{2}, \ldots, e_{1}\right) \mapsto 1$

The shoo: There is anh one f

$$
M_{-}(F) \rightarrow F \quad\left(F^{n} x-\lambda F^{n} \rightarrow F\right)
$$

satis fyy ig (1) (2), (3).
(1) V v.s. ove F.
f., $m r$ vectri $: V$

$$
\begin{aligned}
& \text { Ex. } r=1 \quad\{V, F \text {, limeno }\}=V^{*}
\end{aligned}
$$

$$
\begin{aligned}
& V=2 . \quad M^{2}(v) \\
& \{V \times V \rightarrow F \text {, bilineo. }\} \\
& \text { (v., } v_{1} \text {) bitines for.s, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. of bilicer fus on } V=F^{3} \text {. } \\
& V \times V \rightarrow F \\
& V \text { : std besis } i, j, k \\
& V^{*} \text { : ducal besis } \quad X y, z \\
& \text { Sum elt, is } M^{2}(V) \\
& \left(v_{1}, v_{2}\right) \in V \times V \\
& v_{1}=\left(a_{1}, b_{1}, c_{1}\right) \quad V_{2}=\left(a_{2}, b_{2}, c_{2}\right) \\
& T_{1}:\left(v_{1}, v_{2}\right) \longmapsto a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=v_{1}, v_{2} \\
& \text { is } F=\hat{R} \\
& T_{2}:\left(v_{1}, v_{2}\right) \mapsto a_{1} b_{2}-c_{1} a_{2} \\
& T_{3}:\left(v_{1}, v_{2}\right) \mapsto a_{1} b_{2}=\underset{\underline{x}}{\underline{x}}\left(v_{1}\right) \underline{\underline{y}}\left(v_{4}\right) \\
& \| \underset{=}{x} \otimes y \underline{g} \quad(x \otimes y)\left(v_{1}, v_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=x \otimes x+y \otimes y+z 0 z \\
& T_{2}=x 0 y-z 0 x
\end{aligned}
$$

In $M^{2}(v)$ hase $x \theta_{0}, x \theta_{2} x \omega_{t}$ \hat{d}_{1-2}^{2}

Yox, yबy, yoz
$z u x, z \theta y, z \oplus z$

$$
\begin{gathered}
\operatorname{din} M^{2}(v)=9=3^{2} \\
\hat{V}_{3}
\end{gathered}
$$

$$
M^{r}(v) \quad d_{i-}^{3}=n^{-}
$$

$$
\underbrace{\delta_{i_{1}} \otimes \delta_{i_{2}} \ldots \infty \delta_{i}} \quad 1 \leq i_{1}, \ldots i_{-} \leq n
$$

There for. besis of $M^{-}(v)$.
$\operatorname{det} \in M^{n}\left(F^{n}\right),<\operatorname{din}=n^{n}$
(2) Alteranti, (eswall as mulfil...i.)

$$
\begin{aligned}
& \text { Ex. } v=2 . \quad 2 \text { for.. } \sim F^{n} \\
& S_{i} \oplus \delta_{j}-\delta_{j} \otimes \delta_{i}=: \delta_{i} \wedge \delta_{j}^{1 \leq} \\
& \delta_{i} A \delta_{j}(v, v)=0 \quad a / t \text {. } \\
& \delta_{i} \wedge \delta_{j}(v, \omega)=-\delta_{i} \wedge \delta_{j}(\omega, v) \\
& \delta_{j} \wedge \delta_{i}=-\delta_{i} \wedge \delta_{j} \quad \delta_{i} \wedge \delta_{i}=0 \\
& \delta_{i} \wedge \delta_{j} \quad 1 \leq i, i \leq n \text {. } \\
& 1 \leq i<_{1} \leq n \\
& \text { beris } \Lambda^{2} V=\binom{n}{2}=\frac{n(n-1)}{2} \\
& \ln \sin , \Lambda^{r} V^{n} . \operatorname{di}\binom{n}{r} \\
& \delta_{i_{1}}{ }^{1} \cdots \delta_{i_{-}} \quad b \text { csis }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& d=\Lambda V^{\sim}=\binom{n}{r} \\
& n .
\end{aligned}
\end{aligned}
$$

$\operatorname{det} \in M^{n}\left(F^{n}\right) \quad d i=n^{n}$
$\operatorname{det} \in \Lambda^{n}\left(F^{a}\right) \quad d i=\binom{n}{n}=1$
$\therefore A_{\text {g }}$ t..alt m-1t a-fn, $-F^{n}$ ora
s: If $\operatorname{det}(I)=1$:
(e, , -e.er thy agoen.
\therefore det is uaciue

