Recap:
The If V has a basis of m alts, then no lin. ing. Set has 7 m alts
Con For a f.d.v.s. V, any two bases h are the same of element $? \operatorname{dim} V$

Prop $S \subset V \Rightarrow \exists T \subset S$ in.ind. fink wis same span.
Cool Every finite spanning set Contains a basis.
Cor 2 If V has a finite spanning set, the V hes c firm basis. (f.d.u.s)

Cor 3 In ea a di se u s, every opanains set has $\geq n$ ells. Whim Every line ind. set in = f.dv.s. is containce in a basis.

Thm $\operatorname{Cot} V$ is a f.d.v.s., $+\quad W \subset V$ a subspace. then W has a fiat basis, with \leq din elts .
Pf. $\frac{1 f}{2} W=0=\{0\}$, the
$1 f W \neq 0$, then take a nou-zero vector w, in W.
If w, spars W, then $\left.\bar{\sum} w_{1}\right\}$ is a basis (sha lis ind).
If mont, then span iv, $3 \neq W$.
Take $\omega_{2} \in W, \omega_{2} \notin \operatorname{span}\left\{w_{1}\right\}$.
Then $\left\{\omega_{1}, \omega_{2}\right\}$ is lining. ($P S_{2} \# 4$)
If this set spans, it's c bars, a. If not, continue.
This must stories $<n+1$ stor, ste din $V=n$. (no lis line sat in V
 $\hat{n}^{i j} 6 \pi \omega$.
$\leq n_{2}-l s_{\text {_ }} d \ln V$.

Cor If $W \subset V$ in a subspace

$$
+W \neq V \text {, then fans } d i-W<\text { di- } V \text {. }
$$

Pf. B_{2} th, W has \cdot frt basis $\left\{w_{1}, \ldots, w_{3}\right\}$.

$$
\begin{aligned}
& n=\operatorname{dim} V . \quad T h \Rightarrow m \leq n . \\
& W \neq V \Rightarrow \partial v+V \text { st. } v \neq W . \\
& W=\operatorname{spen} \underbrace{\left\{w_{1,}, w_{m}\right\}}_{\text {basis } 1} W_{,}
\end{aligned}
$$

$\left\{w_{1}, \ldots \omega_{m}, v\right\}$ is lis inc.

$$
\begin{aligned}
& \hat{V} \in \mathbb{C i}_{\text {m+1 }}=H_{s}(P S \text { 2\#4) } \\
& \therefore m+1 \leq n . \quad \therefore m<n .
\end{aligned}
$$

Prop Lat V be en n dixie vs.
Let $S \subset V$ be. sat 8 nets TFAE:
i) S is a basis
ï) S is lin ind.
(ii) S spen V.

Pf. (i) \Rightarrow (ii), (i) \Rightarrow (iii) are trivial.
(ii) \Rightarrow (i) STS: sspans V.

Let $W=$ spen $S . \quad W_{\text {sispe }} V$
S is a besis 1 W . sispp

$$
\begin{aligned}
& \text { Nelts. } \\
& \operatorname{din} W=n=\operatorname{dim} V
\end{aligned}
$$

$$
\text { Cor } \Rightarrow W=V .=\text { S sporiV. }
$$

(iii) S spans $V \Rightarrow S$ contios $T \subset V$ basis
$\operatorname{dia} V=n \Rightarrow T$ has n elt.

$$
T \underset{n}{T} \underset{n}{S} \Rightarrow \underset{\text { banis }}{T}=S_{i} \therefore \text { basis. }
$$

$$
W_{1}, W_{2}<V^{\text {v.s. }}
$$

subspias
$W_{1} \cap W_{2}$ sitspace, contin W_{1}, W_{2} ?/ergest subspo..e cont. in W_{1}, W_{2}.

Snollest subsp containers W_{1}, W_{2}

$$
w_{1}+w_{2}=50 \ldots\left(\omega_{1} v w_{2}\right)
$$

$\left\{\omega_{1}+\omega_{2} \mid w_{1} \in W_{1}, w_{2}+w_{2}\right\}$

$$
E x . V=\mathbb{R}^{3}
$$

$$
w_{1}=x, y \text { plane }
$$

$$
w_{2}=y_{1} z \text { plane }
$$

$$
\begin{aligned}
& W_{1}+w_{2}=\mathbb{R}^{3} \\
& w_{1} \cap W_{2}=y \text {-axis }
\end{aligned}
$$

Thy If w_{1}, w_{2} are fin. dim sinsprove of a vas. V, then so are $W_{1}+w_{2}$ and $W_{1} \cap W_{2}$, and

$$
d_{i=} w_{1}^{\prime}+d_{1-} w_{2}=\operatorname{din}_{1-}\left(w_{1}+w_{3}\right)+d_{i}\left(w_{1} n w_{2}\right)
$$

$$
\ln E_{x}: 2+2 \leq 3+1
$$

Pf W_{1} fovs
$\therefore W_{1} \cap W_{2}$ is fers, of dic $\leq 8-w_{1}$
hes, besii: $B_{0}=\left\{\alpha_{1,-}, \alpha_{2}\right\}$. of $w_{1} \cap w_{2}$ Q in is sut 4. ($k W_{1}$)
So $\exists b_{\text {csis }} B_{1}=\left\{\alpha_{R_{1}} \perp \alpha_{2,}, \beta_{1, \ldots}, \ldots \beta_{n}\right\}$. of W_{1}
Smath, 子 bo, $B_{2}=\left\{\alpha_{1}, \alpha_{1}, \gamma_{1}, \ldots, \gamma_{n}\right\}$ of ω_{2}.

$$
w_{1}+w_{2}=\operatorname{spa}\left(w_{1} v w_{2}\right)
$$

fin sp. sut. \therefore fevs: Jfonbero Clas: B is c beris y $\omega_{1}+w_{2}$. Pfy Clain:
B spois. STS B linind. $S \arg ^{(*)} \sum x_{i} \alpha_{i}+\sum y_{i} \beta_{j}+\sum z_{l} Y_{i}=0$ wTS $x_{2}, y_{1}, t_{e}+F$. are O.

$-\sum z_{k} \gamma_{k}=\sum c_{i} \alpha_{i}\left\{\alpha_{1}-\alpha_{b}\right\}$.

$$
\sum c_{i} \alpha_{l}+\sum z_{l} \gamma_{l}=0 .
$$

$$
\text { all } y_{2}=0 \text {. }
$$

S. $(k) \Rightarrow \sum x_{i} \alpha_{i}=0$ h. is.

$$
\text { all } x: C=0
$$

न BAB.

Prones the claio.

Note: Office hows this walk
Wee 130 -2^{30} instad.f Fri.
Back to matrices.
A mon matrix
End row is in F^{n}.
the rows span a subspace of F^{n}

- row space of A.
dim of res space: rouronk of A.
Ex 1. $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ over- \mathbb{R}.

$$
\begin{aligned}
& \text { Rows lin. ind. mas spent } \mathbb{R}^{2} \\
& E \times 2 \cdot B=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) \cdots \mathbb{R} \text {. } \\
& R_{2}=2 \cdot R 1 ; 1 \therefore d_{1} . \\
& \text { Row space }=\text { a.ite } 1 \text { (} 1,2 \text {) } \\
& \text { line. } \operatorname{lon}-k=1
\end{aligned}
$$

If do a rov op, row speen doesel change.
S: Row eq. mxis have the same row spece.
In pertic: $A \underset{\text { riwops }}{\longrightarrow} R_{\substack{\text { relicou. } \\ \text { eshsim. }}}$
A, R have som row sensisee.
Ex| aboue: $\left(\begin{array}{cc}1 & 2 \\ 3 & 4 \\ \Sigma\end{array}\right)$ row rp $=\mathbb{R}_{\mid=2}^{\text {monk }}$

$$
\left(\begin{array}{l}
\Sigma \\
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

$E x^{2}=b o n$
$\left(\begin{array}{ll}1 & 2 \\ z & 1\end{array}\right)$ rousp: lios mati, $1(1,1)$

Usaful for loga mxis.
For $a_{n} n \times n$ (sguo.e) matrix A : A invertith $\Longleftrightarrow A$ is rouerinitr

$$
\begin{aligned}
& \Leftrightarrow \text { ron saee is } F^{n} \\
& \Leftrightarrow \text { thenrous spe } F^{n} \\
& \Leftrightarrow+-- \text { are. sesis of } F^{n} \\
& \Leftrightarrow-1 \text { - lin. ial. }
\end{aligned}
$$

A man (not nee. square)
!
R red. Mel form.
$\begin{array}{ll}E_{2} \times S_{n} & R=3\end{array} \quad\left(\begin{array}{ccccc}h_{4}=1 & h_{1}=3 & h_{r}=4 \\ 0 & 2 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
Plot entries $=1$, other entries in those col's are 0
Rows: $\rho_{1}, \geq \rho_{m}$
Sur $\rho_{1,-1} \rho_{d}$ are nome. Rest: 0
Let $h_{i}=$ col \# of i^{n} pivot
the rows $\rho_{1},-\rho_{d}$ are lin. ind.

- bloc h_{i} any if ρ_{i} il, others 0 .
$\therefore \rho_{1} \rightarrow \rho_{d}$ are a basis of row space

$$
(. f A \neq 1 R)
$$

So row $-k=d$ for $A+f R$.
row $r k(A)=d i n$ of row sse of A

$$
\begin{aligned}
& =\cdots \\
& =\text { of } x \ln -0 \text { rows of } R \\
& =d .
\end{aligned}
$$

A man $\rho_{i}-\rho_{d}$ non 0 rone of R
$\operatorname{In} \rho_{s}, 1^{\text {sr }}$ an- 0 entrin is in $h_{i}-\infty$ ol.
Sa, $V \in W=$ row spece of A

$$
\begin{aligned}
& V=\sum_{i=1}^{l} b_{i} \rho_{i} \in W \in F^{n} \\
& h_{j} \text {-anton of } \rho_{i}= \begin{cases}1 & \text { if } i=2 \\
0 & \text { if } i \neq j .\end{cases}
\end{aligned}
$$

$\rightarrow \therefore h_{2}$-短y of V is b_{i}.
($6, \quad$. $11 j$)
The 1 or amo 0 enty $i f i=1$ is hi- slot.
what is
Ans: $b=$ in the $h_{i}-s l o t$,
\rightarrow if bi is the $1^{\text {st }} \rightarrow$ nom coeff ithip:
Prop the r on spoce of A determiacs the pivot varibbles. ($h_{1}, \mathrm{p}_{\mathrm{l}}$)
Prouf By the abooe, the pirint ubls are io the samacolis h, h as arlse as $I^{s T}$ aon- 0 slots of Veaters in W.

Prop the row span W deteracs., the row vacsore $\rho_{s} \in W$ of R. pf. $W \rightarrow \operatorname{din} W=d . \quad \rho_{1 n}=-=\rho_{n}=$
Pree. parp: heon h:'s.

Claid ρ_{s} is the mil veater a W with prgiot, (a)
(Pf 1 clai- For $\quad \frac{a y}{V} V \in W$,

$$
V=\sum b_{j} f_{j},+b_{i}=h_{2}-\text { ent, of } v
$$

S if V satisiti. (*), then $b_{i}=1, b_{j}=0$ for $j \neq i$

$$
V=\sum b_{2} \rho_{j}=\rho_{i}
$$

S: w determine poiost vbls k :. t \#'s his deternim ρ_{i}^{\prime} 's.
S. ω daterming $\rho_{i s}$: rows of R.
$? R$ is dectaminis by W-rosp vrefift A deterrins W.

Th Evan A determion R.

Con Lat A, D be man mis over F TFAE
i) A, B are row equi.
ii) A, B hise Sane roo spece.
iii) A, B have sane maloun enth fanm.

Pf. (i) $\Rightarrow(i i)$: sine. op's
presuve ras space.

$$
(i i) \Rightarrow(i i): b_{\text {yow }} \text { Th Tetarm: }
$$

row sp detcomin rref.
(iii) \Rightarrow (a): A, B have v.r.ef R.

$$
\begin{array}{r}
\text { Then } A \text { is row a te } R . \\
B \cdots R . \\
\therefore B \cdots B .
\end{array}
$$

Coordindes:
$\ln F^{n}$, ste basis $e_{1,}, e_{n}$ $\stackrel{U}{V}=(a, \ldots, a)=\sum_{i=1}^{n} a_{i} e_{i}$ coones ${ }^{\uparrow}$? cuaff.s
In a more gaia flus V dve- F, basis $\alpha_{1, \ldots} \alpha_{n} \leftarrow \operatorname{orlend}_{b, \ldots r} a$ ${ }_{V}^{\epsilon} V=\sum a_{i} \alpha_{i}$, unijuliz $V=\sum_{i=1} a_{i} \alpha_{i}$ cotf.
Call a "s thecoods of v w.ele this baris a.
W.ik: $[v]_{a}=\left(\begin{array}{l}a_{1} \\ \vdots \\ a_{1}\end{array}\right)$
 $V=\sum_{i=1}^{n} b_{i} \beta_{i}$

$$
[v]_{B}=\left(\begin{array}{c}
h_{1} \\
\vdots \\
b_{n}
\end{array}\right]^{0}
$$

$$
E x . \ln \mathbb{R}^{2} \quad V=(0,4)
$$

Std. bais: e_{1}, e_{L}

$$
V=0 e_{1}+4 e_{2} \quad \text { coo.d5: } 0,4
$$

Anothe basis: $d_{1}=(1,1)$

$$
d_{2}=(-1,1)
$$

For $v \in V$, + tuo bises Q, B,
wat to pass from cuods of \checkmark in one bagis to coods in othe besis.
Change of besis.

$$
\begin{aligned}
& A: \alpha_{1}, \alpha_{0} \\
& V=\sum a_{i} \alpha_{i}=\sum b_{i} \beta_{i}
\end{aligned}
$$

Siy we knos bis (cames w.r.t. (B) wat a_{i}) (coods w.e.f. A)
-First: \&o for $V=\rho_{i}$. Wank $\beta_{i}{ }^{i n}$ teas it α 's

$$
\begin{aligned}
& \rightarrow \beta_{j}=\sum_{i=1}^{n} c_{i j} \alpha: \quad c_{i_{2}} \in F \\
& C=\left(c_{i j}\right) \quad n \times n \quad m \times \\
& y^{\text {th }} \text { col of } C \text { : Courts of } \beta_{j} \text { in to... } \\
& \text { For a gail } v \in V \text {, } \\
& V=\sum_{i} b_{i} \beta_{i}=\sum_{i} b_{i}\left(\sum_{i} c_{i} \cdot \alpha_{i}\right)
\end{aligned}
$$

$\sum_{i} i_{i=1} \underbrace{}_{\text {wat }}$

$$
\begin{aligned}
& \text { pat }=\sum_{i}\left(\sum_{2} c_{i i} b_{i}\right) \alpha_{i} \\
& a_{i}=\sum_{i} c_{i j} b_{i}<
\end{aligned}
$$

Exposes coons of b wot a intirmi of - - - 3.

$$
[v]_{a \times 1}=C_{n \times n}[v]_{n \times 1}
$$

$E x \cdot \mathbb{R}^{2} \quad a=\left(d_{1}, d_{2}\right)$

$$
B=\left(e_{1, e}\right)
$$

/or expras $e_{1} e_{2}$ inte...erdi, d_{2}

$$
\begin{gathered}
e_{1}=\frac{1}{2} d_{1}-\frac{1}{2} d_{2} \\
e_{L}=\frac{1}{2} d_{1}+\frac{1}{2} d_{2} \\
C=\left(\begin{array}{c}
1 / 1 \\
-1 / 2 \\
1 / 2
\end{array}\right) \\
{[v]_{a}=C[v]_{B}} \\
v=(0,4) \\
{[v]_{a}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\vdots \\
\vdots
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)=\binom{0}{4}}
\end{gathered}
$$

Liver transformetions
$\left(\mathrm{Chy}^{3}\right)$
Deforer $A \quad m \times n \quad m x$
sys of y-s $A X=B$

Grom B, wat X

$$
\text { in } F^{m}
$$

$$
\therefore F^{n}
$$

$C a_{n}$ turn oovers:

T: transforaction functi-

$$
m a p
$$

The above tranor. T satitis:
i) $T(v+w)=T(0)+T(w)$

$$
\text { ii) } T(c v)=c T(v)
$$

Recsen:

$$
\begin{array}{rl}
\text { Fue } \therefore A(x+y)=A X+A Y \\
i & A(c x)=c(A X)
\end{array}
$$

 (i) $+($ (i) : callad lineor. linae tranes, liece mep, homomorphism of v.sit
V, W v.s.'s over F.

$$
\begin{aligned}
\text { Ex. 1. } T: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
T(v) & =3 v \\
\text { 2. } T: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{4}
\end{aligned}
$$

$$
T(a, b, c)=(a, b, c, 0) \cup
$$

3. $T: \mathbb{R}^{3} \rightarrow \mathbb{\pi}^{2}$

$$
T(a, b, c)=(a, b)
$$

4.

$$
\begin{aligned}
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& T(a, b)=(a+1, b+1) \\
& v=0, c=0 \\
& T(c v)=T(0)=T(0,0) \\
& c T(a)=0 T(0)=(c, 1)
\end{aligned}
$$

Not line
thishous If T is lin.

$$
T(0)=0 \text {. }
$$

5. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
rotate caw by 30°
6.

$$
\begin{aligned}
& T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{n} \\
& T(a, b)=\left(a^{2}, b^{2}\right) \\
& T(0)=T(0,0)=(a, 0)=0 \\
& v=(1, a, w=(1,0) \\
& T(v+\infty) \geq T(0)+T(w) \\
& T(v)=(1,0), T /(1)=(1,0) \\
& T(0)+T /(-)=(2,0) \\
& T(v+w)=T(2,0)=(4,0)
\end{aligned}
$$

Not lineo..
(guedrati: the.sfometin)

range of T
(imege)
$\{\omega \in W \mid \omega=T(m)$ for some $v \in V\}$

$$
\begin{aligned}
& \text { Exi. inge }(T)=\mathbb{R}^{2} \\
& E x^{2} \text {. inger }=\{(x, y, x, 0 \mid x, y, z \in R\} \\
& \text { Exs. ing }=\mathbb{R}^{2} \\
& E \times 5 . \operatorname{lag}=\mathbb{R}^{2}
\end{aligned}
$$

Hen, liage ch
Prop the inges of a lin. dunes.

$$
T: V \rightarrow W \text { is a sis spece of } W \text {. }
$$

Prool STS: inag. $\neq \phi$, closin under t, tunen scimits. $\neq \phi: \quad 0 \in V \quad T_{10}^{(0)} \underset{0}{(0)}$

$$
\begin{aligned}
+: & T(v)+T\left(v_{2}\right) \\
& =T\left(v_{1}+v_{2}\right) \\
\therefore & \subset T(v)=T(v)
\end{aligned}
$$

$T: V \rightarrow \omega \quad l i$ trouse $\operatorname{im} a,-(T) \underset{s=s, p}{\subset} W$

$$
\underbrace{\text { Din }(\text { siga }(T))}_{\text {rank of } T}
$$

$$
\begin{array}{ll}
E \times 1 & r k=2 \\
E \times 2 & r k=3 \\
E \times s & r k=2 \\
E \times 5 & r k=2
\end{array}
$$

$T: V \rightarrow W$ lintr.
imeg. $(T) \subset W$ sobsp.

$$
\begin{aligned}
& r k(T)=d_{i-}\left(i_{m}(T)\right) \leq d_{i n} W \\
& d_{i n} V=n \\
& b_{\text {asis of }} V: \quad V_{i, \ldots},
\end{aligned}
$$

Clai:: $\ln (T)$ is spanae $b_{y} T(v),.-T\left(v_{a}\right)$.

1. thase ex's, nullspace is. sibspace of V.

Pren if $T: V \rightarrow W$ is a
lin. trenaf, the $k e-T$ is a sisppace. of V.

Pf. $\neq \boldsymbol{\psi}: T(0)=0, s .0 \in k e T$.
t: If $v, v^{\prime} \in k=T$ wa.t van T ker T.

$$
T\left(v+v^{\prime}\right)=T(v)+T\left(v^{\prime}\right)=0+0=0
$$

$$
\therefore \text { if } v \in k e T, \quad c \in F
$$

$$
T(c v)=c T(v)=c \cdot 0=0
$$

$$
\therefore c V \in k_{v} T .
$$

$T: V \rightarrow L$

Pron If T:V \rightarrow wio a lin.tro..f,

+ V in. f.d.v.s., th

$$
r k(T)+n-\| x_{1}(T)=\operatorname{di} V \text {. }
$$

$$
\begin{aligned}
& { }_{\text {keer }} T=\text { null peent } \\
& \operatorname{dia}(k-T)=\text { nullity of } T
\end{aligned}
$$

Pf Ld $n=d i=V$.

$$
\begin{aligned}
\text { Lat } k & =n u l l i t(T) \leq n \\
& =\operatorname{din}(\underbrace{k \operatorname{co-T}}_{\text {s.ssp of } V})
\end{aligned}
$$

L-t $\underbrace{V_{s}, V_{k}}$ be a basis 1 kerJ.
$\rightarrow V_{1}, \ldots V_{n}$ is a beiis $\mp \mathrm{K}$

$$
\begin{aligned}
& \rightarrow w_{i}=T\left(v_{i}\right) \quad w_{1}, \not w_{k}=0 \\
& w_{k+1,}, w_{n}(n-k) \\
& v \in V \quad v=\sum_{i=1}^{n} a_{i} v_{i} \\
& T(v)=T\left(\sum_{i=1}^{n} a_{j} v_{i}\right) \\
& \overline{\overline{1 n i m(n)}}=\sum_{i=1}^{n} a_{i} \underbrace{T\left(v_{i}\right)}_{w!}=\sum_{i=1}^{n} a_{i n} \\
& =\sum_{i=k n}^{n} a_{i} w_{i} \\
& 1 m \csc (T) \text { is spanan } b_{1} b_{k+1,}-\boldsymbol{T}^{b_{n}}
\end{aligned}
$$

Clain: $w_{n+1,}$, wen are lisid.
$\overline{C d} \therefore$ are a basis of in(T)).
Once we dho. this,

$$
\begin{aligned}
& \text { in (} T \text {) h.s }=\text { basio of N-EAHA } \\
& \rightarrow r k T=d \cdot-(c-T)=n-k \\
& \rightarrow n=11 . \operatorname{m}, T=\operatorname{dos}(k,-T)=k \\
& \rightarrow d i=V=n \\
& (n-k)+k=n \text {. }
\end{aligned}
$$

It remens to pone The clain.
For thir:

$$
\begin{aligned}
& O=\sum_{i=k+1}^{n} a_{i} w_{i}=\sum_{i=k+1}^{n} a_{i} T\left(v_{i}\right) \\
& =T\left(\sum_{i=k_{n}}^{n} a_{i} v_{i}\right) \Rightarrow \sum_{i=k+1}^{n} a_{i} v_{i} c_{k e-T} \\
& \text { Basir of ker } T \text { i } V_{1,}, V_{k} \text {. } \\
& \therefore \sum_{i=k_{n}}^{n} a_{i} v_{i}=\sum_{i=1}^{k} b_{i} v_{k^{\prime}} \\
& \longrightarrow \sum_{i=1}^{k} b_{i} v_{i}-\sum_{i=k_{11}}^{n} a_{i} v_{i}=0 \\
& V_{\text {All }} V_{a:=0,} \text { all } b s=0 \text {. }
\end{aligned}
$$

