$$
\begin{aligned}
& \text { Field, scaless } \\
& W \text { Vs, } \\
& W \subset V \text { is a sibspace }
\end{aligned}
$$

subset

$$
\begin{aligned}
& \Leftrightarrow W \neq \varnothing,+W \text { is closes } \\
& E \times \phi \neq S_{\text {susect }} \subset V \longrightarrow \text { sr.mile. }
\end{aligned}
$$

$W=\{$ all finte line.e coubs of elements of S\}

$$
\begin{gathered}
\sum_{i=1}^{n} a_{i} S_{i} \\
{ }_{F}{ }_{i} S
\end{gathered}
$$

This is a subspere
Susspace if V spanua by S

$$
W=\text { spa. } S
$$

This is the smillust sibgoine of V containasis S. (If ${\underset{S}{S}}^{w^{\prime}} \propto V$, sul sp, then $W \subset w^{\prime}$)

Ex. $W \subset V$ subspace

$$
\begin{gathered}
\text { Span } W=W \\
E x . S=\{(1,0,0),(0,1,0)\} \subset \mathbb{R}^{3}
\end{gathered}
$$

span $S=x, y$ plane.
of $a_{\text {an }}$ collation of subraces of V is a sibspeca of V.

$$
\begin{aligned}
& \text { Ex. } w_{1}^{\neq w_{2} \subset \mathbb{R}^{3}, \quad p \text { lanes }} \\
& w_{1} \cap w_{2}=l i n e, \text { subsp... } \\
& \text { Ex. } \quad \text { Let } \neq S \underset{\phi_{i=1}}{ } V
\end{aligned}
$$

Take all the subspaces of V
that contain S.
This is a subspace.

$$
=s p a n S .
$$

Other direction:
Sun of Subspaces
$W_{1}, W_{2} \subset V$ subspeces

$$
\begin{gathered}
W_{1}+W_{2} \stackrel{\operatorname{def}}{=}\left\{w_{1}+w_{2} \mid w_{1} \subset W_{1}, w_{2} \subset W_{2}\right\} \\
W_{1} \subset W_{1}+W_{2}, \text { subs } W_{2} \text { space }
\end{gathered}
$$

Ex.

$$
\begin{aligned}
\text { Ex. } \quad V & =\mathbb{R}^{3} \\
W_{1} & =x \text {-axis, } W_{2}=y \text {-axis } \\
W_{1}+W_{2} & =x, y \text {-plans } \\
W_{1}+W_{2} & =\operatorname{spa}\left(W_{1}, W_{2}\right)
\end{aligned}
$$

n.f unally a sulpace

Linearly depeadat veators $S \subset V_{\text {vat }}$ is lin. dep
if some non-trivial finite lincer combiaitor of veators in S gruals O.

$$
\begin{aligned}
& E_{x}, \neq v \in V, 1 \neq C \in F \\
& \{v, c v\}, v_{v} \quad c v-v^{\prime}=0 \\
& \text { 2-3 }
\end{aligned}
$$

Ex. $\quad S=\left\{v_{1}, v_{1}, v_{3}\right\} \subset \mathbb{R}^{2}$

3 vectors i- \mathbb{R}^{2} : lin. dep.
3 Vader in \mathbb{R}^{3} :

$$
\begin{aligned}
& V_{1}=(1,0,1), V_{2}=(0,1, r) \\
& V_{3}=(1,1,2) \\
& V_{3}= V_{1}+v_{0} \quad V_{1}+V_{2}-V_{3}=0 . \\
& e_{1} \quad e_{1} \quad l_{1} . d 1 e_{0} \\
& \text { Bat } \quad(1,0,0),(0,10),(0,0,1)
\end{aligned}
$$

not lis dep

- Fin. indapeslent

$$
a e_{1}+b e_{2}+c e_{3}=(a, b, c)
$$

$S \subset V$ is 1 in dep
\Leftrightarrow one of the vecdese is S
is a lin conk. of finitely mar of the others.
abound
Ex $\left\{e_{1}, e_{2}, e_{3}\right\} \subset \mathbb{R}^{\}}$lin ins stamen coons Vapors $\left\{e_{1} e_{3}\right\} \subset \mathbb{R}^{3} \quad 1: i=1$.

$$
S^{\prime}<S \subset V
$$

$$
S \text { lin ind } \Rightarrow S^{\prime} \text { lin ind }
$$

Ex. $O \neq V \in V \Rightarrow\{v\}$ lin ins
Ex. $\{v, w\} \subset V$ lis ins vdu
\Leftrightarrow nuithe is a molt of the the
Ex $1 f 0 \in S c V$ then S is lin. dep.

$$
(1.0=0)
$$

We will show:
a lin in sat in $\mathbb{R}^{2} h$.s ≤ 2 elands.

$$
\cdots-\mathbb{R}^{2} \cdots 3 \ldots
$$

In \mathbb{R}^{n}, have a sat of n veadors that's lis ins

$$
\begin{gathered}
e_{1},-e_{n}, i^{i^{k}} \\
e_{i}=(0,-1,0)
\end{gathered}
$$

We will prove:
If a satsof n veadrs in \mathbb{R}^{n} is lin ine, the S sper \mathbb{R}^{n}.

$$
\begin{aligned}
& \operatorname{spon} S=\mathbb{R}^{n} \\
& \left(a_{1}, a_{3}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i} e_{i}^{r} \text { unitinn }
\end{aligned}
$$

$\left\{e_{1, \ldots} e_{3}\right.$ spons + is lio ine
Say $S \subset V$ is a basis
of V if it sper V o
is lin. ing

stanles besis.

$$
\begin{aligned}
& \text { Ex. } W \subset \mathbb{R}^{2} \\
& 1 \text { plane thron,t } 0 \text { V.cli, leo. } \\
& 1 \text { to }(1,1,1) \\
& x+y+z=0 \leftharpoonup V \perp(1,1,1) \\
& V \cdot w=0 \Leftrightarrow V \perp w \\
& v=\left(a,-a, a_{1}, w=(h,-h)\right. \\
& v .4=\sum a \cdot b .
\end{aligned}
$$

$$
\begin{aligned}
& v=(1,0,-1) \quad S=\{v, w\} \\
& w=(0,1,-1) \quad 1 ; 1, s .
\end{aligned}
$$

S spon:
$x \in W$

$$
\begin{aligned}
x & =(a, b, a, b+c=0 \\
& =(a, b,-a,-b) \\
& =c v+b w
\end{aligned}
$$

S is a baris
W has a besis of to vactes.
$E_{x} P_{5}=\{\rho \cdot 1 / \rho f(x)$ of dyrae $\leq 5\}$

$$
a_{0}+a_{1} x+\cdots+a_{5} x^{5} \quad a_{:} \in F
$$

V.S.

Basis $\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\}$ of 6 elmats
Ex. $F=\mathbb{R}$

$$
\begin{aligned}
& w=\left\{\text { solas to } f^{\prime \prime}-f=0\right\} \\
& =\left\{a e^{x}+b e^{-x}\{a, b \in \mathbb{R}\}\right.
\end{aligned}
$$

Basis: $\left\{e^{x}, e^{-x}\right\}$
S ip a vs V is finct dimensemil if it hes a fiaita besis.
Abeve eir ore fin dind.

Ex. $\quad \mathbb{R}^{n}, P_{5}, p / a n \quad x+y+z=0$,
Solo, to the con $D F$,
3×4 matrices (boris of 12 elands)
Ex. Not findable:

$$
P=\left\{a l l \rho_{0} 17 s\right\} .
$$

Hes inf basis

$$
\begin{aligned}
& \text { II, } \left.x, x^{2}, x^{3},--\right\} \\
& \text { Infin } d i=1 \text {. }
\end{aligned}
$$

We will see; all bases of a vs V hove the
sing \# of elemats.
this \#: dimurim of V

$$
\operatorname{dim} V
$$

We will also shoo:
V has a fit basis
$\leftrightarrow V$ has a fiance spannias sat
(\exists finite set $S \subset V$ sit. $\quad \operatorname{span} S=V$)

Also: If $\operatorname{dim} V=n$ than:

1) Every i in ind set in V has $\leq n$ elements

$$
\text { (as. } \leq 3 \text { in } \mathbb{R}^{3} \text {) }
$$

2) Evert spanning set for V has $\geq n$ elemmess

$$
\left(\therefore \geq 3 \text { in } \mathbb{R}^{3}\right)
$$

We will study relationilive between different bares of V.

- change of basis

To ster thar:
use matrices
Quick ravin (Hoke, Chop 1)
$m \times n$ matrix

vs: $M_{m, n}(F)$
basis: $\left(\begin{array}{ll}\because & \vdots \\ \vdots\end{array}\right)$ \& dim $=m n$
2-9 Canes, scaler malt.

System of linear egns \leadsto mult of mxis:

$$
\begin{array}{rrr}
E x \cdot x+2 y+z=1 \\
x+2 y+2 z=-3 & \rightarrow\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 2 \\
2 & 4 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
-3 \\
2 x+4 y+2 z=2
\end{array}\right) \\
A & =B \\
& 3 \times 3 \quad 3 \times 13 \times 1
\end{array}
$$

In gemeral:
homogeneons: $R H S=0$
in homog eneous: $R H S \neq 0$

To solve:
Cin mudify System of equs
(1) Subtract a molt of me ruw from a..the rove
(2) Mult a Mo b, non-o Scaler.
(3) Interchange any two rovs. In teras of matrices Row raluation

Gaussian elimination
For shoot -
Angmanted thatrices

$$
(\underset{A}{ })()_{x}={\underset{B}{B}}^{()_{\text {Ang.mx. }}} \quad(A \mid B)
$$

$2-11$

$$
\left(\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
1 & 2 & 2 & -3 \\
2 & 4 & 2 & 2
\end{array}\right) \underset{\substack{\text { subtract } \\
\text { malt } R 1}}{\substack{\text { if } R 1 \\
\text { from } \\
R 2, R 3}}\left(\begin{array}{lll|l}
1 & 2 & 1 & 1 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

pivots f free variable form

Velucal row echelon form
Solve for pout vols in terms of free vols.

$$
\left.\begin{array}{rl}
x+2 y & =5 \\
z & =-4
\end{array}\right\} \begin{aligned}
& x=5-2 y \\
& z=-4 \hat{\}}
\end{aligned}
$$

Line, not through 0
(Inhoneg.l not avs.
Instal, if we hod O "s or RHS,
weed Seat a line theol 0

$$
-\cup \Omega
$$

In gail: Soling form a t

$$
\Leftrightarrow \text { RHOS }=0 . \quad(\text { homes })
$$

m equs in n untanous $m \times n$ matois $A X=B$

$$
\underbrace{A \lambda_{m}}_{1_{m \times-} \hat{\Upsilon}_{A \times 1} \hat{\imath}_{m \times 1}}
$$

$$
\text { Ex. If } h \operatorname{mog}(B=0),-\operatorname{sij}_{\substack{\text { sijo } \\ \text { ares. }}}
$$

+ if $m<n$:
$\leq m$ pivits; $<n$ pionts
Some coluan has no pivot So ∂ fre $\quad b 1$. $\therefore v s$ of solus
Have mano sola.
Ex. If $m=n, A$ is $n \times n$ sq. m x
(B not nes O) Caves:
$I:$ Reg. row eul fore of A hes a row of ell O's: $<n$ non-O vows onlifts $<n$ pint, heve fore vbls.
a) If cll o's rous ars ($0 .-0 \mid 0)$ then \exists fomety
b) If sone ran of ois \therefore ' A is

2-13

II Reduced ros e.a Gem of A
hee ne con of ot
Red oos ah fie $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$
$n \times n$ \& ma

$$
C I=C=I C
$$

No fre ${ }^{2 n t i t}$; exath 1 soln ใ O s. 1 if hm .
For sicen matrics (man)

$$
A X=B
$$

A mijh have
$n_{n} n_{1} A_{1} x_{1}$
a- invorou A^{-1}

$$
A A^{-1}=I=A^{-1} A
$$

Then: $A X=B, \leadsto A^{-1}(A \quad X)=A^{-1} B$

$$
X=A^{-1} B \quad \begin{aligned}
& \left(A^{-1} A\right)^{\prime \prime} X=I X=X \\
& \text { s.lvos soste }
\end{aligned}
$$

$$
A^{-} ? \quad n=2: \quad A=\binom{a b}{a}
$$

$$
A^{-1} \times x i s+1 \Leftrightarrow d-b<\neq 0
$$

$$
A^{-1}=\frac{1}{\Delta}\left(\begin{array}{c}
d-b \\
-c \\
a
\end{array}\right)
$$

Δ deteraints
2-19 $\begin{gathered}n=1: ~ \\ b \\ \text { bigeo } n ?\end{gathered}$

More geneeally, to find inverses of $n \times n m x:$ Use row valuefion:
Augmat mx by n col's, using id.mx.I. Redace to sat $\angle H S=I$:
Ex:

$$
\begin{aligned}
& \text { Ex: } \\
& \left(\begin{array}{ccc|ccc}
2 & 1 & 1 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 & 1 & 0 \\
-2 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \underset{\substack{\text { of } R \\
\text { from } \\
R 2}}{\substack{\text { subtract } \\
\text { maltipl }}}\left(\begin{array}{ccc|ccc}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 3 & 2 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
A \text { I R2,R3 }
$$

subtrat

$$
\underset{\substack{\text { fron } R 2 \\
\text { frow } R 3}}{\substack{\text { Subtract } \\
\text { mult }}}\left(\begin{array}{cc|ccc}
\mid 2 & 1 & 1 & 1 & 0 \\
0 & 0 \\
0 & -1 & -2 & -2 & 1 \\
0 \\
0 & 0 & -4 \\
\text { echulan } \\
\text { form }
\end{array}\right)
$$

$$
\xrightarrow[\substack{\text { of } R 2 \\
\text { from } R 1}]{\substack{\text { subbiract } \\
\text { mult }}}\left(\begin{array}{ccc|ccc}
2 & 0 & -1 & -1 & 1 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 0 & -4 & -5 & 3 & 1
\end{array}\right)
$$

$$
\underbrace{\substack{\text { sibtract } \\
\text { malt }}}_{\substack{\text { of } R 3 \\
\text { from } R 1, R 2}}\left(\begin{array}{ccc|ccc}
2 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\
0 & -1 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
0 & 0 & -4 & -5 & 3 & 1
\end{array}\right)
$$

2-15

$$
\underset{\text { by constans }}{\text { mult rows }} \underset{\substack{\text { from } \\
\text { mi, } R_{2}}}{ }\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{8} & \frac{1}{8} & -\frac{1}{8} \\
0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & \frac{3}{4} & -\frac{3}{4} & -\frac{1}{4}
\end{array}\right)
$$

A invertble \Longleftrightarrow Red ono RekforisI.
Why does tho wook?
Each sty in roor ase
M.1t an laft by elen. m.

$$
\begin{aligned}
& \text { R2-3.RI } \quad\left(\begin{array}{cc}
1 & 0 \\
-3 & 0 \\
3 & 0 \\
0 & 0
\end{array}\right) \\
& 2 \cdot R 3 \quad\left(\begin{array}{ll}
10 \\
\vdots & 0 \\
0 & 2 \\
\vdots
\end{array}\right) \\
& R_{1} \rightarrow R_{2} \quad\left(\begin{array}{ll}
0 \\
0.0 \\
0
\end{array}\right) \\
& (A \mid I) \rightarrow\left(E_{1} A \mid E_{1}\right) \\
& \rightarrow\left(E_{2} E_{1} A \mid E_{1} E_{1}\right) \cdots \cdots \\
& \cdots(\underbrace{E_{n} \ldots E_{1} A \mid}_{=I} E_{a}-E_{1}) \\
& E_{n}-E_{1}=A^{-1}
\end{aligned}
$$

Srow reluctin
red. row. eckelon form
R
(I) $R=I=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right)$

Then A is inuentibla.
II R has a row ot o's
The R is not invertik.

In fat, in (II) A is nat inverter
Rearm: Row ops $\leftrightarrow \operatorname{montam}_{\text {lift }}$ left by
inaction. \longrightarrow eth $n x$

$$
R=\underbrace{E_{n}}_{\text {incoribu }} ?
$$

the R work win. if A in

This unis:
prod. of inv. nexis io inc.

$$
\begin{aligned}
& (A B)^{-1}=B^{-1} A^{-1} \\
& \imath Q_{\text {inv }} \\
& A B B^{-1} A^{-1}=A I A^{-1} \\
& =A A^{-1}=I
\end{aligned}
$$

So: A is invertible
$\underset{(x)}{\Rightarrow}$ rel rovech forint $A_{1 s} I$.

$$
\begin{aligned}
& \text { (*) } \\
& S \text { : } A, B \text { are row crusilut } \\
& \text { if can pen }
\end{aligned}
$$

A, B row equir \Leftrightarrow

$$
A=P B
$$

Qprod. of elem mas.
Let $B=I$
A is row er to $I \stackrel{(\not) x}{\Leftrightarrow}$

$$
A=\text { poud. of elem. mas. }
$$

(*), $(* *):$
The For a square me me A, TFAE (the following)
i) A is livernible
ï) A is row rani. to I
iii) A is a prod. of elem mis.

$$
\frac{(\text { Thi2 s1.6 of } H+K)}{\text { Pin } A \text { homog sisten } A X=0}
$$

has ouly the trivis soln? squere $\Leftrightarrow A$ is inverniblu.

Pf. $\Leftarrow: \quad A X=0$

$$
A^{-1} A X=A^{-1} 0
$$

$\stackrel{\prime \prime}{x} \quad \ddot{0}$
No frum reing
A is $r=I$
Than $\Rightarrow A$ invertic.
A inventible:

$$
A \text { inventibl: } A B=I=B A
$$

This is nnitu.
Recsmi B, C both inverese of A.

$$
\begin{aligned}
& \text { Recsmi } C I=C A B=I B=B
\end{aligned}
$$

Pron If A, B ara $n \times n$ mass,

$$
\sigma B A=I \text { the } A B=I
$$

S. $B=A^{-1}$ and $A=B^{-1}$.

Pf. $B A=I$
\Rightarrow Themis sol. to
$A X=0 \quad$ (Left
is the trinal one. $\begin{gathered}\text { milt } b, B) \\ x=0\end{gathered}$
puppy

$$
\begin{aligned}
& \Rightarrow A \text { invertible: is } A^{-1} \text { exists. } \\
& \Rightarrow A B=A B I=A B A A^{-1} \\
& \text { orbiter: } \quad=A I A^{-1}=A A^{-1}=I \\
& B A=I \\
& B=B A A^{-1}=A^{1} \\
& \text { arp } L \text { ot } A \text { be nra ma. Th: } \\
& \text { A invontble ! } \\
& \forall c_{n \times 1} \operatorname{l}_{\text {mo }} B, \exists^{60 \ln }+A X=B \text {. }
\end{aligned}
$$

Pf. \Rightarrow : Moulton left h A ?
E Solve with

$$
B=\left(\begin{array}{l}
1 \\
0 \\
i
\end{array}\right),\left(\begin{array}{l}
0 \\
\vdots \\
j
\end{array}\right), \ldots\left(\begin{array}{l}
0 \\
i \\
1
\end{array}\right)
$$

Get soles $B_{1} X_{1}, X_{1} X_{2}, B_{-} \rightarrow X_{n}$.

$$
\begin{aligned}
& A X_{i}=B_{i} \\
& X=\left(X_{1} X_{2} \cdots X_{n}\right) \\
& A X=\left(B_{1}-B_{n}\right)=I
\end{aligned}
$$

\therefore by pare pup, A is incest.
Back fore,
lin ind, span, basis:
The If a voes. V hes a
basis consistain of m elands, the
no lin. ines. set in V has $>m$ efts.
Ex. Cant have 3 i in ind

$$
\text { Vectors in } \mathbb{R}_{\hat{2}}^{2} \text { hes a besis }
$$

Pf. Lat the basis of malts be $\beta_{1},-, \beta_{m}$.
Say S is a sat of $>\mathrm{melts}$. Will shoo: S is lin dep. In S, take $\alpha_{1,}, \alpha_{m+1}$.
STS these vectors are lindy.

$$
\text { B's are a basis } \Rightarrow
$$

for Reach $j=1, つ \mathrm{~mol}$,

$$
\alpha_{2}=\sum_{i=1}^{m} a_{i_{2}} \beta_{i} \text { i } F
$$

To prove the then, we will fils a nom-trivis lin. curb. of α 's that's equal to 0 . ie. pan-trivid solin to is in

$$
\longrightarrow \sum_{2=1}^{m+1} x_{2} \alpha_{2}=0 \quad x_{j} \in F
$$

$$
\sum_{j=1}^{m+1} x_{2} \alpha_{j}=\sum_{2=1}^{m+1} x_{j}\left(\sum_{i=1}^{m} a_{i} \beta_{j}\right)
$$

$$
\begin{gathered}
=\sum_{i=1}^{m}\left(\sum_{j=1}^{m+1} a_{i j} x_{j}\right) \beta_{i} \\
\left\{\begin{array}{c}
\sum_{2=1}^{m+1} a_{12} x_{i}=0 \\
\vdots \\
\sum_{j=1}^{m+1} a_{m 2} x_{i}=0
\end{array}\right.
\end{gathered}
$$

There are 0 , for all :
m eras in $m+1$ unknots. hong.
\Rightarrow Jfrerbl
$\Rightarrow \exists_{x,-x_{m+1}}$ nominal sol:
Done.

$$
x_{1,} x^{x_{-1}}
$$

Cor If V is a fie. V.s.

$$
\hat{\imath} \text { fin: bestir. }
$$

then an, two bases hove th
Sane \# of alts.
Pf. Sa, bise, B_{1}, B_{2}; lining.

$$
\left.\mathcal{B}_{2}-n_{n} A_{s} \Rightarrow m \leq m .\right) \quad m=n \text {. }
$$

V floss all bases hove sam $\#$ of efts. Call this \# the dimension.

$$
\begin{gathered}
\operatorname{din} V \\
E \times=\mathbb{R}^{n} \\
\operatorname{din} V=n . \\
\operatorname{dim} P_{s}=6
\end{gathered}
$$

$\overline{\text { If } V}$ has a finite bests, then every bass is finite
Reason $V \quad \begin{gathered}B_{1}, B_{2} \\ n\end{gathered}$
S. B_{2} cunt have basis lining.
$\therefore B_{2}$ finish
Say V is an inf din vs if 5 mme $(\therefore$ every $)$ baric is indite.

$$
E x \cdot \rho \quad 3 x, x^{2},-
$$

Prop above sag:
If $\operatorname{dim} V=n$ then
every $1:$ ind sot in V as $\leq n$ elis.
(no lin ind sat has $>n$ alts)
Compleat:
We will see:
If $\operatorname{dim} V=n$ the
every spanning sat hes $\geq n$ efts.
(no spanaisat has <nets)
Iso prove:
Prep If $S c V$ is a finitesed,
th \exists subset $T \subset S$
st T is lin. index. and Span $T=\operatorname{span} S$.
Ex.

$$
\begin{aligned}
& V=\mathbb{R}^{3} \\
& S=\{(1,0,0),(0,1,0),(3,0)\} \\
& \hat{l} \text { line }
\end{aligned}
$$

$\{$ lima and
not lin indep.
Take $T=\{(1,0,0),(0,1,0)\}\}$ lin ind, same span.
delate

Pf $\%$ Prop
If $S \in V$ is lin. ind,
the take $T=S$.
If not (S lin dep),
then $\exists v \in S$ sit.
v is a lin curb of the other vectors in S.
Let $S_{1} \longleftarrow=S-\{v\} . \begin{aligned} & m-1 \\ & \text { ells. }\end{aligned}$
Span $S_{1}=$ Span S
(b/c v is a lin comb of the others).
If S_{1} is $l i=$ ind, take $T=S_{1}$.
If not, repents get S_{2} of $\begin{gathered}\text { me } \\ \text { el ts. }\end{gathered}$
This process termisitic
blt S has m alts C in $\leq m$
So some S_{i} is lis ind, take $T=S_{i}$.

Cor 1 If $S \subset V$ is fini, ospan $S=V$ then
S containe e bails of V.
pf. Abply Propto S :
$\exists T \subset S, T$ lis in,
span $T=$ span $S=V$
$\therefore T$ is a basis of V.
Cong If V h.s i fiai*
spanain sat, then V has a fi...t besiof i.e. V is a f.ev.s.
Pf. By Corl, if we lat S be a fir. sp. set, the S firit contais, a basis, $T_{\text {fo.k }}\left(T \subset \frac{1}{S}\right)$
Nice cheraterizites of f.d.v.s.
To ganil'se v.sis -
allow more gatil scalers
-ring - dait assuman

$$
\text { e, } \mathbb{Z}=\{\text { integeses }\}^{1 t}
$$

- "modules" (gnilize vs's - case ot riag of saloor)
- Mang pesults abt v.s"s full for modiks.
Ex. \mathbb{Z}, Scalors.
Modik: $\quad \mathbb{F}_{2}=\{0,1\}$
$3 \cdot 1=1+1+1=1$
$\hat{1} \quad \hat{R} \in F_{2}$
$\in \mathbb{Z}$, sales

$$
\begin{aligned}
& 2 \cdot 1=1+1=0 \\
& \hat{2}, \neq 0
\end{aligned}
$$

Non-trivid lio canb $=0$.
$\{1\}$ is lin. derp.
But it spans.
N. besis. Cor2fu/s hen.

Cor 3 If dia $V=n$, then
every spannias sot for V has $\geq n$ elts.
Equi: If $s \subset V$ hes $<n$ atts, the S dow at span V.

Pf. Sy $S<V$, spa. $S=V$. WTS S h., $\geq n$ elto.
By Cor $2, S$ conteris ${ }^{2}$ basis T for V.
All buses of V heve the Sane \#of elts. So:
\# of eits $\rightarrow T$ is n

$$
T \subset S \geq n \text { elts. }
$$

We sae: ever, 「Sonannin, sat of a flos cunteris - besia . Capplemat:

Yha Every lin. ind sut S i. - flos V is cantaines in - basis.
Pf. Lat $n=d i-V$.

$$
\begin{aligned}
& S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \quad \text { liniol. } \\
& s_{0} m \leq n .
\end{aligned}
$$

If S span V, th

If nat (i, S doesit span), the spon $S \neq V$.
Take $\alpha_{m+1} \subset V, \alpha_{m m} \notin S$.
L at $S_{1}=S_{e}\left\{_{\alpha_{m n}}\right\}_{\text {nan in }}$ Spons

$$
=\left\{\alpha_{,},-\alpha_{-,} \alpha_{m+1}\right\}
$$

? lin ios (b_{7} PS2*y)
If S_{i} spar V, the S_{s} is abosi
Otheranses repent.
This treaimentes, b/e lowida cerbut of n.den bs ha, 5 nolt.
Comi: S_{i} wooks.

