F field, Scolors
V VS / F
W CV 15 a Subspace
Subset
W # \$\$, + W is closed
under +, scould.
Ex. \$\$ + S CV ~~
Subset
W = fall finite linear cambs
of cleants of S3

$$\hat{E}$$
 as \hat{S} .
 \hat{E} as \hat{S} .
This is a Subspace
Subspace of V Spanned by S
W = Span S.
This is the Smillest subspace
of V Containing S
(If W CV, subspitten Weld)

Ex. WCV Subspece Spa W = W Gx. 5= ? (1, 0, 0), (0, 1, 0)? < IR Span S = X, y plane. () of any Collection of subspaces of V 15 a Subspece of V. Ex. W, W- cR3, Plane WinWz = line, subspice Ex. Let # SEV Take all the subspaces of V that contain S. This is a subspece. = span S. Other direction. Sum of Subspaces

Linearly dependent ventors
S = V is lin.dep
Jet U.S.
if Some Non-trivial finite
linear combinited of Ventors
m S squals O.

$$f_{X}.f_{V} \in V$$
, $I \neq C \in F$
 $\{V, CV\}$ $CV - V' = O$
 $V' \in Un.dep$.

Ex.
$$S = \int V_{1}, V_{2}, V_{3} S \subset \mathbb{R}^{2}$$

by V_{3} $V_{3} = av_{1}bv_{1}$
 $v_{1} av_{1}$ $V_{3} = av_{1}bv_{2}$
 $v_{1} av_{1}$ $V_{3} = av_{1}bv_{2} = 0$
 $v_{1} av_{1}$ $V_{3} = av_{1}bv_{2} - V_{3} = 0$
 $v_{1} av_{1}$ V_{3} $V_{3} = av_{1}bv_{2}$
 $v_{1} v_{2}$ V_{3} $V_{5} = pore lbdogram - 1/n deg.$
 $V_{1} = V_{3}$ $V_{5} = pore lbdogram - 1/n deg.$
 $v_{1} v_{2}$ V_{3} $V_{5} = pore lbdogram - 1/n deg.$
 $V_{1} = V_{2}$ $V_{1} = V_{2}$
 $V_{2} = V_{1} dv_{2}$ $V_{1} = v_{2}$
 $V_{3} = (1, 1, 2)$
 $V_{3} = (1, 1, 2)$
 $V_{3} = V_{1} dv_{2}$ $V_{1} + V_{2} = 0$
 e_{1} E_{1} $V_{1} + V_{2} = 0$
 $P_{1} = V_{1} dv_{2}$
 $V_{3} = V_{1} dv_{2}$ $V_{1} + V_{2} = 0$
 $V_{3} = V_{1} dv_{2}$
 $V_{3} = (1, 1, 2)$
 $V_{3} = V_{1} dv_{2}$
 $V_{3} = V_{1} dv_{2}$
 $V_{3} = V_{1} dv_{2}$
 $V_{1} = V_{2}$
 $V_{2} = V_{2} dv_{3}$
 $V_{3} = V_{3} dv_{3}$
 $V_{3} = V_{3} dv_{3}$
 $V_{3} = (1, 1, 2)$
 $V_{3} = V_{3} dv_{3}$
 $V_{3} = (1, 1, 2)$
 $V_{3} = V_{3} dv_{3}$
 $V_{3} = (1, 1, 2)$
 $V_{3} = V_{3} dv_{3}$
 $V_{3} = (1, 1, 2)$
 $V_{3} = (1, 1, 2)$

$$S \in V \text{ is lin deep}$$

$$is one of the vectors is S
is a lin cash of finitely many of
the oftense.
Ex. $\{P_1, P_2, P_3\} \in IR^3$ lin ind
Standard coard Vectors
 $\{P_1, P_2, P_3\} \in IR^3$ lin ind
Standard coard Vectors
 $\{P_1, P_2, P_3\} \in IR^3$ lin ind
Standard Solard Vectors
 $\{P_1, P_2, P_3\} \in IR^3$ lin ind
 $P_1 \in V \in V \Rightarrow \{V\}$ lin ind
 $P_2 \in V \in V \Rightarrow \{V\}$ lin ind
 $P_3 \in V \in V \Rightarrow \{V\}$ lin ind
 $P_4 \cup EV \Rightarrow \{V\}$ lin ind
 $P_4 \cup IE = P_1 \cap P_2$
 $(1:0=0)$
We will show:
 $P_4 = P_1^2 - P_2^2 - P_1^2 = P_1^2$$$

We will prove:
If a sets of n vectors in
$$\mathbb{R}^n$$

is lin ing, then S spear \mathbb{R}^n .
Spea S = \mathbb{R}
(a., a., -, a.) = $\sum_{i=1}^n a_i e_i$ when
 $i \in [e_i, e_i] = \sum_{i=1}^n a_i e_i$ when
 $i \in [e_i, e_i] = V$ is a basis
of V if it Spear V t
is lin. ing.
 $i \in [e_i, e_i] = V$ is a basis.
 E_x . $W \in \mathbb{R}^3$
 $1 \text{ plane through O}$ U.(((()))
 $X + y + i = 0 = V \perp (1, 1, 1))$
 $V \cdot W = 0 = V \perp (1, 1, 1)$
 $V \cdot W = 0 = V \perp W$
 $V \cdot W = 0 = V \perp W$

$$V = (1, 0, -1) \quad S_{n} \underbrace{\underbrace{i}_{n}, \underbrace{i}_{n}}_{I:\underline{n}, i}$$

$$S \underbrace{sp..., i}_{X \in W} \quad X = (a, b, c)$$

$$= (a, b, -a, -b)$$

$$= aU + bW$$

$$S is a basis$$

$$W hos a basis of the weaters$$

$$E_{X} \quad \bigcup_{x} = \underbrace{\underbrace{i}_{x} \underbrace{p.i}_{x} f_{(x)} e^{-t} d_{y}e_{x} \underbrace{sS}_{x}}_{Q_{0}+Q_{1}Xe^{-t} - +Q_{3}XS} \quad Q_{1} \in F$$

$$V.S.$$

$$Bessis \quad \underbrace{i}_{x} \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}_{x}, \underbrace{sS}_{x}}_{Q_{0}+Q_{1}Xe^{-t} - +Q_{3}XS} \quad Q_{1} \in F$$

$$V.S.$$

$$Bessis \quad \underbrace{i}_{x} \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}_{x}, \underbrace{x}_{x}, \underbrace{sS}_{x}}_{Q_{0}+Q_{1}Xe^{-t} - +Q_{3}XS} \quad Q_{1} \in F$$

$$V.S.$$

$$Bessis \quad \underbrace{i}_{x} \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}_{x}, \underbrace{x}_{x}, \underbrace{sS}_{x}}_{Q_{0}+Q_{1}Xe^{-t} - +Q_{3}XS} \quad Q_{1} \in F$$

$$V.S.$$

$$Bessis \quad \underbrace{i}_{x} \underbrace{x}, \underbrace{x}, \underbrace{x}, \underbrace{x}_{x}, \underbrace{x}_{x}, \underbrace{x}_{x}, \underbrace{x}_{x}}_{Q_{0}} = \underbrace{s}_{x} \underbrace{abis} \underbrace{a_{1} e^{-t} - f_{1} = 0}_{Z_{0}} \\ = \underbrace{i}_{x} \underbrace{a e^{t}}_{x} \underbrace{b e^{-t}}_{x} \underbrace{a_{1} e^{-t}}_{Q_{0}} \underbrace{a_{1} e^{-t}}_{Q_{0}} \\ = \underbrace{i}_{x} \underbrace{a e^{t}}_{x} \underbrace{b e^{-t}}_{Q_{0}} \underbrace{a_{1} e^{-t}}_{Q_{0}} \\ = \underbrace{i}_{x} \underbrace{a e^{t}}_{x} \underbrace{b e^{-t}}_{Q_{0}} \underbrace{a_{1} e^{-t}}_{Q_{0}} \\ = \underbrace{i}_{x} \underbrace{a e^{t}}_{X} \underbrace{b e^{t}}_{Q_{0}} \underbrace{a_{1} e^{-t}}_{Q_{0}} \\ = \underbrace{i}_{x} \underbrace{a e^{t}}_{Y_{0}} \underbrace{e^{-t}}_{Q_{0}} \underbrace{a_{1} e^{-t}}_{Q_{0}} \underbrace{a_{1} e^{-t}}_{Q_{0}} \\ = \underbrace{i}_{x} \underbrace{a e^{t}}_{Q_{0}} \underbrace{e^{-t}}_{Q_{0}} \underbrace{a e^{t}}_{Q_{0}} \underbrace{a e^{t}}_{$$

Also: If dim V = n then:
i) Every this had set in V
has
$$\leq n$$
 elemnts
(ag. 53 in TR³)
2) Every Spanning set for V
has $\geq n$ elements
($\leq_{n} \geq 3$ in TR³)
We will study Veletionality
between different bases of V.
- Change of basis
To Study them:
Main matrix ($\frac{1}{1-1}$)
Nam matrix ($\frac{1}{1-1}$)
Nam matrix ($\frac{1}{1-1}$)
Vs: Mm,n (F) cold
besis: ($\frac{1}{1-1}$) A dim = mn
2-3
Can eds, Scaler m.K.

I Reduced row each form of A
here as row of Oi
$$2nnn$$

Red row each fun $\binom{1}{10} = I$
 $n \times n$ if $m \times \binom{1}{0!} = I$
 $n \times n$ if $m \times \binom{1}{0!} = I$
 $n \times n$ if $m \times \binom{1}{0!} = I$
 $n \times n$ if $m \times \binom{1}{0!} = I = I$
No free $\frac{n}{0!} = I = I = I$
 $for Since metrice (men)$
 $A X = B$ A might have
 $n \times n \times 1$ $n \times 1$ $(n \times n)$
 $A X = B$ A might have
 $n \times n \times 1$ $n \times 1$ $(n \times n)$
 $A A^{-1} = I = A^{T} A$
 $Then: A X = B, $\neg \Rightarrow A^{-1}(A X) = A^{T} B$
 $X = A^{-1}B$; $silve 3john$
 $A^{-1} = I = A = \binom{a}{cd}$
 $A^{-1} = I = A = \binom{a}{cd}$
 $A^{-1} = I = A = \binom{a}{cd}$
 $A^{-1} = A = \binom{a}{cd}$
 $A^{-1} = A = (a)$. $A^{-1} = (a^{-1})$
 $bijser A^{-1}$$

Subtract

$$m_{4}$$
 (12 /) / 0 0
 m_{4} (12 /) / 0 0
 $0 - (-2) - 2 / 0$
 $-2 / 0$
 $-2 / 0$
 $-2 / 0$
 $-2 / 0$
 $-5 3 / 0$
from R3 echelon
form

This wres! prod. of inv. mx's is inv. (AB)' = B'A'えれin へ ABB'A'=AIA' = AA7 = I A is Invental row ech. form of A 10 I.) rd $\sqrt{2}$ (X) A is no of I Vou ops and keft milt by elan ma Sg: A, B are row aguivelant if Can piss from A + B by row aps.

Pf. ⇐: AX=0 A-' AX = A-' 0 и и и и =: A ~ R relrow No fra vole. R=I. Ais row by to I. The > A invertile. A invertible: 3Bra AB=I=BA This is <u>unique</u>. Recomi B, C both inverses of A. C = CI = CAB = IB = B

 $\sum_{j=1}^{m+1} \chi_j \alpha_j = \sum_{j=1}^{m+1} \chi_j \left(\sum_{i=1}^{m} \alpha_{ij} \beta_i \right)$ $= \sum_{i=1}^{m} \left(\sum_{j=1}^{m+1} a_{ij} x_{j} \right) \beta_{i}$ $\sum_{i=1}^{i=1} d^{=1} \qquad \text{would } x_{j} \text{'s st}$ there are O_{j} for cli i. $\begin{cases} \sum_{\substack{n=1\\j \\ n \neq 1}}^{mn} a_{1j} \chi_{j}^{i} = 0 & m \text{ expass in} \\ p_{2} = 1 & m \neq 1 & m \neq 1 & m \neq 1 \\ m \neq 1 & m \neq 1 & m \neq 1 & m \neq 1 \\ m \neq 1 & m \neq 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 & m \neq 1 \\ \lambda = 1 & m \neq 1 \\ \lambda =$ = =] non-drivid soli. X. _X_+ Dme. Com If Visa f.d. V.s. Then any two bases have the Same of alts. Pf. Say besier B. B. Ini. ind. B. basis if milts = n ≤ m.) man. / B2 - - netts, = m ≤ n.) man. /

Pf 1 Prop malts If SeV is lin. ind, = yhen take T=S.)f not (S) in days), the Dref S s.t. v is a lin comb of the other vectors in S. Let $S_1 = S - zrr^3$. m-1lts. Spas = Spa S (b/c no is a lin comb of the others) If Sis In int, takeT=SI. if not, reparts get Sz of m-2 alts. This process terminists bic Shis malts in Em some Si i's lii int, take T = Si. So some Si i's lie int,

Cor) If SeV is fine, + spen S = V the S contains a lo asis of V. Pf. Propto S: FITCS, TININ, Span T= span S=V : Tis a basis of V. Core If V has a finite Spanning sot, then V has a finte besus ile. Vise f. Lv.s. Pf. By Corl, if we lot S be a fin. Sp. set, the S fill Contains a basis, T. fink (Tas) Nice characterizitan of f.d.v.s. To gen'l'+ v.s:sallow more sail Scalers - ving - da 't assume to P-S: LI Z = { intagers]

- "modules" (Jm/in vs's
- Gase of ring of sealors)
- Many results abt v.s's
full for modules.
Ex. Z, Scalore.
Module:
$$F_2 = \{0, 1\}$$

 $3 \cdot 1 = 1 + 1 + 1 = 1$
 $1 \leq F_2$
 $2 \cdot 1 = 1 + 1 = 0$
 $1 \leq F_2$
 $2 \cdot 1 = 1 + 1 = 0$
 $2 \cdot 5 \approx 1 = 0$
 $3 \cdot 5 \approx 1 = 0$
 $5 \cdot 5 \approx 1 = 0$

If not be S down it spend,
yhen spen S = V.
Take
$$\alpha_{m+1} \, cV$$
, $\alpha_{mm} \notin S$,
Lot $S_1 = S \cup \delta \alpha_{mn}^2$, but is
 $= \{\alpha_{i_1}, \ldots, \alpha_{m}, \alpha_{mn}\}$
 $I = \{\alpha_{i_2}, \ldots, \alpha_{m}, \alpha_{mn}\}$
 $I = \{\alpha_{i_3}, \ldots, \alpha_{mn}, \alpha_{mn}\}$
 $I = \{\alpha_{i_3}, \ldots, \alpha_{mn}\}$
 $I = \{\alpha_{i_3}, \ldots, \alpha_{mn}, \alpha_{mn}\}$
 $I = \{\alpha_{i_3}, \ldots, \alpha_{mn}\}$
 $I = \{\alpha_{i_$