Math 314, Spring 2019
Linear Algebra
Prof. David Harbater
Study of Vector spaces \& relater concepts.
A spumes fa-ilesits with basics
from Math 240 (vectors in n-spaces

- will review.

Both theory σ computations.
Alternative: Math $3 / 2$
(312 his less theory, mare Cunp-tation) (312 doesn't give Math mage craal)
314 TA: :
labs, ahrs/wh
Ben Foster

402,403
Juan Lanfranco

404, 405
L abs are active.
(stat th thin, uk)
Weakly problem ats due in lab.
There exams (not cumulatie)in class N_{0} find exam.

See web page for more info: woad. math, upon. edwIn harbeter
\longrightarrow Courses $\leadsto M$ eth $3 / 4$ Spring ~ 9
Text: Hoffman a Kunze, 2' ed.
MP A Library, bookstores web.
$3 / 4$ is pre-rag quinte for Math 370-1. Halpfl for 360-1.

A more theoretical then 3/4; also assume 240 .
Sea cab pg for problem sots, exam+gr.engint.
(Grades: exams, homework, participial)
Gralas: postal on Canvas. Stull groups, for homework.
sign-ur page:
indicate by lab \#.

$$
\begin{aligned}
& \text { Today: Vectors, scalars; } \\
& \text { Vector spaces, fields. }
\end{aligned}
$$

Vector spaces
Vectors in plane

$$
\begin{aligned}
V & =\left(a_{1}, a_{2}\right) \\
w & =\left(b_{1}, b_{2}\right) \\
V+w & =\left(a_{1}, b_{1}, a_{2}+b_{2}\right) \\
c\left(a_{1}, a_{2}\right) & =\left(c a_{1}, c a_{3}\right)
\end{aligned}
$$

$O K$ in \mathbb{R}^{n}
Vectors $+s$ calais obey alg. laws

Scalars \mathbb{R} t,
both safest comm. law
σ assoc.law
Idratitice +0

$$
a+0=a
$$

$$
\text { - } \quad 1
$$

$$
a \cdot 1=a
$$

inverses $+a-a$

$$
a+(-a)=0
$$

exc. for $0 \longrightarrow \quad a \quad a^{-1}=1 / a$

$$
a \cdot a^{-1}=1
$$

distrib law of \cdot over + .
Summarize: \mathbb{R} form • fill d
Other files?
\mathbb{C} complex \#s

$$
a+b=, \quad a, b \in \mathbb{R}
$$

(Q) $\frac{\text { rational }}{\frac{a}{b}} a, b$ integers

$$
a, b \in \mathbb{Z} \quad b \neq 0
$$

\mathbb{T}_{2} fille of 2 elmats $\{0,1\}$

+	0	1	.	0	1
0	0	1	0	0	0
1	1	0	1	0	1

$$
\frac{3,4,5,6,7,8,9}{\text { Vector spaces }}
$$

\mathbb{R}^{n}
a doltom
Scalar mult
Alg. propeotis?
t assoc, conm, identit,
inverse $V \quad O_{-V}$
Scalce mult

$$
C \in \mathbb{R} \quad V \in \mathbb{R}^{n} \quad V \in \mathbb{R}^{n}
$$

Scales. Vector $=$ Vector

$$
\text { "assoc" }\left(c_{1} c_{2}\right) v=c_{1}\left(c_{2} v\right)
$$

"id" $1 V=V$
"distrib lans"

$$
\begin{aligned}
& c(v+w)=c v+c w \\
& \left(c_{1}+c_{2}\right) v=c_{1} v+c_{2} v
\end{aligned}
$$

Can check by coords.

$$
\begin{aligned}
& V+w=w+V \\
& V=\left(a_{1}, \ldots, a_{n}\right), w=\left(b_{1}, \ldots b_{n}\right) \\
& V+w=\left(a_{1}+b_{1}, \longrightarrow a_{a}+b_{n}\right) \\
& = \\
& =\left(b_{1}+a_{1}, \ldots, b_{n}+a_{n}\right) \\
&
\end{aligned}=w+v . l \begin{aligned}
& V
\end{aligned}
$$

Summarize: \mathbb{R}^{n} is a Veetor spece, win sraloos \mathbb{R}.

OThar ex's of V.S.:
(oves \mathbb{R}

1) 2×3 ve. metricis

$$
\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right) \quad O=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

2) Sequences of real \#s

$$
a_{1}, a_{2}, a_{3,}-\cdots \quad O=0,0,0,-
$$

3) Real-valual functions

$$
\text { on }[0,1]
$$

$$
\sin x+e^{x}
$$

4) Polys with real coests 0

$$
3 x^{2}+2 x-5
$$

O: 0-poly
Ws's oven othe fiales?
$\mathbb{C}^{n} \quad n$-tiple of $C x+\mathbb{C}$
$\mathbb{Q}_{n}^{n} \quad$ - - ratis ${ }^{n} / Q$
F^{n}

$$
\text { felds of } F / F
$$

2×3 cx matricies

$$
(\because) \quad \mathbb{C} \quad<{ }^{\text {file }}
$$

Seq's of elemnets in F

From basis pareation of a ficle (or a U.s.), can deduce other propentios.
Ex. F fice $\quad a \in F$ $\Rightarrow 0 \cdot a=0$
Proof

$$
\begin{aligned}
0 \cdot a & =(0+0) \cdot a \\
& =(0.1+4+0 \cdot 0 \cdot a \\
& =0 \cdot a+0 \cdot a
\end{aligned}
$$

$0 \cdot a+(-(0 . a))$
$\eta=(0 \cdot a+0 \cdot a)+(-10 . a 7)$
LHS

$$
\begin{aligned}
& \text { LHS }=0 \text { derin. } \\
& \text { RHS }=0 \cdot a+(0 . a+(-(0 . a))) \\
& =0 \cdot a+0 \\
& =0 . a \\
& \text { (1028:1) } \\
& \therefore 0 . a=0 \text {. }
\end{aligned}
$$

V. s:

$$
\begin{aligned}
& O \cdot V=O \\
& \imath_{\text {sceleo }} 0
\end{aligned}
$$

Pf is same, if replace

$$
a \in F \text { by } V \in V
$$

Arother propeoty of fiiles:

$$
a \in F \quad(-1) a=-a
$$

pf. $W T S$

$$
\begin{aligned}
&(-1) a+a=0 \\
& T_{L H} s \\
& \text { LHI } s=-\operatorname{com} a+(-1) a \\
&=1 \cdot a+(-1) a \\
& \text { mult is }=(1+(-1)) a \\
& \text { dist }=0 \cdot a \text { aldin } \\
&=0 \text { prov resolt }
\end{aligned}
$$

$$
\text { V. s. } \quad(-1) v=-v
$$

Pf is "same", replece a by v

One Vectors ipara in sits ea.ther v.s.

- Subspace

Ex. $($ plene 00$) \subset \mathbb{R}^{3}$
(Solus to $f^{\prime \prime}+3 f^{\prime}+2 f=0$)
C (cont $\sin)$
(conv. sy's) C (segunces)
$\binom{$ upper }{$3 \times 3 \mathrm{~m} \times \mathrm{s}}<(3 \times 3 \mathrm{mxs})$
$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \bullet\end{array}\right)$
Subspace
V.S.
with sama

$$
t, s \text { c. m. } H, O
$$

How to chenk if w is a s.bspe..e?
Some prope-ties are inherctal from V to w (ass.c, 'dist', th.)

Stll neer:
$\omega \neq \varnothing$
$\sim 0 \in W$
Closed uaber t, sc.muH
\rightarrow ald. invis.
Suff. to chack:
$\rightarrow \omega \neq \psi$, cloes unden t.
$\omega_{\xi} ? \quad W \neq \phi \Rightarrow \exists \omega \subset W$
O. $\omega \in W$ cluncer.

0

$$
\frac{\begin{array}{l}
W \in W d \Rightarrow-w \\
\text { clicudr. } \\
A \text { way to get a } \\
(-1)^{\prime \prime}
\end{array}}{\substack{\text { subsen of }}}
$$

subspice of v.s. V
Take a subet $S \subset V$.

$$
Q_{1} S_{1}+a_{2} S_{2}+\cdots+a_{r} S_{r}
$$

lina.e comb of
finital, men, elmats

$$
\text { of } \mathrm{S} \text {. }
$$

Let $W=$ the sot of all these. W is a sobspece of V : the subspanace spanast by S.

$$
\begin{aligned}
& V=\mathbb{R}^{3} \\
& S=\{v, w\} \\
& G+W=P / \text { ane, ingile }
\end{aligned}
$$

O : $\omega=$ Line, if
V, w is walt of the ther
Or: W: 0 if $V=W=0$.
In gemeral, for any SAA $S<V$,
g.t $w \subset V$, a sinspace \}subspace spannad by S
Notei W is hamempty, α closed under t..

