Note: Those who would like to have extra time can submit this problem set to the TA by Wed., Dec. 12.

In Apostol, Volume II, read Chapter 12, Sections 1-20, pages 417-462. (Sections 16, 18, 20 are optional.)

1. From Apostol, Volume II, Chapter 12, Section 12.4, page 424, do problems 1, 8; and from Section 12.6, pages 429-430, do problems 2, 3.
2. From Apostol, Volume II, Chapter 12, Section 12.10, pages 436-438, do problems 1, 7; and from Section 12.13, pages 442-443, do problems 1, 5 .
3. From Apostol, Volume II, Chapter 12, Section 12.15, pages 447-448, do problems 1(a,c), 5 ; and from Section 12.21, pages 462-465, do problems 1, 2.
4. Let $F=z \mathbf{i}+x \mathbf{j}+(y+z) \mathbf{k}$.
(a) Find $\operatorname{curl} F$ and $\operatorname{div} F$.
(b) Determine whether F is conservative; i.e., whether $\int_{C} F \cdot d \alpha$ is path independent, where α is a parametrization of C.
(c) Determine whether $F=\operatorname{curl} G$ for some vector field G.
(Hint: Use part (a) in doing parts (b) and (c).)
5 . For a surface S, let \mathbf{n} be the outward unit normal.
(a) Let S be the portion of the sphere $x^{2}+y^{2}+z^{2}=2$ above the plane $z=1$. Let $F=x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}$. Using Stokes' Theorem, compute $\iint_{S} \operatorname{curl} F \cdot \mathbf{n} d S$.
(b) Let V be the solid cylinder given by $x^{2}+y^{2} \leq 1,0 \leq z \leq 1$, and let $S=\partial V$. Let $F=2 x z \mathbf{i}+\sin \left(x^{2} z\right) \mathbf{j}+\left(y^{3}+z-z^{2}\right) \mathbf{k}$. Using the divergence theorem, evaluate $\iint_{S} F \cdot \mathbf{n} d S$.
