In Apostol, Volume II, read Chapter 11, Sections 19-33, pages 378-413. (Sections 23-24 are optional.)

1. From Apostol, Volume II, Chapter 11, Section 11.22, pages 385-387, do problems 1(a,d), 2, 4 .
2. From Apostol, Volume II, Chapter 11, Section 11.28, pages 399-401, do problems 1-3, 7, 15.
3. From Apostol, Volume II, Chapter 11, Section 11.34, pages 413-416, do problems 1, 2, $5,11,12,14,21$. (See instructions for problems 10-16.)
4. Let $\omega=P d x+Q d y$, where $P=y \csc \left(x^{2}\right)$ and $Q=\cos \left(y^{2}\right)$. Let C_{1} be the line segment in the x, y-plane from the origin to the point $(\sqrt{\pi}, 0)$, and let C_{2} be the portion of the graph of $y=\sin \left(x^{2}\right)$ connecting those two points (in that same order).
(a) Show that $\int_{C_{1}} \omega=0$.
(b) Evaluate $\int_{C_{2}} \omega$. (Hint: Use part (a), and apply Green's Theorem to an appropriate counterclockwise loop.)
5. Let R be the region in the x, y-plane between the hyperbolas $x y=1$ and $x y=4$, and between the lines $2 y=x$ and $y=2 x$. Evaluate $\iint_{R} x y^{2} d A$. (Hint: Use the change of variables $x=u / v, \quad y=v$.)
