In Apostol, Volume II, read Chapter 11, Sections 1-17, pages 353-377.

1. From Apostol, Volume II, Chapter 11, Section 11.9, pages 362-363, do problems 1, 4, 7, 14.
2. From Apostol, Volume II, Chapter 11, Section 11.15, pages 371-373, do problems 1, 2, 4, 6, 8(a), 10, 11, 23.
3. From Apostol, Volume II, Chapter 11, Section 11.18, pages 377-378, do problems 1, 9, 10, 19.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function. For $s, t>0$ let

$$
g(s, t)=\iint_{R_{s, t}} f(x, y) d A
$$

where $R_{s, t}$ is the rectangle given by $0 \leq x \leq s, 0 \leq y \leq t$. Evaluate $\partial g / \partial t$ and $\partial^{2} g / \partial s \partial t$. Also interpret your answer geometrically.
5. Let m, n be positive integers. Let $P(x, y)=y^{m}$ and $Q(x, y)=x^{n}$. Let R be the square given by $0 \leq x, y \leq 1$, and let C be the boundary of R oriented counterclockwise.
(a) Determine if the vector field $F=P \mathbf{i}+Q \mathbf{j}$ is a gradient. (Your answer should depend on m, n.)
(b) Evaluate $\oint_{C} P d x+Q d y$. When is it equal to zero? Is this expected?
(c) Evaluate $\iint_{R}(\partial Q / \partial x-\partial P / \partial y) d A$. Compare your answer to the one you got in part (b).

