In Apostol, Volume II, read Chapter 8, Sections 18-23, pages 269-281; and read Chapter 9, Sections 6-12, pages 294-313.

1. From Apostol, Volume II, Chapter 8, Section 8.22, pages 275-277, do problems 1, 2; and from Section 8.24, pages 281-282, do problems 1, 3.
2. From Apostol, Volume II, Chapter 9, Section 9.8, pages 302-303, do problems 1, 9; and from Section 9.13, pages 313-314, do problems 1, 2, 4, 21.
3. a) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions, and let $F: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $F(x)=(f(x), g(x))$. Define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $h(x, y)=x y$. Use the chain rule to compute the derivative of the composition $h \circ F: \mathbb{R} \rightarrow \mathbb{R}$. Also write out this composition as a function of x, and give another reason why the derivative of $h \circ F$ has the form you computed.
b) Let $S_{1}=\{x \in \mathbb{R} \mid x>0\} \subset \mathbb{R}$, and let $S_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\} \subset \mathbb{R}^{2}$. Define $F: S_{1} \rightarrow S_{2}$ by $F(x)=(x, x)$. Define $g: S_{2} \rightarrow \mathbb{R}$ by $g(u, v)=u^{v}$. Use the chain rule to compute the derivative of the composition $g \circ F: S_{1} \rightarrow \mathbb{R}$. Also write out this composition as a function $h(x)$, and give another way to compute its derivative (by writing $z=h(x)$, taking logarithms of both sides, and then using implicit differentiation).
4. Let m, n be positive integers. For every i, j with $1 \leq i \leq m$ and $1 \leq j \leq n$, let $a_{i, j}$ be a real number. Define the function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{j=1}^{n} a_{1, j} x_{j}, \ldots, \sum_{j=1}^{n} a_{m, j} x_{j}\right)
$$

Show that F is differentiable, and find its total derivative (both as a linear map and in terms of its Jacobian matrix). Also find the error term.
5. For each of the following functions, determine whether it has a maximum at $(0,0)$, a minimum at $(0,0)$, or neither.
a) $f(x, y)=x^{2}+x y+y^{2}$
b) $f(x, y)=x^{2}+3 x y+y^{2}$
c) $f(x, y)=x^{3}+y^{3}$
d) $f(x, y)=x^{4}+y^{4}$
e) $f(x, y)=\sin (x+y)-x-y$

