In Apostol, Volume I, read Chapter 14, Sections 10-20, pages 529-548. In Apostol, Volume II, read Chapter 8, Sections 1-8, pages 243-255.

1. From Apostol, Volume I, Chapter 14, Section 14.13, pages 535-536, do problems 3, 11, 13; from Section 14.15, pages 538-539, do problems 1 (just do $\# 4$ from 14.9), 2, 6 ; and from Section 14.19, pages 543-545, do problems 1, 2(a), 4.
2. From Apostol, Volume II, Chapter 8, Section 8.3, pages $245-246$, do problems 1(c), 5; from Section 8.5, pages 251-252, do problems 1(b), 3 (in problem 3, the part relating to problem 2 is optional); and from Section 8.9, pages 255-256, do problem 4.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Parametrize the plane curve $y=f(x)$ by $F(t)=(t, f(t))$, and suppose that $F(a)=(a, f(a))$ is an inflection point of this curve for some value of a. Prove that $T^{\prime}(a)=0$, where $T(t)$ is the unit tangent vector to the curve at the point $F(t)$. Is the principal normal vector $N(a)$ at $F(a)$ defined?
4. Consider the curve in \mathbb{R}^{3} given parametrically by $F(t)=t i+t^{2} j+t^{3} k$, where i, j, k are the unit basis vectors. Find the curvature at the origin, and find all points where the curvature is zero.
5. For each of the following subsets of \mathbb{R}^{2}, find the set of interior points and find the set of boundary points.
a) $\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y>0\right\}$
b) $\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \in \mathbb{Q}\right\}$
c) $\left\{(x, y) \in \mathbb{R}^{2} \mid\left(1-x^{2}-y^{2}\right) y^{2} \geq 0\right\}$
