In Apostol, Volume I, read Chapter 13, Sections 18-23, pages 497-507; and Chapter 14, Sections 1-8, pages 512-528.

1. From Apostol, Volume I, Chapter 13, Section 13.21, page 503, do problems 4, 7; and from Section 13.24, pages 508-509, do problems 2, 19, 26.
2. From Apostol, Volume I, Chapter 14, Section 14.4, pages 516-517, do problems 2, 9, 14, 15; from Section 14.7, pages 524-525, do problems 4, 10, 17; and from Section 14.9, pages 528-529, do problems 4, 7.
3. a) Let L be a line in the plane and let C be a conic section in the plane. At how many points can L and C meet? Give examples illustrating each possible value.
b) In part (a), if L is tangent to C at a point P, then at how many points (including P) can L and C meet?
c) Make a conjecture concerning the number of points at which two distinct conic sections C, C^{\prime} in the plane can meet. Give examples to illustrate each of the possible values.
4. Suppose that $F: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a differentiable vector-valued function, that $c \in \mathbb{R}$, and that $\int_{0}^{x} F(t) d t=\left(x^{2}+x, e^{x}+c\right)$ for all $x \in \mathbb{R}$. Find F and find c.

5 . Let $F: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a differentiable vector-valued function that parametrizes the motion of a particle in \mathbb{R}^{n} whose speed is always at most c (where c is some positive real number).
a) Prove that if $a<b$ then $\|F(b)-F(a)\| \leq c(b-a)$. Also explain why this is reasonable from a geometric point of view. [Hint: for the proof, use the Fundamental Theorem of Calculus and another result.]
b) Give an example of a function F and values $a<b$ for which there is equality in part (a), and give another example in which there is a strict inequality.

