In Apostol, Volume I, read Chapter 12, Sections 14 and 16, pages 466-470; and Chapter 13, Sections 2-16, pages 472-496.

1. From Apostol, Volume I, Chapter 12, Section 12.15, pages 467-468, do problem 17; and from Section 12.17, page 470, do problem 1(a,b).
2. From Apostol, Volume I, Chapter 13, Section 13.5, page 477, do problems 1, 4(a-d); and from Section 13.8, pages 482-483, do problem 1(a-c).
3. From Apostol, Volume I, Chapter 13, Section 13.11, pages 487-488, do problems 1(c,g), 2(a), 8(a); and from Section 13.14, pages 492-493, do problems 1(b), 3.
4. Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$. Suppose that v_{1} and v_{2} are non-zero orthogonal vectors, and let Π be the span of $\left\{v_{1}, v_{2}\right\}$. For $i=1,2$ let $a_{i}=v_{3} \cdot v_{i} /\left\|v_{i}\right\|^{2}$, and let $w=a_{1} v_{1}+a_{2} v_{2}$.
a) Show that Π is a plane through the origin.
b) Show that w is the orthogonal projection of v_{3} onto Π; i.e. that $v_{3}-w$ is orthogonal to every vector in the plane.
c) Show that w is the closest point to v_{3} on Π.
d) Interpret parts (b) and (c) in the special case that v_{3} lies in Π, and explain why those parts were already known by a previous result in that case.
5. a) Let L be a line in \mathbb{R}^{2}. Prove that the set of vectors in L spans \mathbb{R}^{2} if and only if L does not contain the origin. (Note: Here we regard points in \mathbb{R}^{2}, including points on L, as vectors in the usual way, corresponding to arrows from the origin to those points.)
b) State and prove an analog for planes in \mathbb{R}^{3}.
c) What about lines in \mathbb{R}^{3} ?
