In Apostol, Volume I, read Chapter 12, Sections 10-13, pages 458-466.

1. From Apostol, Volume I, Chapter 12, Section 12.8, pages 456-457, do problems 5, 13(a,c).
2. From Apostol, Volume I, Chapter 12, Section 12.11, pages 460-462, do problems 1, 5, 18, 20. (In $\# 20$, these properties are summarized by saying that \mathbb{R}^{n} together with this distance function is a metric space.)
3. From Apostol, Volume I, Chapter 12, Section 12.15, pages 467-468, do problems 1(a-c), 6, 7 .
4. a) Show that if we define a new product on \mathbb{R}^{2} by

$$
\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=2 a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2},
$$

then the laws of the usual dot product (see Apostol, Vol. 1, Theorem 12.2) are still satisfied.
b) In terms of coordinates, write an explicit formula for a new norm on \mathbb{R}^{2} that is related to this new dot product by the equation $\|v\|^{2}=v \cdot v$.
c) Explain why the properties of norm given in Theorems 12.4 and 12.5 are automatically satisfied for this new norm (i.e. without the need to do any new computations).
5. In \mathbb{R}^{n} (with $n \geq 2$), show that there is $n o$ way to define a new dot product on \mathbb{R}^{n} that satisfies the laws of the usual dot product and that gives the norm defined in problem 18 in Apostol, Vol. 1, Section 12.11. [Hint: Under this norm, what are the norms of e_{1}, e_{2}, and $e_{1} \pm e_{2}$, where e_{1}, \ldots, e_{n} are the unit coordinate vectors? What does this say about $e_{1} \cdot e_{2}$ under such a new dot product?]

