In Apostol, Volume I, read Chapter 4, Sections 13-17, pages 181-189; Chapter 5, Sections 1-4, pages 202-207; and Chapter 12, Sections 2-9, pages 446-458.

1. a) From Apostol, Volume I, Chapter 4, Section 4.9, pages 173-174, do problems 9, 15.
b) From Apostol, Volume I, Chapter 4, Section 4.15, pages 186-187, do problems 1, 4.
c) From Apostol, Volume I, Chapter 5, Section 5.5, pages 208-210, do problems 14, 16.
2. a) From Apostol, Volume I, Chapter 12, Section 12.4, pages 450-451, do problems 1(a,c), 5.
b) From Apostol, Volume I, Chapter 12, Section 12.8, pages 456-457, do problems $1(\mathrm{a}, \mathrm{c}, \mathrm{d}), 3,4$.
3. Let $f(x)=1$ if the integer $[x]$ is even, and let $f(x)=-1$ if $[x]$ is odd. Let $F(x)=$ $\int_{0}^{x} f$ and let $\Phi(x)=\int_{0}^{x} F$. Graph the functions f, F, Φ. Are these functions integrable? continuous? differentiable?
4. a) Determine whether the function $f(x)=x^{3}-x+1$ has a maximum value and whether it has a minimum value on the closed interval $[-1,2]$. If such values exist, find them and find for which values of x they are achieved. Relate your answer to the Extreme Value Theorem.
b) Redo part (a) on the open interval ($-1,2$).
5. Let f be the function defined in problem 5 of Problem Set 2 , and extend f to a function on all of \mathbb{R} by setting $f(x)=0$ for x not in the interval $[0,1]$.
a) At which real numbers x is the function $f(x)$ differentiable?
b) At which real numbers x is the function $x f(x)$ differentiable?
c) At which real numbers x is the function $x^{2} f(x)$ differentiable?
