In Apostol, Volume I, read Chapter 9, sections 1-7, pages 358-368; and Chapter 1, sections 8-20, pages 60-76.

1. From Apostol, Volume I, Section 9.6, page 365, do problems 1 (a,c), 3 (e,g), 6, 7.
2. From Apostol, Volume I, Section 9.10, page 371, do problems 1(f), 3, 4.
3. From Apostol, Volume I, Section 1.15, pages 70-72, do problems 1(b,f), 5(a).
4. a) Prove that for every complex number c and every positive integer n, there is a complex number z such that $z^{n}=c$. [Hint: If z has polar form (r, θ), what is the polar form of z^{n} ?]
b) Explicitly find all complex numbers z such that $z^{4}=-1$.
5. Define a function f on the closed interval $[0,1]$ as follows: If $x=1 / n$ for some positive integer n, then $f(x)=1$. Otherwise, $f(x)=0$. Determine whether f is integrable on $[0,1]$. If it is, evaluate the integral.
[Hint: The integral of a step function (with finitely many subintervals) doesn't depend on the values at the endpoints of the subintervals. What happens if for some n you take the partition of $[0,1]$ given by the points $\{0,1 / n, 1 /(n-1), 1 /(n-2), \ldots, 1 / 3,1 / 2,1\}$? What happens as n varies?]
