Due the week of April 11, 2011, in recitation.
Read Stewart, sections 12.8-12.10.
For sections 12.8 and 12.9 , work through the first six core problems, but do not hand them in.
The problems below are to be handed in.
Part A: Do the following problems from Stewart:
Section 12.6: 5, 8, 33, 38, 40.
Section 12.7: 2-12 (even numbers only)
Section 12.8: 4-8, 10-12, 29, 30, 32, 33.
Section 12.9: 3, 4, 6-8, 11.
Section 12.10: 5, 6, 8, 10.
Part B: Do the following problems:

1. Suppose that a series $a_{1}+a_{2}+a_{3}+\cdots$ diverges to infinity, and that a series $b_{1}+b_{2}+b_{3}+\cdots$ converges to some real number.
a) Explain why the series $a_{1}+b_{1}+a_{2}+b_{2}+a_{3}+b_{3}+\cdots$ diverges.
b) Do the same for $a_{1}+b_{1}+b_{2}+a_{2}+b_{3}+b_{4}+a_{3}+b_{5}+b_{6}+\cdots$.
2. a) Consider the series

$$
1+\frac{1}{4}+\frac{1}{7}+\frac{1}{10}+\frac{1}{13}+\frac{1}{16}+\frac{1}{19}+\ldots .
$$

Does it converge? diverge to infinity? diverge but not to infinity?
b) Do the same for the series

$$
\frac{1}{2}-\frac{1}{3}+\frac{1}{5}-\frac{1}{6}+\frac{1}{8}-\frac{1}{9}+\frac{1}{11}-\frac{1}{12}+\ldots
$$

c) Do the same for the series

$$
1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{10}+\frac{1}{11}-\frac{1}{12}+\frac{1}{13}+\ldots
$$

[Hint: In part (c), use parts (a) and (b) together with problem 1(b).]
d) Does the alternating series test apply in part (c)? Explain.
3. For $n=1,2,3, \ldots$, let $a_{n}=\left(\frac{n+1}{n}\right)^{n}$.
a) Find $\lim _{n \rightarrow \infty} \ln \left(a_{n}\right)$. [Hint: L'Hôpital's Rule.]
b) Find $\lim _{n \rightarrow \infty} a_{n}$. [Hint: Use part (a).]
c) Using your answer in part (b) and the ratio test, find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} x^{n}$.
d) Do the same for the power series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} x^{n}$.
4. Let $f(x)=1 /(1+x)$.
a) Find the Maclaurin series $\sum_{n=0}^{\infty} a_{n} x^{n}$ for $f(x)$ and determine its domain of convergence.
b) Does this series converge at $x=1 / 2$? That is, if we set $x=1 / 2$ in the Maclaurin series, does the resulting series $\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{2}\right)^{n}$ converge? If so, find what the resulting series converges to, and compare this to the value of $f(1 / 2)$.
c) What happens if instead you take $x=2$?
5. For each of the four series in problem 3 on Problem Set 11, do the following:
a) Find a real number c and a function $f(x)$ such that the series you are considering is obtained by setting $x=c$ in the Maclaurin series for $f(x)$. [Hint: The desired function appears in an example in Sections 12.9-12.10 of Stewart.]
b) Evaluate $f(c)$ and compare this to the value you conjectured in problem 3(c) on Problem Set 11.

