Due the week of January 24, 2011, in recitation.
Review Stewart, chapters 4, 5, and 7 .
Hand in the following problems on the review material:

1. Let $f(x)=x^{3}-x$.
a) Find where the function $f(x)$ achieves its maximum and its minimum on the closed interval $[-1,1]$.
b) Evaluate $\int_{-1}^{1} f(x) d x$. How could you have predicted this answer even before computing it?
2. a) Draw the graph of a function f with the following properties: $f(0)=0$; $f(x)>0$ for all $x>0 ; f(x)<0$ for all $x<0 ; f^{\prime}(x)>0$ for $-1<x<1$; $f^{\prime}(x)<0$ for $x<-1$ and for $x>1$; $f^{\prime \prime}(x)>0$ for $-2<x<0$ and for $x>2$; $f^{\prime \prime}(x)<0$ for $x<-2$ and for $0<x<2$.
b) Find all x at which f achieves a maximum or a minimum, and also find all x at which the graph of f has an inflection point.
3. Suppose a certain differentiable function f has the property that $f(0)=1$ and $f(2)=5$.
a) Must there be a value of x between 0 and 2 satisfying $f^{\prime}(x)=2$? Explain.
b) Must there be a value of x between 0 and 2 satisfying $f^{\prime}(x) \neq 2$? Or alternatively, is it possible that $f^{\prime}(x)=2$ for all values of x between 0 and 2 ? In the latter case, give an example of such a function.
4. Evaluate the following:
a) $\int_{0}^{1}\left(x^{2}+\cos (\pi x / 2)\right) d x$.
b) $\int^{0} \frac{x}{\sqrt[3]{1-2 x^{2}}} d x$.
c) $\int_{0}^{1} x^{4} \cos \left(x^{5}+1\right) d x$.

5 . Let n be an unspecified positive integer.
a) Find the area of the region that is bounded above by the graph of $y=\sqrt[n]{x}$ and below by the x-axis, between $x=0$ and $x=1$.
b) Do the same for the graph of $y=x^{n}$.
c) Explain geometrically why the answers you got in parts (a) and (b) add up to a particular sum, which doesn't depend on n. (Hint: Treat the regions in (a) and (b) as pieces of a jigsaw puzzle, and move them around.)
6. Find the derivatives of the following functions:
a) $e^{e^{x}}$. (Note: $a^{b^{c}}$ means $a^{\left(b^{c}\right)}$.)
b) $\ln (\ln (x))$.
c) $\ln \left(e^{x}\right)$. (In this part, explain why you got this particular answer.)
d) $\arcsin (2 x)$.
e) $\arctan (\sqrt{x})$.
7. Evaluate the following:
a) $\int \frac{1}{1+4 x^{2}} d x$. (Hint: See Chapter 7.)
b) $\int \frac{x^{2}}{1+x^{2}} d x$. (Hint: $\frac{1}{1+x^{2}}+\frac{x^{2}}{1+x^{2}}=\frac{1+x^{2}}{1+x^{2}}=1$.)
c) $\int_{0}^{2 \pi}(\sin x)^{1,000,001} d x$. (Hint: Don't try to evaluate this directly. Instead compare the values of \int_{0}^{π} and $\int_{\pi}^{2 \pi}$ geometrically.)
8. Suppose that f is an increasing continuous function, and that $f(0)=1$ and $f(3)=6$.
a) Find the largest number m you can such that $\int_{0}^{3} f(x) d x \geq m$.
b) Find the smallest number M you can such that $\int_{0}^{3} f(x) d x \leq M$.
c) Is it possible that $\int_{0}^{3} f(x) d x=m$ for some choice of f ? Is it possible that $\int_{0}^{3} f(x) d x=M$ for some choice of f ? Explain.
9. a) Evaluate $\int \sin (x) \cos (x) d x$ in each of the following three ways:
i) Use the substitution $u=\cos (x)$.
ii) Use the substitution $u=\sin (x)$.
iii) Use the double angle formula $\sin (2 x)=2 \sin (x) \cos (x)$.
b) Explain how it can be that you got different answers from the different methods. Are all of them correct? Are any of them correct? What is the actual solution to $\int \sin (x) \cos (x) d x$?
10. Evaluate the following:
a) $\lim _{x \rightarrow 0} \frac{\sin x}{e^{x}-1}$.
b) $\lim _{x \rightarrow \pi} \frac{\sin x}{e^{x}-1}$.
c) $\lim _{x \rightarrow 0^{+}} x e^{1 / x}$.

