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One-Dimensional Sublevel
Set Theory



A Successful One-Dimensional Program

� For a very long time now, there has been a
recognized pathway to estimate one-dimensional
scalar oscillatory integrals (”First Kind” in Stein’s
classification), e.g.,

I(�) :=
∫

ei��(t)a(t)dt

The process combines van der Corput’s lemma for
non-stationary phase intervals and sublevel set
estimates near critical points of the phase.

� The method of TT� allows these ideas to extend to
oscillatory integral operators in many cases. 1



Sample Theorem
Suppose f is C2 on I := (a;b) s.t. I is a union of � n
nonoverlapping intervals on which f00 is either
nonpositive or nonnegative. Then there is E � I which
is a union of � n disjoint intervals s.t. jEj � cnjIj and

jIj sup
t2E

∣∣∣∣dfdt(t)
∣∣∣∣ � Cn sup

t2I
jf(t)j:

Proof: Take the decomposition of I and clip ears of
length jIj=(4n) off the ends of each subinterval. Those
which have any remaining length are the intervals of E.
Then use the FTC and monotonicity of f0 to bound sup f0
on each remaining interval by sup f on the ears. 2



Corollary
If f 2 Ck+1(I) and f(k) � 1 on I, then for � > 0,

jft 2 I : jf(t)j � �gj � Ck�
1=k:

� In the words of Carbery, “ ‘If a real-valued function u
has a large derivative, then it cannot spend too
much time near any one value.’ ”

� The frustrating thing is that in 2D and above, there
are few simple and elegant results which capture
this idea in a way that’s even remotely sharp.
� Phong-Stein-Sturm Example (x1 + � � �+ xd)k:

Knowing @�f(x) � 1 on [0; 1]d only implies sublevel set
estimates . �1=j�j, which is approximately what you get by
using the 1D result and Fubini’s Theorem. 3



� The Phong-Stein-Sturm example unfortunately
shows that there’s no added benefit to knowing that
several mixed partial derivatives have lower bounds.

� Likewise, lower bounds for linear partial differential
operators give estimates don’t give anything extra
over individual monomials.

I claim that the discrepancy is due to the fact we can
only really prove interesting results in 1D for intervals,
but all sublevel sets in 1D are close enough to being
intervals that nobody notices the difference.
“Close Enough” = contain an interval of length
comparable to the measure of the set.
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Higher Dimensions:
Carbery’s Theorem



Theorem (Carbery, Contemp. Math. 2010)
Suppose that f is a nonnegative, strictly convex C2

function on a convex body K � Rn. If detr2f � 1, then

jfx 2 K : u(x) � �gj � Cn�
n=2:

A Proof: Step 1: By the John Ellipsoid Theorem and an
affine transformation, we may assume that there is a
Euclidean ball B contained in the sublevel set K� such
that jBj � cnjK�j.

Step 2: Like the 1D case, integrate along lines

jBj1=n sup
x2 1

2B
jrf(x)j � Cn sup

x2B
jf(x)j � Cn�:
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Step 3: Strict convexity implies that x 7! rf(x) is
injective on B.

Step 4: Change of variables formula:∫
1
2B
j detr2f(x)jdx =

∣∣∣∣rf
( 1
2B

)∣∣∣∣
Step 5: Derivative estimate bounds volume:∣∣∣∣rf

( 1
2B

)∣∣∣∣ � (CnjBj�1=n�)n:

Step 6: Conclusion:

cnjBj �
∫

1
2B
j detr2f(x)jdx � (CnjBj�1=n�)n:
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Derivative Estimates Express Geometry

� To simplify matters somewhat, I will focus attention
specifically on polynomial functions f on Rn of deg
� d. We can upgrade the 1D result a little bit:

jIjs sup
t2I
jp(s)(t)j � Cd;s sup

t2I
jp(t)j:

Corollary
Suppose j @s1

@xs11
f(x)j1=s1 � � � j @sn

@xsnn f(x)j
1=sn � 1 on open set

U � Rn. Then the sublevel set fx 2 U : jf(x)j � �g

contains no axis parallel box of volume
� Cn;k;s�

1=s1+���+1=sn .
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AGeometric Framework for
Derivative Estimates



� Nonlinear quantities of this sort when expressed in
terms of partial derivatives @

@xi actually give sharp
and uniform information about the largest
axis-parallel boxeswhich fit inside a sublevel set.

� If the differential operator has coordinate symmetry,
the quantity measures the size of boxes of arbitrary
orientation which fit inside the sublevel set.

� In the case of convexity, sublevel sets are always
approximately boxes.

� To push beyond “box content,” one needs
differential quantities with stronger symmetry closer
to diffeomorphism invariance.
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Moving Further into Higher Dimensions

There are three basic questions I would like to consider:

� Can one understand what some “right” nonlinear
differential quantities are?

� Can one successfully extend the differential
inequality/geometric correspondence?

� Can one get uniform integral estimates in addition
to sublevel set estimates?

In each case, the answer is a qualified “yes.”
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Preparation: Nash Functions
A Nash function on an open set U � Rn is an analytic
function f which satisfies a nontrivial polynomial
equation p(x; f(x)) = 0. Things to know:
� There is a notion of complexity (c.f. degree) and a

Bézout Theorem for bounding the number of
nondegenerate systems of Nash equations.

� Basic algebraic operations preserve Nash, as do
coordinate partial derivs. (with bdd. complexity).

� Equivalent definition: f is a polynomial in x and Φ for
some analytic Φ : U! R

M s.t. p(x;Φ(x)) = 0 for
some poly. p(x; y) with (det @p

@y )(x;Φ(x)) 6� 0 on any
open set. 10



General Derivative Estimates

Lemma
Let U0 � R

d be open and suppose that f : U0 ! R
m is

Nash and has Jacobian Dxf which is everywhere rank
d. Let E0 � U0 be compact s.t. supx2E0 jf j(x)j � 1 for all
j = 1; : : : ;m and let w be a nonnegative weight on U0
For each integer N � 1, there exists an open set
UN � UN�1, a compact set EN � EN�1 \ UN, smooth
vector fields fX(N)i gdi=1 defined on UN, and a positive
constant cN;d depending only on N and d such that
the following are true:
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(Lemmacontinued)
� For each N � 1, w(EN) & w(E0):
� For each N0;N with 1 � N0 < N and each x 2 UN, the
fX(N)i g are smooth linear combinations of the fX(N

0)
i0 g

with for some coefficients ci0i of magnitude � 2.
� For each N � 1 and all for all x 2 EN,

w(x) j det(X(N)1 ; : : : ;X(N)d )j
∣∣∣
x
& w(E0):

� For each N � 1, each generalized multiindex � of
generation at most N, and each j 2 f1; : : : ;mg,

sup
x2UN

jX�f j(x)j � 1:
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Proof Sketch

� Proof is by induction on N. At each stage, there is
some open set UN, some finite list of Nash functions
f1; : : : ; fM on UN, and some compact set EN � E \ UN
whose measure w(EN) is comparable to w(E).

� Step 1: Subdivide UN into finitely many pieces
depending on which tuple j1; : : : ; jd maximize

det
@(f j1; : : : ; f jd)

@x :

Define vector field Xi by letting

Xif := det
@(f; f j1; : : : ; f̂ ji; : : : f jd)

@x = det
@(f j1; : : : ; f jd)

@x : 13



� This definition makes the pointwise bound jXifj . 1
trivial.

� Step 2: The (only slightly) harder part is establishing
that the vector fields Xi are not trivial (e.g., linearly
dependent).

� We use Change of Variables:∫
EN

∣∣∣∣det @(f j1; : : : ; f jd)@x

∣∣∣∣dx . 1:

Chebyshev-type estimate says that

w�1
∣∣∣∣det @(f j1; : : : ; f jd)@x

∣∣∣∣
isn’t & 1=w(En) on a set E0 with w(E0) � 1

2w(En).
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� Let EN+1 be the complement of the set E0; here

w�1
∣∣∣∣det @(f j1; : : : ; f jd)@x

∣∣∣∣ . 1
w(E):

But Xif jk = �jk, so

w(E) . w jdet(X1; : : : ;Xd)j :

� We can get estimates on the change of basis matrix
between our X1; : : : ;Xd and the vector fields from
previous steps just because we know that there are
functions f k1; : : : ; f kd in the list such that

Xnewi =

d∑
j=1

(Xnewi f kj)Xoldj :
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Upgraded Sublevel Set
Estimates



Example 1: Sublevel Sets

Theorem
Suppose f1; : : : ; fn are degree � d polys on Rn. Then

det


@f1
@x1 � � � @f1

@xn... . . . ...
@fn
@x1 � � � @fn

@xn

 � 1 on E � Rn )

∣∣{x 2 E : (f1(x))2 + � � �+ (fn(x))2 � �2
}∣∣ � Cn;d�

n:

Proof: Change of variables formula combined with
Bézout’s Theorem.
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Example 2: Norm Integrability

Theorem
Suppose f1; : : : ; fn+1 are degree � d polys on Rn. Then

Q(f) := det

 f1 @f1
@x1 � � � @f1

@xn+1... ... . . . ...
fn+1

@fn+1
@x1 � � � @fn+1

@xn+1

 � 1 on E � Rn )

∫
E

dx
[(f1(x))2 + � � �+ (fn+1(x))2]n=2

� Cn;d:

Proof: 1. Use Q(f') = 'n+1Q(f) for scalar functions '.
2. Apply previous result to f=jjfjj. 17



Affine Curvature “Plus”

Setup: An n-dimensional submanifold of RN;
equivalently, N functions f1; : : : ; fN on Rn.

� � := (�0; �1; : : :): any ordering of all multiindices on
R

n with nondecreasing degree: 0 = j�0j � j�1j � � � � .
� X1; : : : ;Xn: linear combos of @x1; : : : ; @xn with
j det(X1; : : : ;Xn)j = 1.

� “Affine curvature plus” is defined to equal

QN(f) := inf
X
max
�

∣∣∣∣∣∣∣det
X�0f1 � � � X�Nf1

... . . . ...
X�0fN � � � X�NfN


∣∣∣∣∣∣∣ :
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Properties of Affine Curvature Plus

� j�0j+ � � �+ j�Nj := D depends only on N and n.
� For any smooth vector fields Z1; : : : ; Zn,

max
�

∣∣∣∣∣∣∣det
Z�0f1 � � � Z�Nf1

... . . . ...
Z�0fN � � � Z�NfN


∣∣∣∣∣∣∣ � j det(Z1; : : : ; Zn)j

D
nQN(f):

� If A 2 SL(N;R), QN(Af) = QN(f).
� (NEW!) For any smooth function ', QN('f) = 'NQN(f).
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Theorem (Sublevel Set Style)
Suppose f : Rn ! R

N is polynomial of degree � d. Let
weight w := (QN(f))n=D. If K � RN is a convex body and
E := f�1(K), then

w(E) � CN;n;djKjn=D:

Theorem (Enhanced Inequality)
Under the same hypotheses, for any A 2 SL(N;R),∫

(QN(f))n=Ddx
jjAfjjNn=D � CN;n;d:
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Example
For any polynomial 
 : R! R

n+1 of bounded degree,∫
j det(
(t); 
 0(t); : : : ; 
(n)(t))j

2
n(n+1)dt

jjA
(t)jj 2n
. 1

� The proof of the integral inequality is almost a trivial
consequence of the sublevel set inequality
combined with the additional symmetry: apply
sublevel set estimate for K equal to the unit ball and
replace f by f=jjfjj.
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What’s Next

� These estimates apply to vector-valued f; They
have direct application to the establishment of
certain endpoint Lp-improving inequalities for
averages over hypersurfaces. A more desirable
case would be k-form-valued functions f.

� Exploring potential applications to oscillatory
integrals of the first kind in higher dimensions.

� Also significant would be to understand the
underlying incidence problem. Are local bounds
implied by nonvanishing of the differential operator
in the smooth category? 22



Thank you for your attention.
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