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Abstract

Geographers and climate scientists alike sometimes need to estimate

the area of a large region on the surface of the Earth, such as the polar

ice caps. Doing so using only a sequence of latitude-longitude data points

along a piecewise-linear approximation of the boundary of the region can be

accomplished via a novel use of Stokes's theorem that generalizes classical

and contemporary applications of Green's Theorem to data. The polar ice

caps are seen to hide a complication that makes their estimation from data

singularly interesting.

1 Stokes's Theorem.

The calculus student's long ascent through multivariable calculus usually cul-

minates in an encounter with three mathematical names: Green, Gauss,

and Stokes. Their eponymous theorems mean for most students of calcu-

lus the journey's end, with a quick memorization of relevant formulae. A smaller

number of students are led to some of the applications for which these theorems

were �rst used. These largely concern electromagnetics (say, Maxwell's equations

[5]) or �uid dynamics (the theorems of Kelvin and Helmholtz [3]). These appli-

cations in �eld physics are more than a century old. Examples of a more modern

nature from statistics, data analysis, economics, or other �elds, are either not well

known or too advanced for a �rst-year undergraduate course. The net result of

this is too often an unmotivated, abrupt end to multivariable calculus.

A very few students are permitted a �ash of mathematical beauty beyond the

traditional physics-centered approach of the classical calculus texts. This is best

done via di�erential forms, which, if presented in a simpli�ed Euclidean setting, is

entirely reasonable for �rst-year students (several texts now include such material

[4, 6, 7]). One may introduce the basis k-forms on Rn, dxi1 ^ dxi2 ^ � � � ^ dxik , in

terms of oriented projected k-dimensional volume via determinants. With a few
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algebraic rules concerning ^, d , and integration, one simpli�es the theorems of

Green, Gauss, and Stokes into the full version of Stokes's theorem:∫
@D

� =

∫
D

d� ; (1)

for D a smooth (k + 1)-dimensional domain in Rn with k-dimensional boundary

@D and � a k-form on D. A bit of dexterity is required to not prompt too many

awkward questions on what a smooth domain means. This theorem is unifying

and beautiful, but does not, however, seem to lend itself to many applications of

a concrete nature.

2 Computing Euclidean area and volume.

There is one popular application of Green's theorem that has an interpretation

in terms of data and approximation. Consider, for example, what happens

when an ultrasound technician performs a scan of a partially obstructed

artery. A cross-section of the artery is viewed with free-�owing and obstructed

regions visible. The cross-sectional area of the free-�owing region may be speci�ed

by the operator marking a sequence of points on the image as ordered landmarks

for an approximate boundary (Figure 1[left]). This free cross-section may or may

not be convex.

How is the area estimated? One well-known method for approximating area

invokes Green's theorem. Using planar coordinates (x; y), the area A of the free

cross-section D can be computed as a loop integral:

A =

∫
D

dx ^ dy =
1

2

∮
@D

x dy � y dx : (2)

By approximating the boundary @D as a piecewise-linear curve of straight seg-

ments 
 i from (x i
1
; y i

1
) to (x i

2
; y i

2
), and integrating the 1-form above on each such

segment for i = 1 to N, one obtains the classic combinatorial formula for area [8],

A �
1

2

N∑
i=1

x i
1
y i
2
� x i

2
y i
1
: (3)

This has applications ranging from medical image data to determining area of

counties and plots of land. The curious reader may wish to show that other geo-

metric quantities (centroid coordinates and moments of inertia, for example) can

be likewise approximated via combinatorial formulae, with a simple modi�cation

to the 1-form integrated over the straight-line segments.

Similarly, one can use Gauss's theorem for computing volume based on a tri-

angulation of the boundary. Here, again, medical imaging data provides a clear

motivation, with nonconvex surfaces arising naturally (Figure 1)[right]. Assume

that a 3-d region has boundary sampled by a collection of points in (x; y ; z) co-

ordinates. Triangulate this surface and label the vertices of each triangle T i as
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Figure 1: [LEFT] The boundary of the unobstructed cross section of an artery

is approximated by a piecewise linear loop. [RIGHT] Medical imaging leads to

volume-estimation problems for complex, non-convex regions.

(x ij ; y
i
j ; z

i
j ) for j = 1; 2; 3, cyclically ordered so as to induce a positive orientation

on the surface (outward pointing normals). By parameterizing each T i as a �at

surface and integrating the 2-form 1

3
(x dy ^ dz + y dz ^ dx + z dx ^ dy), one

obtains via Gauss's theorem:

V �
1

6

N∑
i=1

x i
1
y i
2
z i
3
+ x i

2
y i
3
z i
1
+ x i

3
y i
1
z i
2
� x i

3
y i
2
z i
1
� x i

2
y i
1
z i
3
� x i

1
y i
3
z i
2
: (4)

More can be done: centroids and moments in 3-d are again computable via com-

binatorial formulae on the vertices, and one can recover Archimedes' principle on

buoyant force applying Gauss's theorem to z dx ^ dy .

In these applications to area and volume, there is no clear advantage to using

di�erential forms over vector calculus. The following pair of examples shows how

thinking in terms of di�erential forms guides one to deeper applications to data.

3 Who's in the lead with Green's.

The classical application of Green's Theorem for area has a modern update

to problems of data coming from time series. The key insight is that the

area 2-form dx ^ dy is oriented area. In applications to area computations

above, one ignores the orientation, since the desired output is positive. However,

the global orientation retains information. In the case of time series data, this

encodes cyclic order. Consider a pair of time series x(t); y(t) in Figure 2[left].

One look at the data suggests that x is a leading indicator and y is lagging.

Assuming these time series were periodic in t, they would generate a closed curve


 = @D in the x � y plane. The integral of dx ^ dy over D would be positive

when x leads y , negative when y leads x , and zero when they are in phase (or

anti-phase).
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For purely periodic functions, there are many ways to discern this order: cor-

relations and Fourier coe�cients come to mind. Those methods are, however,

very sensitive to time axis reparameterizations. In contrast, many real-life phe-

nomena are cyclic � roughly repetitive � without being rigidly periodic. Cardiac

rhythms, musculo-skeletal movements exercised during a gait, population dynam-

ics in closed ecosystems, business cycles, and more are examples of cyclic yet

aperiodic processes.

The key insight is that the loop integral in (2) is independent of (oriented)

time-reparameterization: no matter how you write 
 = @D as an oriented para-

metric curve (x(t); y(t)) the oriented area will be the same, even if there is some

backtracking along the path. For discretized data, this means that the estimate

from Equation (3) is robust with respect to non-uniformities in sampling of points

on 
.

Figure 2: Left to right: two cyclic time series, x(t) (starting positive) and y(t)

(starting at zero); x approximately leads y ; the corresponding parametric curve

in the plane traces out a positive area, as measured by x dy � y dx , indicating

leadership.

Here lies an excellent motivation for di�erential forms on Rn: for multiple cyclic,

noisy time series fxi(t)g
n
1
, the full leader-follower ordering can be derived from the

integrals of dxi ^ dxj for all i 6= j . These integrals give a skew-symmetric matrix

of non-parametric phase values. Further manipulations can reveal combinations of

variables that are leading or trailing. The key to all of this is interpreting 2-forms

on Rn as oriented projected area, and using Green's Theorem as in (2) and (3).

4 The form of spherical area.

Green and Gauss have put in an appearance: what, then, of Stokes? By

analogy with the previous examples of area and volume, the 3-d Stokes's

theorem would seem to be helpful in computing the area of a surface

based on coordinate data of a piecewise-linear approximation to the boundary.

This problem is natural in the context of estimating surface area on regions of

the Earth based on boundary points (Figure 3). One sees speci�c examples in

estimating the surface areas of countries or states, with border landmarks given
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in latitude and longitude, or the surface area of a connected component of the

Great Paci�c Garbage Patch or the polar ice caps.

Figure 3: [LEFT] One can estimate the area of a region on the Earth's surface

with piecewise-linear boundary. [RIGHT] One needs care with geographic and

mathematical poles.

For the sake of exposition, assume that the Earth's surface is a sphere of

radius R and that spherical coordinates are used: (�; �; ') with 0 � � � 2� and

0 � ' � �. The area 2-form on the sphere of radius R with standard (outward

pointing) orientation is recognizable from the volume form in spherical coordinates:

R2 sin'd'^d�. In order for (1) to be applicable, one needs this form to be exact,

the derivative of a 1-form. It is, since

R2 sin'd' ^ d� = d(�R2 cos'd�) : (5)

This tells us what to integrate over the boundary. Assume that a piecewise-

linear approximation to the boundary of the spherical patch is given by N segments


 i in the (�; ') plane with start points (�i
1
; 'i

1
) and endpoints (�i

2
; 'i

2
). These must

collectively give a simple, closed, oriented curve. Integrating the 1-form of (5) over

the straight-line segments 
 i , summing, and invoking Stokes yields a surface area

S with

S � �R2

N∑
i=1

(�i
2
� �i

1
)
sin'i

2
� sin'i

1

'i
2
� 'i

1

: (6)

As far as the authors can tell, this formula does not appear in the litera-

ture on geographic area estimation. Most references suggest performing an area-

preserving projection to the Euclidean plane, then applying (3) to the projected

boundary landmarks. One NASA JPL technical report [2] derives a number of

exact and approximate formulae using techniques from spherical geometry. One

such estimate (found on page 7) is very similar to (6) above, though replacing the

quotient of 'i terms with an average value over the segment.

The more traditional vector-�eld approach to Stokes's theorem does not seem

to facilitate this application so readily as the forms-approach. Observing that
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R2 sin'd' ^ d� is exact is more natural than, say, trying to �nd a vector �eld

in spherical coordinates that has curl equal to @=@�, so that the �ux of the curl

yields surface area.

5 The starry pole.

All that remains is to do some examples and show students just how well

this method of integrating a 1-form over the boundary works in practice.

Perhaps the most compelling example is that of a polar ice cap. Let us

suppose for simplicity that one has a round cap centered at the North Pole at an

inclination angle of 0 < '� < �=2, with boundary circle 
 discretized arbitrarily

into segments.

Application of (6) presents two problems. The �rst di�culty is that the 'i

terms are singular. This is not a surprise, as the terms in (6) were derived from

an integral assuming nonzero variation in '. The integral is simpler when ' =

'� is constant. The second di�culty is that the answer is clearly wrong, since∮


�R2 cos'� d� = �2�R2 cos'� < 0. The hypotheses of Stokes's theorem have

not been respected. The 1-form in (5) is a multiple of d� and is not well-de�ned

at the poles, invalidating its use in Stokes's theorem. There are no di�culties in

applying (6) to regions that do not encircle one of the poles. Indeed, this resolves

the ambiguity in which of two surfaces on the sphere the loop 
 encloses.

What if one wants to apply this result to measuring the area of a region

encircling a pole? For an oriented, simple, closed curve 
 that surrounds a pole

of the sphere, a small improvement using ideas from contour integrals (see Figure

3[right]) shows that

S = R2

∮



(1� cos')d� : (7)

This correction term permits a combinatorial formula for 
 discretized.

Here is the �nal argument for using forms. The existence of two poles of the

sphere, each of which contributes a term to the integrand that is describable as

an index of +1, permits a clean segue for the curious from calculus to the Euler

characteristic, de Rham cohomology, and other exalted spheres [1].
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