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THIS TEXT covers dynamical system, in continuous & discrete time.  
 
The book is intended for undergraduate students in Engineering & the Natural 
Sciences. As such, less emphasis is placed on careful proofs of major theorems; 
more emphasis is placed on intuition, applications, and the development of 
systems-level thinking. Students looking for much more or much less rigor will 
find no end of texts clustered at the extremes. This book is a balance. 
 
Several unique features should appeal to a broad audience of learners: (1) The 
marriage of continuous and discrete dynamics is effected with the use of 
continuous and discrete calculus; (2) The mathematical aspects of the theory are 
front-and-center, especially the many and various ways that ideas from 
geometry and topology arise; (3) There are many figures, pedagogical even when 
fanciful.  
 
The text is paired with videos, and the animations of concepts & examples are a 
fundamental component of learning the material: the mathematics of evolution 
is not easily borne on static images. 
 
The author wishes to thank his many students in the School of Engineering and 
Applied Sciences at the University of Pennsylvania. In addition, during the 
writing of this text, the author’s research has received generous support from 
the Assistant Secretary of Defense for Research & Engineering, the Air Force 
Research Labs, DARPA, the National Science Foundation, and Andrea Mitchell.  
 
 
 
 
 

 
For Philip Holmes 

Applied Mathematician : Pure Poet 
il miglior fabbro. 
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YNAMICAL SYSTEMS is the study of behaviors of systems that change over 
time. Growth, decay, oscillation, evolution, collapse, and chaos are all 

examples of behaviors that systems exhibit. If Mathematics is the Science of 
pattern, then dynamical systems is the mathematics of behavior.  
 

TIME: CONTINUOUS & DISCRETE 
Systems evolve over time. The fundamental dichotomy of this text lies in the 
representation of time as continuous or discrete. Continuous-time dynamical 
systems are described at the infinitesimal level using vector fields or 
differential equations. The smooth clockwork-like motion of heavenly bodies is 
the great example of continuous-time dynamics. Discrete-time systems can 
arise through the discrete nature of data – perhaps from economic data, which 
are collected only on a periodic basis. Other examples of discrete-time 
dynamics come from sampling a system at certain events, as opposed to 
sampling at uniform intervals of time.  
 
EXAMPLE: A ball bouncing on a table leads to a discrete-time dynamical system, where 

one can record the magnitude of velocity of 
successive impacts. This would have very 
simple dynamics, as the impact velocities 
would (under natural physical 
assumptions) decrease exponentially over 
time, converging to zero. Equivalently, one 
could record instead the elapsed time 
between bounces: this too would lead to a 
monotone decrease converging to zero. The 
behavior of this system increases greatly in 

richness when the table is being oscillated vertically, feeding energy into the system.  
 

STATE SPACE 
The dynamics of a system – its evolution – is specified by tracking the state of a 
system and how it changes over time. For some 
systems, the state is easily quantified as a function 
of time – think the price of crude oil or the number 
of cells in a tumor. Other systems are more subtle 
and require care in the specification of state. A 
rigid-rod pendulum has state given by angle of the 
rod (say, as measured from the vertical) and 
angular velocity. Additional features (such as 
angular acceleration) could be included in the state 
but are redundant (acceleration determines 
velocity up to an initial condition). A great many 
systems have multiple equivalent descriptions or coordinatizations of state 
space.  

As indicated by the name, a state space (frequently and confusingly called a 
phase space by physicists) is a topological space of states, usually outfitted with 
geometry and explicit coordinates. Such exact descriptors do not obviate the 
need for awareness of topological issues, however. For example, the angular 
velocity 𝑣𝑣 of a rigid-rod pendulum takes values in the reals, ℝ, where the sign 
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determines increase or decrease of angle (subject to a chosen orientation); the 
angular variable 𝜃𝜃 takes values in a circle, denoted 𝕊𝕊1,commonly coordinatized 

in radians as the reals modulo 2𝜋𝜋. The space of all 
possible ordered pairs (𝜃𝜃, 𝑣𝑣) is the state space 
formally denoted 𝕊𝕊1 × ℝ and visualized as either 
an annulus or a cylinder (without ends). For most 
applications in this text, state spaces are ℝ𝑛𝑛, the 
𝑛𝑛-dimensional Euclidean space of ordered 𝑛𝑛-tuples 
of reals. Occasionally 𝕊𝕊1 will make an appearance. 
The possibilities for state spaces in general are 
manifold; we will not dwell on such. 

The key feature of an appropriate state space for a system is that the dynamics 
are purely a function of state: knowing where you are now tells you where to go 
next. If one wants to consider dynamics that are nonautonomous – dynamics 
that change over time – then it is appropriate to include time within the state 
space. 
 

QUANTITATIVE VS. QUALITATIVE 
Our first major intellectual leap will be a departure from quantitative 
specification of complete system behaviors to qualitative classification of 
features. This is a flight of necessity, as nonlinear systems, even if 
deterministic, do not typically admit explicit solutions expressible in terms of 
the “nice” functions from calculus. For example, a rigid-rod pendulum 
swinging back-and-forth has a simple differential equation model whose exact 
solutions require the use of elliptic integrals – well outside the bounds of the 
typical calculus student experience. Slightly more complex models either use 
greatly more complex technology (e.g., hypergeometric functions) or else have 
no exact solutions expressible in known functions. Fortunately, exact solutions 
are not always or often necessary.  
 
EXAMPLE: Consider a rigid-rod pendulum suspended over a floor with two strong 
magnets, one on either side of the bob’s minimum, each attracting and pulling the 
(magnetic) bob towards it. To model this system would require knowing the magnetic 
force, the precise nature of the attraction, the exact 
locations of the magnets, and more. The resulting 
differential equation would likely be unpleasant, 
nonlinear, and unsolvable. Yet, if you give the 
pendulum a gentle swing, what happens in clear. 
Eventually, it comes to rest at one of two states, 
pulled to one of the magnets. From that resting 
state, a small tap quickly dissipates. In such a 
system one can classify qualitative long-term 
behavior without knowing exact quantitative 
details.  
 

EQUILIBRIA 
The core dynamical feature on which behaviors are built is an equilibrium 
state. An equilibrium is a point in the state space which does not change under 
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the dynamics over time: stationary solutions or fixed points are synonyms for 
equilibria.  
 
EXAMPLE: A rigid-rod pendulum, whether damped or frictionless, has an obvious 
equilibrium solution in which the bob hangs vertically below with no angular velocity.  
 
EXAMPLE: In Machine Learning, a typical 
neural network has a large state space of 
weights. The goal is to tune the weights 
as to minimize a cost functional, say Φ, 
that indicates the error of the system 
(relative to training data). The state space 
is the collection of weights and the 
dynamical system used to tune a neural 
network is to follow along the gradient of 
Φ (using back-propagation or other 
algorithmic estimations) until reaching 
an equilibrium – a local minimum of Φ.  
 
EXAMPLE: In Economics, equilibria are commonplace. Given simple supply and demand 
curves, there (usually) exists an equilibrium for price and quantity. Such an equilibrium 
can be viewed as an equilibrium for the (appropriate model of) market dynamics where 
sellers dynamically adjust price and quantity based on buyer response. In Game Theory, 
the notion of a Nash equilibrium is one where the state space is a space of probability 
distributions on strategies. A Nash equilibrium can be viewed as a critical point of the 
expected payoff function: a dynamical equilibrium of expected payoff.  
 
EXAMPLE: If you have access to an old-fashioned scientific calculator with physical 
buttons, the following is a satisfying exercise. Input any random number, then hit the 
cos button, being careful to have set the calculator to “radians”. Hit that button again 
and again, and you will note a seeming convergence to one special number. Try it again 
with any initial condition, and the same number emerges. Is this a trick? No, it is an 
equilibrium, and it is stable. 
 

STABILITY 
Focusing on equilibria reveals a finer distinction. Most of the equilibria one 
“sees” are what one calls stable, meaning, roughly, that nearby initial 
conditions will converge to the equilibrium, or at least not depart from being 
near. In contrast, unstable equilibria have the property that a small 
perturbation to the equilibrium state leads to rush away from it. Balancing a 
long thin rod upright in the palm of your hand leads to an unstable 
equilibrium, as does carefully stacking one bowling ball atop another: it can be 
done in theory.  

At the beginning of our story, stability is dichotomous, and equilibria are either 
stable or unstable. Later, as dimensions unfold, a richer theory of stability and 
instability ensues. As a foreshadowing, note that tipping back and balancing on 
two legs of a chair is unstable, but not nearly as unstable as trying to balance on 
one: instability comes in degrees. 
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BIFURCATIONS 
Many dynamical systems arise as models, and models require choices. Often, 
certain details of the model are encoded as parameters – coefficients that do not 
evolve with time, but which can be estimated or tweaked in advance of running 
the system. Examples include masses of bodies in a continuous-time model of 
gravitational dynamics, or the slopes of supply and demand curves in a 
discrete-time economic model. The set of “reasonable” parameters reside in a 
parameter space, usually ℝ𝑝𝑝, for some 𝑝𝑝, the number of parameters. One 
observes through small changes in the values of parameters that, although 
equilibria may change location, the number and types of equilibria remain 
constant. When there are qualitative changes in equilibria, they tend to occur at 
a specific location in state space and in parameter space. Such an event is called 
a bifurcation.  

Near a bifurcation, a small change in a parameter 
may lead to a stable equilibrium becoming unstable, 
or the creation of new nearby equilibria, or the 
annihilation of a pair of nearby equilibria. One 
example is related to the way that a structural beam 
withstands more and more weight until, past a 
critical threshold, it buckles. Other examples 
include two-species population models, where a 
small change in the parameter related to species 
interaction can mean the difference between a 
stable, coexistence equilibrium and an unstable, 
competitive-exclusion equilibrium: peace vs. total 
war.  

Remarkably, in the same way that equilibria can be 
classified, these bifurcations can themselves be categorized and identified. 
Some of the richest taxonomies of this text concern bifurcation types.   
 

PERIODIC ORBITS 
Equilibria, though important, are not the only dynamical features worth 
studying. Many dynamical systems exhibit behavior that is periodic. A periodic 
orbit is a solution to a dynamical system that repeats at a regular time interval 
𝑃𝑃 > 0: the state at time 𝑡𝑡 + 𝑃𝑃 equals that at time 𝑡𝑡 for all values of 𝑡𝑡. An 
equilibrium can be thought of as a periodic orbit with trivial period.  

Periodic orbits abound in physical systems, especially those without friction: 
swinging pendula, vibrating strings, and orbiting satellites are periodic. Other 
systems can express periodicity in population sizes (resource oversupply, 
population expansion, overconsumption, resource depletion, population 
contraction, then underconsumption) or prices (high prices, suppliers flood the 
market, low prices, suppliers leave the market). Biological systems are 
especially prone to (roughly) periodic behaviors, due in part to circadian 
rhythms.  

Periodic orbits, together with equilibria and bifurcations thereof, will form the 
skeleta on which qualitative dynamics hangs, in everything from the simplest 
to the most complex systems. 
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CHAOS 
This text concerns deterministic systems – those for which the present 
determines the future without randomness or noise in how the dynamics 
unfolds. Although the future is set for a deterministic system, it is not 
necessarily known or knowable. Certain 
dynamical systems when simulated reveal 
complex unpredictable meanderings that 
cause nearby initial conditions to eventually 
disperse. This sensitive dependence on 
initial conditions is a hallmark of chaos.  

Chaotic dynamics are brilliant & beautiful, 
and thus attract a swarm of clickbait 
butterflies, unattractive strangers, fractal 
financial scams, and pseudoclaims of 
founding a new science. The truth about chaos is simple: although individual 
paths through a chaotic system may seem unpredictable, the system itself may 
be completely analyzable.  
 
EXAMPLE: It is best to begin demystification at once. Consider the discrete dynamical 
system which takes a number 0 ≤ 𝑥𝑥 < 1 and multiplies it by 10, dropping the “whole 

number” part: 𝑥𝑥𝑛𝑛+1 = 10𝑥𝑥𝑛𝑛  𝑚𝑚𝑚𝑚𝑚𝑚 1. Choose an initial 
condition 𝑥𝑥0  between zero and one. If you represent this 
number as a decimal, then the dynamics consists of moving 
the decimal point one place to the right and dropping the 
first digit (now to the left of the decimal point). It is not an 
exaggeration to say that this is the example of a chaotic 
dynamical system.  

Note how many fundamental features are present. There 
are several equilibria (9 in fact, corresponding to multiples 

of 1/9). Repeating decimals (e.g., 3/11 or 1/7) correspond to periodic orbits (of periods 2 
and 6 respectively). Irrational numbers (which comprise “most” initial conditions) 
correspond to non-equilibrium, non-periodic orbits. If you begin with two initial 
conditions that are very close to one another (say, agreeing to within one billionth), 
then, after ten time steps it is impossible to say whether the orbits are close or what 
their future holds. This chaotic system loses information about state at every time step. 
All the hallmarks of chaotic dynamics are perfectly captured in this one example, an 
example we will meet again in Chapter 35. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 1 
 
Exercises are included with the goals of reinforcing chapter content, as well as 
introducing material that is sometimes significantly beyond that covered in the main 
story. In this first chapter, there is little actual content to work with, and the exercises 
are of necessity more conceptual.  
 

1. The Wikipedia game. 
2. See and Say sequences. 
3. Chaos and decimals. 

  

.314159265358979323...

.141592653589793238...

.415926535897932384...

.159265358979323846...

.592653589793238462...

.926535897932384626...

.265358979323846264...

.653589793238462643...

.535897932384626433...
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YNAMICAL SYSTEMS emerges from Mathematics and is best understood 
via mathematical tools. The first and greatest such toolset is Calculus, and, 

though its limits will quickly be reached, its language and principles are 
indispensable.  

Just as there are two fundamental classes of dynamics – continuous and 
discrete time – there are two parallel calculi with which to solve problems. A 
review of each is in order.  
 

CONTINUOUS CALCULUS 
There are three fundamental concepts in calculus: asymptotics, derivatives, and 
integrals. Of these, the first is most misunderstood in the current curriculum 
and thus worthy of review.  

Continuous single-variable calculus concerns functions of the form 𝑓𝑓: ℝ → ℝ 
which are sufficiently well-behaved. The first such restriction is that of 
continuity, meaning that for all 𝑎𝑎 ∈ ℝ, 

lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎). 
 

After continuity, differentiability a most desirable feature. Differentiability 
means that the derivative 
 

𝑓𝑓′(𝑎𝑎) =  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

=  lim
ℎ→0

𝑓𝑓(𝑎𝑎 + ℎ) − 𝑓𝑓(𝑎𝑎)
ℎ

 
 

exists at all 𝑎𝑎. The notation 𝑓𝑓′(𝑎𝑎), though standard, is suboptimal, as it does not 
disclose the variable with which the derivative is taken. This is to be avoided 
when, as is nearly always the case in dynamics, multiple variables are in play. 
In single-variable calculus, differentiation takes a function 𝑓𝑓: ℝ → ℝ to 𝑓𝑓′: ℝ →
ℝ, which is especially convenient, as the process may be iterated.  

To best deal with multiple (or “higher”) derivatives, it is convenient to use the 
notation of operators, where an operator is something like a “function of 
functions”. We denote by 𝐷𝐷 = 𝑑𝑑/𝑑𝑑𝑑𝑑 the differentiation operator on (smooth) 
functions of one variable. The benefit of so doing lies in the ability to use 
powers: 𝐷𝐷2  denotes the operator that differentiates twice; 𝐷𝐷0 = 𝐼𝐼 is the identity 
operator that does nothing.  

When using 𝐷𝐷, the variable should be clear, but at times may require 
discernment. Witness the general linear second order autonomous differential 
equation on 𝑥𝑥(𝑡𝑡), 

𝑎𝑎
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 𝑏𝑏

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑐𝑐𝑐𝑐 = 0   ⇒    (𝑎𝑎𝐷𝐷2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐)𝑥𝑥 = 0 
 

Here, and for most of the rest of this text, the 𝐷𝐷 operator represents 
differentiation with respect to 𝑡𝑡. 

The differentiation operator is useful in much more than differential 
equations. In what follows, we assume functions to be smooth, meaning that 
all derivatives exist at all inputs, and, stronger still, real-analytic, meaning that 
Taylor series converge to the function.  

The Taylor expansion of a function 𝑓𝑓: ℝ → ℝ about an input 𝑎𝑎 is the series  
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𝑓𝑓(𝑥𝑥) = �
1
𝑘𝑘!

𝐷𝐷𝑘𝑘𝑓𝑓|𝑎𝑎 (𝑥𝑥 − 𝑎𝑎)𝑘𝑘
∞

𝑘𝑘=0

 

          = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎) +
1
2!

𝑓𝑓′′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)2 + ⋯ . 
 

where the differential operator is used to denote higher derivatives. It often 
helps to change coordinates using the variable ℎ = 𝑥𝑥 − 𝑎𝑎 to represent the 
distance from the expansion point. With this, the Taylor expansion is a 
polynomial series: 
 

𝑓𝑓(𝑥𝑥 + ℎ) = �
1
𝑘𝑘!

𝐷𝐷𝑘𝑘𝑓𝑓|𝑎𝑎  ℎ𝑘𝑘
∞

𝑘𝑘=0

 . 
 

This will be useful to us, especially 
when we truncate to a polynomial of 
fixed size. The proper way to 
represent the leftover terms of a 
truncated series is to use asymptotic 
notation. For example, a few simple 
Taylor expansions of basic functions about 𝑥𝑥 = 0 is given in truncated 
asymptotic form as follows: 
 

𝑒𝑒𝑥𝑥 =  �
𝑥𝑥𝑘𝑘

𝑘𝑘!

∞

𝑘𝑘=0

= 1 + 𝑥𝑥 +
𝑥𝑥2

2
+

𝑥𝑥3

6
+ 𝑂𝑂(𝑥𝑥4) 

sin 𝑥𝑥 =  �(−1)𝑘𝑘 𝑥𝑥2𝑘𝑘+1

(2𝑘𝑘 + 1)!

∞

𝑘𝑘=0

= 𝑥𝑥 −
𝑥𝑥3

6
+

𝑥𝑥5

120
+ 𝑂𝑂(𝑥𝑥7) 

cos 𝑥𝑥 =  �(−1)𝑘𝑘 𝑥𝑥2𝑘𝑘

(2𝑘𝑘)!

∞

𝑘𝑘=0

= 1 −
𝑥𝑥2

3
+

𝑥𝑥4

24
+ 𝑂𝑂(𝑥𝑥6) 

1
1 − 𝑥𝑥

= � 𝑥𝑥𝑘𝑘
∞

𝑘𝑘=1

= 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 + 𝑂𝑂(𝑥𝑥5)   ∶    |𝑥𝑥| < 1 

ln(1 + 𝑥𝑥) =  �(−1)𝑘𝑘+1 𝑥𝑥𝑘𝑘

𝑘𝑘

∞

𝑘𝑘=1

= 𝑥𝑥 −
𝑥𝑥2

2
+

𝑥𝑥3

3
+ 𝑂𝑂(𝑥𝑥4)   ∶    |𝑥𝑥| < 1 

(1 + 𝑥𝑥)𝛼𝛼 =  � �𝛼𝛼
𝑘𝑘� 𝑥𝑥𝑘𝑘

∞

𝑘𝑘=0

= 1 + 𝛼𝛼𝛼𝛼 +
𝛼𝛼(𝛼𝛼 − 1)

2
𝑥𝑥2 + 𝑂𝑂(𝑥𝑥3)   ∶    |𝑥𝑥| < 1 

 

For those who did not internalize these in calculus class, now is the time to do 
so.  The big-O notation 𝑂𝑂(𝑥𝑥𝑘𝑘) means, informally, that all additional terms have 
degree 𝑘𝑘 or greater – it is a trash can of size 𝑥𝑥𝑘𝑘. Formally, 𝑓𝑓(𝑥𝑥) ∈ 𝑂𝑂(𝑔𝑔(𝑥𝑥))  as 
𝑥𝑥 → 0 if and only if |𝑓𝑓(𝑥𝑥)| ≤ 𝐶𝐶|𝑔𝑔(𝑥𝑥)| for some constant 𝐶𝐶 as 𝑥𝑥 → 0. This 
notation is uniquely well-suited both to learning and to applying calculus.  
 

THE SHIFT OPERATOR 
Besides the differentiation operator, 𝐷𝐷, and the identity operator, 𝐼𝐼, there is 
another operator of great importance in calculus and dynamics. The shift 
operator, 𝐸𝐸, shifts the input of a function 𝑓𝑓 by one unit; that is,  

𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 + 1). 
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EXAMPLE: Powers of the shift operator allow for the following: 

1. 𝐸𝐸2𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 + 2) 
2. 𝐸𝐸−1𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 − 1) 
3. 𝐸𝐸ℎ𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 + ℎ) for all real values of ℎ 
4. 𝐸𝐸𝑎𝑎𝐸𝐸𝑏𝑏 = 𝐸𝐸𝑎𝑎+𝑏𝑏 
5. 𝐸𝐸0 = 𝐼𝐼 

There is a deep connection between the shift operator 𝐸𝐸 and the differentiation 
operator 𝐷𝐷. The following is a beautiful result: a candidate for one’s favorite. 

LEMMA: [The Exponential Lemma] 𝐸𝐸 = 𝑒𝑒𝐷𝐷. 

▷ Proof: Let 𝑓𝑓 be real-analytic. Then, for all 𝑥𝑥, 

(𝑒𝑒𝐷𝐷𝑓𝑓)(𝑥𝑥) =  �
𝐷𝐷𝑘𝑘𝑓𝑓|𝑥𝑥

𝑘𝑘!

∞

𝑘𝑘=0

=  �
𝐷𝐷𝑘𝑘𝑓𝑓|𝑥𝑥

𝑘𝑘!
1𝑘𝑘

∞

𝑘𝑘=0

= 𝑓𝑓(𝑥𝑥 + 1) = (𝐸𝐸𝐸𝐸)(𝑥𝑥) . 

The Taylor formula justifies the penultimate equality and thus the conclusion. 
◁ 

This proof may seem like a sleight. However, this humble lemma will 
repeatedly inform our observations about discrete versus continuous time 
dynamics: 𝐸𝐸 is the canonical evolution operator in discrete-time dynamical 
systems. 
 

DISCRETE CALCULUS 
The discrete calculus is simpler, older, and much less well known outside of 
certain corners of numerical analysis and computational complexity theory. 
The only readily available references are either too old or idiosyncratic to be of 
much use to the typical student. Therefore, what follows is a summary of the 
theory that goes somewhat beyond what is directly relevant to the discrete-
time dynamics of this text.  

Discrete calculus is the calculus of functions which have a discrete input 
(typically ℕ but sometimes ℤ) and a continuous output. Such a function 𝑎𝑎: ℕ → ℝ is 
called a sequence and is usually denoted 
 

𝑎𝑎 = (𝑎𝑎𝑛𝑛) = (𝑎𝑎0 , 𝑎𝑎1 , 𝑎𝑎2 , ⋯ ). 
 

Of the four core concepts of calculus, the first is least troublesome: there is no 
need to worry about limits, excepting the limit as the input goes to infinity, 
and this matches the definition in the continuous case of 𝑓𝑓: ℝ → ℝ.  

EXAMPLE: Consider the following sequences. 

1. (2𝑛𝑛) = (0, 2, 4, 6, 8, ⋯ ) 
2. (𝑛𝑛2) = (0, 1, 4, 9, 16, ⋯ ) 
3. (cos 𝑛𝑛) = (1, cos 1 , cos 2 , cos 3 , ⋯ ) 
4. (𝑒𝑒𝑛𝑛) = (1, 𝑒𝑒, 𝑒𝑒2, 𝑒𝑒3, ⋯ ) 

Which have graphs that allow you to recognize the smooth analogue? 

Derivatives are less obvious, as the usual 𝜖𝜖 − 𝛿𝛿 definition will not do. Thus, 
there are two types of discrete derivative, called the forward and backward 
difference: 
 

△ 𝑎𝑎 = (𝑎𝑎𝑛𝑛+1 − 𝑎𝑎𝑛𝑛)    ∶    ▽ 𝑎𝑎 = (𝑎𝑎𝑛𝑛 − 𝑎𝑎𝑛𝑛−1). 
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These of course fit the intuition of a derivative as a change in output per change 
in input, as well as giving the slope of a “tangent” to the graph, to the right/left 
respectively. We will use the forward difference exclusively.  

EXAMPLE: Consider the forward differences of the following sequences. 

1. △ (𝑛𝑛2) = ((𝑛𝑛 + 1)2 − 𝑛𝑛2) = (2𝑛𝑛 + 1) 
2. △ (𝑛𝑛3) = ((𝑛𝑛 + 1)3 − 𝑛𝑛3) = (3𝑛𝑛2 + 3𝑛𝑛 + 1) 
3. △ (𝑒𝑒𝑛𝑛) = (𝑒𝑒𝑛𝑛+1 − 𝑒𝑒𝑛𝑛) = �𝑒𝑒𝑛𝑛(𝑒𝑒 − 1)� 
4. △ (2𝑛𝑛) = (2𝑛𝑛+1 − 2𝑛𝑛) = (2𝑛𝑛) 

In what way do these resemble continuous derivatives? How are they different? 

With a derivative comes the ability to write (and solve) differential equations. 
The simplest are linear differential equations of the form △ 𝑥𝑥 = 𝜆𝜆𝜆𝜆  where 𝜆𝜆 is a 
constant. These have as solutions (𝑥𝑥𝑛𝑛) = ((𝜆𝜆 − 1)𝜆𝜆𝑛𝑛). Note that such a sequence 
equals its difference if and only if 𝜆𝜆 = 2. That is, we have 

△ 𝑥𝑥 = 𝑥𝑥 ⇒ 𝑥𝑥 = (2𝑛𝑛). 
 

This suggests that in discrete calculus “𝑒𝑒 = 2” and that the discrete exponential 
function is 2𝑛𝑛. 

The difference operator can be iterated to yield the second derivative △2 and so 
on.  This is best done through the language of operators. One notes that: 
  

△ = 𝐸𝐸 − 𝐼𝐼 . 
 

EXAMPLE: Higher derivatives are easily computed via algebra. 

△3 𝑥𝑥 = (𝐸𝐸 − 𝐼𝐼)3𝑥𝑥 = (𝐸𝐸3 − 3𝐸𝐸2 + 3𝐸𝐸 + 𝐼𝐼)𝑥𝑥 = (𝑥𝑥𝑛𝑛+3 − 3𝑥𝑥𝑛𝑛+2 + 3𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛) . 

Integrals can be presented as a formal inverse to derivatives (an indefinite 
integral), using the geometric series in a somewhat suspicious manner: 

△−1 = (𝐸𝐸 − 𝐼𝐼)−1 = −(𝐼𝐼 − 𝐸𝐸)−1 = − � 𝐸𝐸𝑘𝑘
∞

𝑘𝑘=0

 . 

It is much safer to discuss the definite integral, which is simply a finite sum. 
The Fundamental Theorem of Integral Calculus then has a discrete version 
which is more familiar as a telescoping sum: 

�(△ 𝑥𝑥)𝑘𝑘

𝑏𝑏

𝑘𝑘=𝑎𝑎

= 𝑥𝑥𝑏𝑏+1 − 𝑥𝑥𝑎𝑎  . 

 

FALLING POWERS 
There is a notational maneuver for making sense of discrete calculus: this is the 
falling power. For 𝑘𝑘 > 0 ∈ ℕ, the expression 𝑥𝑥𝑘𝑘, that is “𝑥𝑥 to the falling 𝑘𝑘” is  
 

𝑥𝑥𝑘𝑘 = 𝑥𝑥(𝑥𝑥 − 1)(𝑥𝑥 − 2) ⋯ (𝑥𝑥 − 𝑘𝑘 + 1) . 
 

For an integer 𝑛𝑛, this expression simplifies to 𝑛𝑛𝑘𝑘 = 𝑛𝑛!/(𝑛𝑛 − 𝑘𝑘)!  and in either 
case is a degree 𝑘𝑘 polynomial. It is wise to set 𝑥𝑥0 = 1, and we, being wise, shall 
do so. 

EXAMPLE: Consider the following discrete monomials using falling powers: 

1. (𝑛𝑛2) = (02, 12, 22, ⋯ , 𝑛𝑛2, ⋯ ) = (0, 0, 2, 6, 12, 20, ⋯ , 𝑛𝑛(𝑛𝑛 − 1), ⋯ ) 
2. (𝑛𝑛3) = (03, 13, 23, ⋯ , 𝑛𝑛3, ⋯ ) = (0, 0, 0, 6, 24, 60, ⋯ , 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2), ⋯ ) 
3. (𝑛𝑛𝑘𝑘) = (0𝑘𝑘 , 1𝑘𝑘 , 2𝑘𝑘 , ⋯ , 𝑛𝑛𝑘𝑘 , ⋯ ) 
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The notation is built to make discrete calculus work. 

LEMMA: △ (𝑛𝑛𝑘𝑘) =  (𝑘𝑘 𝑛𝑛𝑘𝑘−1). 

▷ Proof: One computes: 

△ (𝑛𝑛𝑘𝑘) = ((𝑛𝑛 + 1)𝑘𝑘 − 𝑛𝑛𝑘𝑘) = �
(𝑛𝑛 + 1)!

(𝑛𝑛 + 1 − 𝑘𝑘)!
−

𝑛𝑛!
(𝑛𝑛 − 𝑘𝑘)!

� 

               = �
�(𝑛𝑛 + 1) − (𝑛𝑛 + 1 − 𝑘𝑘)�𝑛𝑛!

(𝑛𝑛 + 1 − 𝑘𝑘)!
� = �

𝑘𝑘 𝑛𝑛!
�𝑛𝑛 − (𝑘𝑘 − 1)�!

� = (𝑘𝑘 𝑛𝑛𝑘𝑘−1). 
 

The cumbersome simplification uses the common denominator (𝑛𝑛 + 1 − 𝑘𝑘)! . ◁ 

This makes it relatively simple to compute discrete derivatives and 
antiderivatives of polynomial functions using falling powers.  
 

DISCRETE TAYLOR EXPANSION 
Taylor series are one of the nicer applications of falling powers. Taylor 
expansion (& much of calculus) evolves out of the classical Binomial Theorem, 
which states: 

(𝑎𝑎 + 𝑏𝑏)𝑛𝑛 =  � �𝑛𝑛
𝑘𝑘� 𝑎𝑎𝑛𝑛−𝑘𝑘𝑏𝑏𝑘𝑘

𝑛𝑛

𝑘𝑘=0

=  �
𝑛𝑛!

(𝑛𝑛 − 𝑘𝑘)! 𝑘𝑘!
𝑎𝑎𝑛𝑛−𝑘𝑘𝑏𝑏𝑘𝑘

𝑛𝑛

𝑘𝑘=0

. 
 

The discrete calculus version of Taylor expansion uses this to evaluate powers 
of the shift operator. Given a sequence, 𝑥𝑥 ,if we want to know the 𝑛𝑛𝑡𝑡ℎ term, 𝑥𝑥𝑛𝑛, 
using only information about 𝑥𝑥0 and the “derivatives” of 𝑥𝑥 at 𝑥𝑥0, then, using the 
fact that △ = 𝐸𝐸 − 𝐼𝐼, we can write:   

𝑥𝑥𝑛𝑛 = (𝐸𝐸𝑛𝑛𝑥𝑥)0 = (𝐼𝐼 +△)𝑛𝑛𝑥𝑥|0 = � �𝑛𝑛
𝑘𝑘� 𝐼𝐼𝑛𝑛−𝑘𝑘 △𝑘𝑘 𝑥𝑥

𝑛𝑛

𝑘𝑘=0

|0 =  �
△𝑘𝑘 𝑥𝑥|0

𝑘𝑘!
𝑛𝑛𝑘𝑘

𝑛𝑛

𝑘𝑘=0

. 

 

This is a finite, discrete-calculus version of Taylor expansion about zero. The 
result (using different notation) is due to Newton and predates Taylor series.  

Neither this, nor falling powers in general will be needed in the remainder of 
this text. However, deep familiarity with the relationship between the 
difference operator, △, the shift, 𝐸𝐸, and the differentiation operator, 𝐷𝐷, is 
crucial in dynamical systems. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 2 
Show that the discrete exponential function is indeed 2𝑛𝑛 by computing ∑ 𝑛𝑛𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0 . 

1. What is the discrete derivative of the sequence 𝑥𝑥 = (𝑎𝑎𝑛𝑛), where 𝑎𝑎 > 0 is a 
constant. 

2. What should the discrete natural logarithm function be? There are multiple 
ways that you might proceed based on all the different ways of defining ln 𝑡𝑡.  

3.  
 

 

  



14 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

CHAPTER  3 : 
EQUILIBRIA & STABILITY 

 

 

  



15 

HE PRIMAL dynamical features in any system are its equilibria, or constant 
solutions. Our first task after introducing dynamical systems is to learn how 

to find and classify its equilibria. Many of the major themes of the text – 
nonlinearity, linearization, and classification – are introduced here. 
 

LINEAR & NONLINEAR DYNAMICS 
We work with autonomous 1-D dynamical systems of the following form: 
 

1. CONTINUOUS TIME : 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥) for 𝑥𝑥 = 𝑥𝑥(𝑡𝑡) a continuous function. 
2. DISCRETE TIME : 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) for 𝑥𝑥 = (𝑥𝑥𝑛𝑛) a discrete function. 

 

The simplest such systems are linear dynamics: 𝑓𝑓(𝑥𝑥) = 𝜆𝜆𝜆𝜆 for 𝜆𝜆 a constant. 
These can be solved explicitly: 

𝐷𝐷𝐷𝐷 = 𝜆𝜆𝜆𝜆  ⇒   𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝜆𝜆𝜆𝜆𝑥𝑥0      ∶       𝐸𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆  ⇒   𝑥𝑥𝑛𝑛 = 𝜆𝜆𝑛𝑛𝑥𝑥0 . 
This will soon be useful. It is possible though nontrivial to solve certain 
nonlinear dynamical systems explicitly using tools from calculus.  

EXAMPLE: A classic example of a continuous-time nonlinear system solved in Calculus 
classes is the logistic model. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟(𝐾𝐾 − 𝑥𝑥) 

Here, 𝑟𝑟, 𝐾𝐾 > 0 are constants representing a reproduction rate, 𝑟𝑟, and a carrying capacity, 
𝐾𝐾. Using a combination of separation, integration by partial fractions, and no small 
amount of algebra, one shows that  

𝑥𝑥(𝑡𝑡) =
𝐾𝐾𝐾𝐾0

𝑥𝑥0 + (𝐾𝐾 − 𝑥𝑥0)𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟 

One verifies that at 𝑡𝑡 = 0 ,the population size matches the initial condition 𝑥𝑥0; 
furthermore, for 𝑥𝑥0 > 0 and 𝑡𝑡 → ∞, the population tends to 𝑥𝑥(𝑡𝑡) → 𝐾𝐾.  

EXAMPLE: A classic example of a discrete-time (slightly) nonlinear system comes from 
the Towers of Hanoi problem, which enumerates how many moves 𝑥𝑥𝑛𝑛 it takes to move a 
stack of 𝑛𝑛 ordered discs from one peg to another using moves that preserve the order of 
the stack elements. The recurrence relation (obtained by induction) is 

𝑥𝑥𝑛𝑛+1 = 2𝑥𝑥𝑛𝑛 + 1 . 
This is nearly a linear model: it is more properly called affine (linear-plus-constant). One 
can solve this by “guessing” a solution based on a few iterations. Better is to solve by a 

T 
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discrete form of integration and “𝑢𝑢-substitution”. Let 𝑢𝑢𝑛𝑛 = 𝑥𝑥𝑛𝑛+1. Then, converting to 𝑢𝑢 
gives:  𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 + 1 = 2𝑥𝑥 + 2 = 2(𝑥𝑥 + 1) = 2𝑢𝑢 . 

This 𝑢𝑢-substitution converts the affine dynamics 
in 𝑥𝑥 to linear dynamics in 𝑢𝑢. The solution is 
therefore: 

𝑢𝑢𝑛𝑛 = 2𝑛𝑛𝑢𝑢0   ⇒    𝑥𝑥𝑛𝑛+1 = 2𝑛𝑛(𝑥𝑥0 + 1)   
                        ⇒    𝑥𝑥𝑛𝑛 = 2𝑛𝑛𝑥𝑥0 + 2𝑛𝑛 − 1 . 

With the traditional interpretation of the Towers 
of Hanoi problem, 𝑥𝑥0 = 0, yielding 𝑥𝑥𝑛𝑛 = 2𝑛𝑛 − 1. 

 
The above examples are the exception: nonlinear dynamical systems are simply 
too difficult to solve in general. Consider the continuous-time system 𝐷𝐷𝐷𝐷 =
𝑓𝑓(𝑥𝑥). The general solution is given by separation, integration, and algebra as 
follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥)   ⇒   
𝑑𝑑𝑑𝑑

𝑓𝑓(𝑥𝑥) = 𝑑𝑑𝑑𝑑  ⇒  �
𝑑𝑑𝑑𝑑

𝑓𝑓(𝑥𝑥) = 𝑡𝑡 + 𝐶𝐶  ⇒   𝑥𝑥(𝑡𝑡) =  ¯\_(Ϧ )_/¯ 

In all but a few toy cases, it is either impossible to integrate the reciprocal of 𝑓𝑓, 
or impossible to invert this result for 𝑥𝑥 as a function of 𝑡𝑡. The discrete time case 
is no less difficult for 𝑓𝑓 nonlinear. A different strategy is needed. 
 

EQUILIBRIA & STABILITY 
Equilibria are special solutions to dynamical systems. The definition is 
unchanging between discrete and continuous time: an equilibrium is a constant 
solution: 

▷ CONTINUOUS TIME : 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑎𝑎) = 0 for 𝑎𝑎 a constant. 
▷ DISCRETE TIME : 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑎𝑎) = 𝑎𝑎 for 𝑎𝑎 a constant. 

Examples of equilibria abound, as hinted in Chapter 1. We will focus on 
equilibria of specific 1-D models in continuous and discrete time; but the 
reader should think more broadly about what equilibria mean in contexts 
ranging from economic to social, psychological, and more.  

Recall that equilibria can come in several types, roughly classified in 1-D by a 
notion of stability. For the remainder of this Volume, we declare a stable 
equilibrium to be one which attracts all nearby initial conditions; an unstable 
equilibrium repels all nearby initial conditions – it is stable in reverse-time. An 
equilibrium which is neither stable nor unstable will be called degenerate. This 
trichotomy is simplistic, and we will need to update our definitions once we 
leave the safety of 1-D; but for now, stable and unstable equilibria will be 
identified with attracting and repelling behaviors. 
 

LINEARIZATION & CLASSIFICAITON 
Nonlinear dynamics are difficult if not impossible to solve explicitly. Our 
strategy will be to identify the equilibria and classify them as stable or unstable 
(if possible). This will be accomplished using linearization to convert the 
nonlinear global system to a linearized local system. This is a fantastic 
generalization of the concept of Taylor expansion; we will not be linearizing a 
function so much as linearizing a dynamical system.  
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CONTINUOUS TIME : Let 𝑎𝑎 be an equilibrium, and let 𝑥𝑥 be near 𝑎𝑎,with ℎ = 𝑥𝑥 −
𝑎𝑎 an indication of how close to the equilibrium one is. Assume 𝑥𝑥 = 𝑥𝑥(𝑡𝑡) 
satisfies the differential equation 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥). Then the distance to 𝑎𝑎, ℎ(𝑡𝑡), 
evolves as 
 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

=
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥 − 𝑎𝑎) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 0 = 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎 + ℎ) = 𝑓𝑓(𝑎𝑎) +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

ℎ + 𝑂𝑂(ℎ2), 
 

thanks to Taylor expansion of 𝑓𝑓 about 𝑎𝑎. Since 𝑎𝑎 is an equilibrium, this means 
that 
 

𝐷𝐷ℎ ≈  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

ℎ . 
 

This is the linearization of 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥) about the equilibrium 𝑥𝑥 = 𝑎𝑎, and it is a 
linear dynamical system with solution 
 

ℎ(𝑡𝑡) = 𝑒𝑒𝜆𝜆𝜆𝜆ℎ(0)  ∶   𝜆𝜆 =  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

  
 

This means that perturbations to the equilibrium grow exponentially if the 
derivative 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 at 𝑥𝑥 = 𝑎𝑎 is positive and decay exponentially if this derivative 
is negative. Caveat: there are multiple derivatives at play when linearizing. This 
is the derivative with respect to state, 𝑥𝑥, not time, 𝑡𝑡. Avoiding the use of “prime” 
notation for derivatives is highly encouraged. 

DISCRETE TIME : Let 𝑎𝑎 be an equilibrium of 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥), and let 𝑥𝑥 be near 𝑎𝑎, 
with ℎ = 𝑥𝑥 − 𝑎𝑎 an indication of how close to the equilibrium one is. Assume 
𝑥𝑥 = (𝑥𝑥𝑛𝑛)  satisfies the recurrence 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥). Then the distance to 𝑎𝑎, ℎ = (ℎ𝑛𝑛), 
satisfies 

𝐸𝐸(𝑎𝑎 + ℎ) = 𝐸𝐸𝐸𝐸 + 𝐸𝐸ℎ = 𝑎𝑎 + 𝐸𝐸ℎ = 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎 + ℎ) = 𝑓𝑓(𝑎𝑎) +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

ℎ + 𝑂𝑂(ℎ2), 

thanks to Taylor expansion of 𝑓𝑓 about 𝑎𝑎. Since 𝑎𝑎 is an equilibrium, 𝑓𝑓(𝑎𝑎) = 𝑎𝑎 
and 

𝑎𝑎 + 𝐸𝐸ℎ ≈  𝑎𝑎 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

ℎ  ⇒    𝐸𝐸ℎ ≈  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

ℎ . 

This is the linearization of 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) about the equilibrium 𝑥𝑥 = 𝑎𝑎. The solution 
to the linearized system is 

ℎ𝑛𝑛 = 𝜆𝜆𝑛𝑛ℎ0   ∶   𝜆𝜆 =  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

  

Note the difference: perturbations to the equilibrium grow exponentially if the 
derivative 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 at 𝑥𝑥 = 𝑎𝑎 is greater than one in absolute value. The 
perturbations decay if this derivative is less than one in absolute value. 
 

THE STABILITY CRITERION 
By linearizing about an equilibrium and using what we know about explicit 
solutions to linear systems, we have proved the first major result of this 
subject: a criterion for determining the stability of an equilibrium.  
 
STABILITY CRITERION, CONTINUOUS TIME 
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Let 𝑎𝑎 be an equilibrium of the dynamical system 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥), and denote by 𝜆𝜆 
the derivative 𝜆𝜆 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑|𝑎𝑎  evaluated at the equilibrium. Then 𝑎𝑎 is  

▷ STABLE  if   𝜆𝜆 < 0 
▷ UNSTABLE  if  𝜆𝜆 > 0 
▷ DEGENERATE  if  𝜆𝜆 = 0 

 
STABILITY CRITERION, DISCRETE TIME 
Let 𝑎𝑎 be an equilibrium of the dynamical system 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥), and denote by 𝜆𝜆 
the derivative 𝜆𝜆 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑|𝑎𝑎 at the equilibrium.Then 𝑎𝑎 is  

▷ STABLE  if  |𝜆𝜆| < 1 
▷ UNSTABLE  if  |𝜆𝜆| > 1 
▷ DEGENERATE  if  |𝜆𝜆| = 1 

It is worth contemplating the similarities and differences between these 
stability criteria. Both use the coefficient, 𝜆𝜆, of the first-order term in the 
Taylor expansion of 𝑓𝑓, but the discrete-time criterion seems more complex, 
with an absolute value thrown in.  
The best answer to why these criteria differ in this precise manner comes from 
understanding the relationship between the continuous-time evolution 
operator, 𝐷𝐷 ,and the discrete-time evolution operator, 𝐸𝐸. Recall from Chapter 2 
that 𝐸𝐸 = 𝑒𝑒𝐷𝐷. What happens when you exponentiate the stability criterion for 
𝐷𝐷? When 𝜆𝜆 > 0,then 𝑒𝑒𝜆𝜆 > 1,and when 𝜆𝜆 < 0, then 0 < 𝑒𝑒𝜆𝜆 < 1. The addition of 
the absolute value in the discrete-time case is an as-yet-unexplained complexity 
that will make more sense when we move up a dimension.   
 

CLASSIFYING EQUILIBRIA 
Let us put our skills to work and consider a few simple examples. 
 
LOGISTIC MODELS 
Recall the logistic model for populations in continuous time:  
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥) = 𝑟𝑟𝑟𝑟(𝐾𝐾 − 𝑥𝑥)    ∶     𝑟𝑟, 𝐾𝐾 > 0 . 
 

This has equilibria at 𝑥𝑥 = 0 and at 𝑥𝑥 = 𝐾𝐾. Stability is determined by the 
derivative 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟 . 
 

At 𝑥𝑥 = 0 this evaluates to 𝑟𝑟𝑟𝑟 > 0: an unstable equilibrium. At 𝑥𝑥 = 𝐾𝐾, we have 
derivative −𝑟𝑟𝑟𝑟 < 0: a stable equilibrium. In this simple model, the linear term 
𝑟𝑟𝑟𝑟𝑟𝑟 accounts for the exponential growth of small populations. The quadratic 
term −𝑟𝑟𝑥𝑥2  retards growth when the population size is sufficiently large. The 
result is a stable population size, 𝐾𝐾, to which any nonzero initial condition 
converges.  

A discrete time version of the logistic model appears similar: 

𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛) = 𝑥𝑥𝑛𝑛 + 𝑟𝑟𝑥𝑥𝑛𝑛(𝐾𝐾 − 𝑥𝑥𝑛𝑛)   ∶     𝑟𝑟, 𝐶𝐶 > 0 . 
This also has equilibria at 𝑥𝑥 = 0, 𝐾𝐾; however, there are some subtle differences. 
Since the derivative of the right-hand side is 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 + 𝑟𝑟𝑟𝑟 − 2𝑟𝑟𝑟𝑟 . 

Then, as before, the equilibrium at 𝑥𝑥 = 0 is unstable for all 𝑟𝑟, 𝐾𝐾 > 0. At 𝑥𝑥 = 𝐾𝐾 
the derivative evaluates to 1 − 𝑟𝑟𝑟𝑟, which is a stable equilibrium so long as 𝑟𝑟𝑟𝑟 <
2. 
 
BUCKLING BEAM 
Recall from Chapter 1 the phenomenon of the buckling beam. The deflection, 
𝑥𝑥(𝑡𝑡), at the midpoint of the beam is given by the differential equation  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥) = 𝜆𝜆𝜆𝜆 − 𝑥𝑥3 , 

where 𝜆𝜆 > 0 is the force at the end. The equilibria occur where 𝑥𝑥(𝜆𝜆 − 𝑥𝑥2) = 0. 

That is, there are three equilibria, at 𝑥𝑥 = 0, ±√𝜆𝜆. The stabilities of these 
equilibria are determined by the derivative of the right hand side with respect 
to 𝑥𝑥, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜆𝜆 − 3𝑥𝑥2 . 

At 𝑥𝑥 = 0, this evaluates to 𝜆𝜆 > 0, and the equilibrium is unstable. At 𝑥𝑥 = ±√𝜆𝜆, 
the derivative evaluates to −2𝜆𝜆 < 0; these equilibria are stable.  
 
COSINE BUTTON-SMASH 
Recall from Chapter 1 that inputting a random number into a calculator and 
pressing the cosine button repeatedly yields a convergence to a mysterious 
constant 𝑎𝑎 ≈ 0.73908 …  Is this some 
heretofore hidden universal constant? No, it is 
simply a stable equilibrium of the discrete-
time system 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥. Solving the 
equation  cos 𝑥𝑥 = 𝑥𝑥 (using, say, Newton’s 
method) yields this a as the unique 
equilibrium. The derivative 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = sin 𝑥𝑥  
evaluated at 𝑥𝑥 = 𝑎𝑎 is approximately −0.67361. 
Since the absolute value is less than one, this 
equilibrium is stable.   
 
NEWTON’s METHOD 
We have just invoked the use of Newton’s method: it is work dwelling on this. 
Given a differentiable function 𝑔𝑔(𝑥𝑥), one can use Newton’s method to find a 
root. Recall that Newton’s method involves choosing an initial condition, 𝑥𝑥0, 
and iterating using the formula 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑔𝑔(𝑥𝑥𝑛𝑛)
𝑔𝑔′(𝑥𝑥𝑛𝑛) , 

where, for consistency with basic calculus texts, 𝑔𝑔′ is used instead of the more 
precise expression 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. You should now recognize this as a discrete time 
dynamical system with right hand side 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 − 𝑔𝑔/𝑔𝑔′. This has an 
equilibrium where 𝑥𝑥 = 𝑥𝑥 − 𝑔𝑔(𝑥𝑥)/𝑔𝑔′(𝑥𝑥); that is, 𝑥𝑥 = 𝑎𝑎, where 𝑔𝑔(𝑎𝑎) = 0 and 
𝑔𝑔′(𝑎𝑎) ≠ 0. Is such a root a stable equilibrium? Quite. One computes 
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Φ =  
1

1 + 1
1 + 1

1 + 1
1 + 1

1 + 1
1 + 1

1 + ⋯

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑎𝑎

= 1 −
𝑔𝑔′(𝑎𝑎)𝑔𝑔′(𝑎𝑎) − 𝑔𝑔(𝑎𝑎)𝑔𝑔′′(𝑎𝑎)

�𝑔𝑔′(𝑎𝑎)�2 = 1 − �
𝑔𝑔′(𝑎𝑎)
𝑔𝑔′(𝑎𝑎)�

2

=  0 . 

This explains why Newton’s method works so very well in a neighborhood of a 
root. The equilibrium is what one calls superstable.  
 
THE MEANS OF GOLD & SILVER 

Consider the following continued fraction 
and call the resulting limit Φ. This is, indeed the 

famous golden mean, equal to �1 + √5�/2. We can 
represent this continued fraction in terms of a discrete time 
dynamical system as follows. 

𝑥𝑥𝑛𝑛+1 =
1

1 + 𝑥𝑥𝑛𝑛
   ∶      𝑥𝑥0 = 0 . 

 

This dynamical system has equilibria where 𝑎𝑎(1 + 𝑎𝑎) = 1; that is, via the 

quadratic formula, at (1 ± √5)/2. These equilibria are (up to a sign) the golden 
and silver means, respectively. What of their stability? One computes: 

𝑑𝑑
𝑑𝑑𝑑𝑑

�
1

1 + 𝑥𝑥
��

𝑎𝑎
= −(1 + 𝑎𝑎)−2 = −

4
3 ± √5

 . 

At the golden mean �1 + √5�/2, the derivative is between −1 and 0: a stable 

equilibrium. In contrast, at the silver mean (1 − √5)/2, the derivative is less 
than  −1, and this is an unstable equilibrium. The continued fraction converges 
to the stable equilibrium Φ. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 3 
The golden mean in terms of square roots 

1. That stupid genetic model rec rel. 
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CHAPTER  4 : 
GRAPHICAL REPRESENTATIONS 
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HUS FAR our approach to dynamical systems has been more analytical and 
quantitative than qualitative or geometric. This is appropriate at the 

beginning, to reinforce proper technique. However, as we progress through the 
subject, turning to more sophisticated and realistic models, multiple modes of 
thinking and processing of dynamics will be invaluable. This is especially true 
when it comes to visual representations of dynamics.  

There are several approaches to visualizing dynamical systems, almost all of 
which are better served by dynamic than by static imagery. While the videos 
that pair with this text should be viewed as a primary reference, the flat 
imagery here printed can serve as a proxy for the richer content.  

As ever, our discussion splits between continuous and discrete time systems, 
with the reader being encouraged to contemplate the passage from one to the 
other.  
 

CONTINUOUS TIME: TEMPORAL PLOTS 
The simplest type of plot associated to a continuous-time dynamical system is 
that which is popular in basic calculus classes. Given 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥), one plots a 
solution 𝑥𝑥(𝑡𝑡)  as a function of 𝑡𝑡, with, perhaps, multiple initial conditions. 
Given such a plot, one can identify stable or unstable equilibria easily as 
straight line solutions. 
Stability is indicated as a 
type of contraction or 
expansion of nearby curves 
along the time axis.  

This is fine. However, one 
cannot but wonder how 
such a figure would 
generalize, either to higher 
dimensional state spaces or 
to systems with parameters (cf. Chapter 7). It seems a prodigal use of space to 
plot the particulars of every solution. 
 

CONTINUOUS TIME: DIAGRAMS 
A more parsimonious representation 
comes from suppressing the time 
variable and instead plotting the 
derivative, 𝑓𝑓(𝑥𝑥), against 𝑥𝑥. The 
terminology of such figures is 
muddled in the literature. For 
simplicity, we will call such a plot a 
diagram. (Though not a terribly 
descriptive name, it is modest, and 
modesty is a virtue.)  

Diagrams are informative. First, one 
sees the equilibria as the zero-set 
where the graph of 𝑓𝑓 crosses the 
horizontal axis (where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0). 
Next, stability and the stability 

T 
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criterion are easily visualized. For 𝑎𝑎 an equilibrium, linearizing 𝑓𝑓 about 𝑎𝑎 is 
represented by the tangent line to the graph of 𝑓𝑓 at 𝑎𝑎. A tangent line with 
negative slope implies that 𝑓𝑓(𝑎𝑎 − 𝜖𝜖) > 0 and 𝑓𝑓(𝑎𝑎 + 𝜖𝜖) < 0 for small 𝜖𝜖 > 0: this is 
a stable equilibrium, since the sign of 𝑓𝑓(𝑥𝑥) determines whether 𝑥𝑥 is increasing 
or decreasing over time.  

One sees well from such a diagram that, so long as 𝑓𝑓 is continuous, the behavior 
of 𝑓𝑓 away from the zero-set is irrelevant to the qualitative dynamics: what 
matters is the sign of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, indicated by the graph of 𝑓𝑓. The behavior of the 
system hangs on a skeleton of equilibria.  

This is worth repetition. A diagram makes clear that what matters in 
continuous time is the equilibria and the local behavior near equilibria. 
Everything else influence only the speed of solutions and not the qualitative 
features.  
 

CONTINUOUS TIME: VECTOR FIELDS & FLOWS 
One can take the suppression of the time variable to an extreme limit. Consider 
the equation 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥) as defining a vector field on ℝ. Students will recall from 
vector calculus the ubiquity & utility of vector fields in 2-D and 3-D. This is a 1-
D vector field, illustrated by drawing a small arrow (or perhaps just an 

arrowhead) at 
each point, 
with 
equilibria 
prominently 
displayed 
with a dot.  

 
The lesson, 
again, is that 
the 
directionality 

of the arrows matters much more than the magnitude. In later volumes of this 
text, the vector field approach will rise to a place of prominence as a 
visualization tool. 
 

DISCRETE TIME: DIAGRAMS 
Discrete time systems require an 
entirely novel method of visualization. 
One of the most popular is popularly 
called a cobweb plot. This terminology, 
as is common in dynamical systems, 
perfectly encapsulates how not to 
name a thing. We will instead use the 
plain and simple [discrete time] 
diagram to denote the following. 
Given a system of the form 𝑥𝑥𝑛𝑛+1 =
𝑓𝑓(𝑥𝑥𝑛𝑛), plot the graph of 𝑓𝑓 on a plane 
with axes 𝑥𝑥𝑛𝑛  and 𝑥𝑥𝑛𝑛+1. Each input-
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output pair (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) becomes a point on the graph, and an orbit of the system 
is a sequence of such points. To show the progression from the pair (𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) →
(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1), draw the pair of (directed) axis-aligned segments 

(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) → (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛) →  (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) . 
This gives a diagram that shows the progression of discrete time. Equilibria are 
indicated by places where the graph of 𝑓𝑓 intersects the diagonal where 𝑥𝑥𝑛𝑛+1 =
𝑥𝑥𝑛𝑛. The stability criterion also becomes clear with the proper diagram. At an 
equilibrium 𝑎𝑎, if the derivative |𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑| < 1, then one sees from the diagram 

that nearby initial conditions are drawn in 
to the equilibrium point, whereas they are 
repelled for slope larger than one (in 
absolute value). 

One notes that, unlike in the case of 
continuous time, discrete-time diagrams 

can have very different-looking orbits for nearby initial conditions. The way 
that the stair-step graphs weave can be confusing: it is best (as with many 
things in dynamical systems) to watch it unfold in video.  

EXAMPLE: In a discrete-time logistic model of the form  

𝑥𝑥𝑛𝑛+1 =
5
2 𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛) , 

there are equilibria at 𝑥𝑥 = 0 and 𝑥𝑥 = 3/5. The derivative of the right hand side evaluates 
at 𝑥𝑥 = 0 to 5/2 and at 𝑥𝑥 = 3/5 to −1/2. Thus, the equilibrium at zero is unstable, and 
the equilibrium at 3/5 is stable. One can see this in the diagram, localized about each 
equilibrium. At the equilibrium with negative derivative, it is as if the stair-step graph 
is spiraling into the equilibrium.  

One sees as well that there is a substantial difference between positive and 
negative derivatives. The latter implies that orbits of nearby points flip about 
the equilibrium, not unlike the manner in which an alternating series 
converges. This will be an important 
observation in time.  
 

DIAGRAMS OF CHAOS 
Our use of visualization for dynamics 
illuminates one distinction between 
systems in continuous versus discrete 
time. In continuous time systems, the 
story is complete: given any reasonable 
function 𝑓𝑓(𝑥𝑥), a brief scan of the graph 
of 𝑓𝑓 gives a clear picture of the 
dynamics. This is not so in discrete 
time.  

Examining diagrams near stable or 
unstable equilibria is illuminating and 
clear. However, many examples of systems of the form 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) have 
diagrams which seem complex and bizarre. Some initial conditions appear to 
settle into repeated patterns; others appear to wander aimlessly, creating a 
tangled mess. Such is neither an accident of the representation nor an 
exceptional event.  
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Discrete-time dynamics in 1-D implicates much more than equilibria: periodic 
and chaotic dynamics abound in such systems. In the next chapter, we turn to 
periodic phenomena. Explaining chaotic dynamics in full is delayed until 
Volume 4; in Chapter 9, a brief foreshadowing will appear. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 4 
Euler’s method 
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QUILIBRIA are not the end. There are many more dynamical phenomena of 
interest than stationary points. This chapter gives a brief introduction to 

periodic phenomena in dynamics. The world runs in circles, and all living 
things express periodic behaviors, from sleep cycles and heartbeats to 
locomotive gaits.  
 

PERIODIC ORBITS 
A periodic orbit of a dynamical system is a solution that comes back to initial 
condition after a certain (positive) time. Specifically, 

▷ CONTINUOUS TIME : 𝑥𝑥(𝑡𝑡 + 𝑃𝑃) = 𝑥𝑥(𝑡𝑡) for all 𝑡𝑡 and some constant 𝑃𝑃 >
0. 

▷ DISCRETE TIME : 𝑥𝑥𝑛𝑛+𝑃𝑃 = 𝑥𝑥𝑛𝑛 for all 𝑛𝑛 and some constant 𝑃𝑃 > 0. 
In each case, the minimal such 𝑃𝑃 is denoted the period of the orbit. One can 
view an equilibrium as a trivial periodic orbit of period zero (in continuous-
time; in discrete-time, period one). One usually reserves the term periodic orbit 
for the non-equilibrium case. 
 

CONTINUOUS TIME 
There are no nontrivial periodic orbits in continuous-time autonomous 
dynamics on ℝ1. This seems intuitively obvious – how can you come back to 
where you start if you follow instructions on where to go based on location 
alone? However, writing out a proof of this can be a bit unintuitive, in part 
because the result is topological in nature, relying crucially on continuity 
properties.  

LEMMA: In any system of the form 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥), where 𝑓𝑓 is continuous on ℝ1, 
there are no periodic orbits.  

▷ Proof: Assume that 𝑥𝑥(𝑡𝑡) is a solution to 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥) satisfying 𝑥𝑥(𝑡𝑡 + 𝑃𝑃) = 𝑥𝑥(𝑡𝑡) 
for all 𝑡𝑡 and some minimal 𝑃𝑃 > 0. Then 𝑓𝑓(𝑥𝑥(𝑡𝑡)) never vanishes (else 𝑥𝑥 would be 
an equilibrium). However, by the Fundamental Theorem of Integral Calculus, 
continuity of 𝑓𝑓, and periodicity of 𝑥𝑥, 

0 ≠ � 𝑓𝑓�𝑥𝑥(𝑡𝑡)�𝑑𝑑𝑑𝑑
𝑃𝑃

𝑡𝑡=0
 = �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑃𝑃

𝑡𝑡=0
= 𝑥𝑥(𝑃𝑃) − 𝑥𝑥(0) = 0 . 

This is a contradiction.  ◁ 
This is a significant limitation of 1-D continuous-time systems, since, as 
observed in Chapter 1, so much of the observable (and especially biological) 
world mirrors periodic dynamics. The way forward to more physically realistic 
settings is to add dimensions, as we shall do in Volumes 2-3 of this text.  
 

DISCRETE TIME 
In discrete time, we can recover a nonexistence result under the right 
assumption: 

LEMMA: In any system of the form 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) on ℝ1 with 𝑓𝑓 increasing, there are 
no periodic orbits.  

▷ Proof: Assume that such exists: 𝑥𝑥(𝑛𝑛 + 𝑃𝑃) = 𝑥𝑥(𝑛𝑛) for all 𝑛𝑛. Since 𝑃𝑃 > 1, either 
𝑥𝑥1 > 𝑥𝑥0  or 𝑥𝑥1 < 𝑥𝑥0. In either case, monotonicity of 𝑓𝑓 implies that the sequence 
(𝑥𝑥𝑛𝑛) is likewise monotone: contradiction. For a proof using the discrete-

E 
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calculus version of the FTIC, consider this elegant analogue of the continuous-
time proof: 

0 ≠ �(𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑥𝑥𝑛𝑛)
𝑃𝑃−1

𝑛𝑛=0

= �(△ 𝑥𝑥)𝑛𝑛

𝑃𝑃−1

𝑛𝑛=0

= 𝑥𝑥(𝑃𝑃) − 𝑥𝑥(0) = 0 ,  

where the first inequality comes from monotonicity of 𝑓𝑓.  ◁ 
 

FINDING PERIODIC ORBITS 
Discrete time systems of the form 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) where 𝑓𝑓 is non-increasing or non-
injective can and do possess periodic orbits (& much more). Consider what 
happens in the following examples.  
 

▷ If 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3, then the points {±1} comprise a periodic orbit of period two. 
This 𝑓𝑓 is injective, but nonincreasing. 

▷ If 𝑓𝑓(𝑥𝑥) = 7
2

𝑥𝑥(1 − 𝑥𝑥), then the points �3
7

, 6
7
� comprise a periodic orbit of period 

two.  
▷ If 𝑓𝑓(𝑥𝑥) = 3.831874 𝑥𝑥(1 − 𝑥𝑥), then there 

is a period-3 orbit with periodic points at 
(approximately) 
{0.5,0.957969, 0.1542898}. With more 
decimal places, one can describe an exact 
period-3 orbit: try iterating these 
numbers on a calculator to see if you can 
get more digits of accuracy. 

 

Notice that in discrete-time, a period-𝑃𝑃 orbit 
consists of 𝑃𝑃 points, with the dynamics 
cycling through them in a set order that is 
not necessarily monotone. It is important to 
distinguish between the periodic points (of 
which there are 𝑃𝑃) and the periodic orbit (a single entity).  

How one finds periodic orbits is perhaps not obvious. One way – that presages a 
deep idea in dynamical systems – stems from the observation that each point 
𝑥𝑥𝑛𝑛 in a period-𝑃𝑃 orbit of 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) is an equilibrium of the composition  

𝑓𝑓(𝑃𝑃) = 𝑓𝑓 ∘ 𝑓𝑓 ∘ ⋯ ∘ 𝑓𝑓 

of 𝑓𝑓 with itself 𝑃𝑃 times. Why? The language of operators again assists. By 
definition, 𝑥𝑥 is a period-𝑃𝑃 orbit if,  

𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛+𝑃𝑃     ⇒      𝑥𝑥 = 𝐸𝐸𝑃𝑃𝑥𝑥    ⇒       𝑥𝑥𝑛𝑛
= 𝐸𝐸�𝐸𝐸(⋯ (𝐸𝐸𝑥𝑥𝑛𝑛) ⋯ )�
= 𝑓𝑓(𝑃𝑃)(𝑥𝑥𝑛𝑛)  

It is important to note that not all equilibria 
of 𝑓𝑓(𝑃𝑃) are period-𝑃𝑃 orbits – any other orbits 
of period dividing 𝑃𝑃 (including 1) will also 
show up as equilibria.  

One advantage of this method comes from 
trying to define stability of periodic orbits. 
Periodic orbits can be stable or unstable, 
based on whether initial conditions close to 
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one of the points are attracted to the orbit or repelled away. This is inherited 
from the stability of one (and thus all) of the corresponding equilibria of 𝑓𝑓(𝑃𝑃). 
In the above examples of periodic orbits, which are stable? 
 

A PERFECT CIRCLE 
There is one way to circumvent the absence of periodic orbits in 1-D 
continuous-time: modify the domain from the reals ℝ to a circle. The 
mathematician’s circle is a topological space denoted 𝕊𝕊1. This can be defined in 
several equivalent ways:  

▷ 𝕊𝕊1 = {(𝑥𝑥, 𝑦𝑦) ∈ ℝ2 ∶   𝑥𝑥2 + 𝑦𝑦2 = 1} 
▷ 𝕊𝕊1 = {𝑧𝑧 ∈ ℂ ∶ |𝑧𝑧| = 1} 
▷ 𝕊𝕊1 = �𝑒𝑒𝑖𝑖𝑖𝑖 ∈ ℂ ∶ 𝜃𝜃 ∈ ℝ� 
▷ 𝕊𝕊1 = [0, 2𝜋𝜋]/{0 = 2𝜋𝜋} 
▷ 𝕊𝕊1 = ℝ/ℤ 

The first three identify the circle as the unit circle 
in the real plane or complex line, and these are 
obviously equivalent (thanks to Euler’s formula). 
The latter two definitions are as identification or 
quotient spaces, where one identifies certain points. One simple way to obtain a 
circle is to start with the closed interval [0, 2𝜋𝜋] and “glue” the two endpoints 
together by declaring that 0 = 2𝜋𝜋. In geometry, trigonometry, or calculus, one 
often works on the circle in this model, using angles modulo 2𝜋𝜋. A linear 
rescaling from mod 2𝜋𝜋 to mod 1 given the reals modulo the integers, denoted 
ℝ/ℤ. This presentation means that two real numbers are declared equivalent if 
they differ by an integer. Such equivalence classes parametrize a perfect circle 
(see exercises).  

Which of these is the ideal definition of 𝕊𝕊1? Which should be used in practice? 
That is a matter of choice. What is true is that each of the above descriptions of 
the circle are topologically equivalent, a concept of significant importance in its 
own right. The following definition will be of use on multiple occasions. 

DEFINITION: A homeomorphism 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 between spaces is a continuous 
function with continuous inverse.  

Unfortunately, there is insufficient room to unfold all terms (space and 
continuous are doing the heavy work here). See the exercises for a brief foray 
into what homeomorphism entails and why the different descriptions of 𝕊𝕊1 are 
all homeomorphic. 

In practice, using an angular variable 𝜃𝜃 is a convenient way to coordinatize 𝕊𝕊1. 
The continuous-time dynamical system 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔     ⇔       𝐷𝐷𝐷𝐷 = 𝜔𝜔 , 

for 𝜔𝜔 ≠ 0 a constant, is easily solved to yield 𝜃𝜃(𝑡𝑡) = 𝜔𝜔𝑡𝑡 + 𝜃𝜃0. This is a periodic 
orbit, since 𝜃𝜃 is defined modulo 1 (or 2𝜋𝜋, depending on preference of 
coordinates). This is one simple way to get a periodic orbit in 1-D continuous-
time. The general situation in continuous-time is similar: 
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LEMMA: Given 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝜃𝜃), for 𝑓𝑓: 𝕊𝕊1 → ℝ, either (1) there are equilibria and no 
periodic obits; or (2) there are no equilibria, and every orbit is periodic. 

▷ Idea of Proof: To show (1), choose an equilibrium point. It cannot participate 
in a periodic orbit. Then, “puncture” 𝕊𝕊1 by removing the equilibrium, resulting 
in a dynamical system on ℝ that we know has no periodic orbits. Showing (2) 
requires knowing that a circle is compact, so that 𝑓𝑓 attains both global 
minimum and global maximum, each of the same sign. Moving along the circle 
at that speed (or greater) brings one inexorably back to any initial condition.  ◁ 
The situation is different for discrete-time dynamics on 𝕊𝕊1. 
 

ROTATION MAPS 
Discrete-time dynamics on a circle form a fascinating set of examples. Consider 
the simple rotation on 𝕊𝕊1 in coordinates 𝜃𝜃 ∈ ℝ/ℤ: 

𝜃𝜃𝑛𝑛+1 = 𝜃𝜃𝑛𝑛 + 𝜔𝜔     ⇔       𝐸𝐸𝐸𝐸 = 𝜃𝜃 + 𝜔𝜔 , 
for 𝜔𝜔 ≠ 0 a constant. This has solution 𝜃𝜃𝑛𝑛 = 𝜃𝜃0 + 𝑛𝑛𝜔𝜔 mod 1. Everything 
depends on the spin constant 𝜔𝜔. For 𝜔𝜔 ∈ ℚ rational, all orbits are periodic, since 
multiplication of a rational (𝑝𝑝/𝑞𝑞) by a sufficiently large natural number (𝑞𝑞) 

yields an integer. However, if 𝜔𝜔 ∉ ℚ is 
irrational, then, by the same argument, there are 
no periodic orbits whatsoever. In fact, each orbit 
in such an irrational rotation is dense within 𝕊𝕊1, 
wandering forever within the interstices of an 
unrepeating decimal.  

This is a foreshadowing of what can occur when 
encountering a nonlinear system on a circle. Our 
exploration of rotations, rational and irrational, 
should lead to several questions about nonlinear 
systems of the form 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝜃𝜃). 

1. Is it possible for such a system to have multiple periodic orbits of 
different periods? 

2. Is it possible to have both periodic orbits and dense orbits? 
3. If you do not have periodic orbits or equilibria, must the orbits be 

dense? 
4. Do the answers to the above change depending on invertibility of 𝑓𝑓? 

 

TOPOLOGICAL CONJUGACY 
One of the most important, subtle, and pernicious issues is what it means for 
two mathematical entities to be the same. Mathematicians have a variety of 
tools to deal with issues of equality and equivalence. In the setting of 
dynamical systems, there is an equivalence relation which is acknowledged as 
the proper comparison. This is called topological conjugacy.  

Given a pair of (discrete-time) dynamical systems 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) and 𝐸𝐸𝐸𝐸 = 𝑔𝑔(𝑦𝑦) on 
spaces 𝑋𝑋 and 𝑌𝑌 respectively, one views them as equilvalent if there is a 
topological conjugacy between them: a homeomorphism 𝜑𝜑: 𝑋𝑋 → 𝑌𝑌 such that 𝜑𝜑 ∘
𝑓𝑓 = 𝑔𝑔 ∘ 𝜑𝜑. This condition means that 𝜑𝜑 takes orbits on 𝑋𝑋 to orbits on 𝑌𝑌 
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bijectively: the dynamics match up. For continuous-time systems, it suffices to 
define a topological conjugacy for 𝑒𝑒𝜖𝜖𝜖𝜖, the “flow forward by time 𝜖𝜖” map.  

A number of results on circle maps require this notion of conjugacy to state. 
This is one of the most famous and subtle such results: 

DENJOY’s THEOREM: If 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝜃𝜃), for 𝑓𝑓: 𝕊𝕊1 → 𝕊𝕊1 a twice-differentiable 
function, and if this system has neither equilibria nor periodic orbits, then it is 
topologically conjugate to an irrational rotation.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 5 
Can you find an explicit period-4 orbit for the logistic map with 𝑟𝑟 = 15

4
? 

1. Show that the period-2 orbit of 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥) = 7
2

𝑥𝑥(1 − 𝑥𝑥) given by 𝑥𝑥 =

(… , 3
7

, 6
7

, … ) is unstable by computing the derivative of 𝑓𝑓 ∘ 𝑓𝑓 and evaluating at the 

correct point. Can you find an explicit stable period-4 orbit for this system?  
2. On the topology of the circle. 
3. Give explicit homeomorphisms between different models of 𝕊𝕊1. 
4. Expand on discrete-time dynamics on a circle. Include proof of dense orbit.  
5. Denjoy theorem? 
6. Introduce rotation number for a homeomorphism 𝑓𝑓: 𝕊𝕊1 →

𝕊𝕊1 by lifting to 𝑓𝑓: ℝ1 → ℝ1 and computing the limit: 
 

𝜌𝜌(𝑓𝑓) = lim
𝑛𝑛→∞

𝑓𝑓𝑛𝑛(𝑥𝑥) − 𝑥𝑥
𝑛𝑛  
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CHAPTER  6 : 
COUPLED SYSTEMS 
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UR INITIAL PATH through dynamics is limited by the restriction to one-
dimensional systems. Reality is high-dimensional. As a precursor to more 

interesting systems, we consider what happens when we couple a pair of 1-D 
dynamical systems together. For a very restricted class of such coupled 
systems, it is possible to reduce to a case analyzable via 1-D techniques. 
 

DRIVERS 
Consider a pair of agents whose (real) states are increasing at the same speed: 
imagine two cars driving in separate lanes on the road (where state is position). 
Model these two states as real variables 𝑥𝑥1 and 𝑥𝑥2. If each of these is increasing 
at the same rate 𝜔𝜔, then there is a pair of dynamical systems given by:  

𝐷𝐷𝑥𝑥1 = 𝜔𝜔              ∶                𝐸𝐸𝑥𝑥1 = 𝑥𝑥1 + 𝜔𝜔 
𝐷𝐷𝑥𝑥2 = 𝜔𝜔              ∶                𝐸𝐸𝑥𝑥2 = 𝑥𝑥2 + 𝜔𝜔  

Continuous time (left) or discrete time (right) systems possess equally plain 
solutions: 𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝜔𝜔𝜔𝜔 + 𝑥𝑥𝑖𝑖(0) or 𝑥𝑥𝑖𝑖(𝑛𝑛) = 𝜔𝜔𝑛𝑛 + 𝑥𝑥𝑖𝑖(0) respectively. These two 
evolving states remain as close as their initial conditions: 𝑥𝑥2 − 𝑥𝑥1 = 𝑥𝑥2(0) −
𝑥𝑥1(0). 

Now suppose that there is some mechanism of influence: the state of the first 
influences the second and vice-versa. If, perhaps, the first driver’s state 𝑥𝑥1 is 
behind that of the second, 𝑥𝑥2, then the second slows down a bit and the first 
speeds up. This can be modelled by a function of the state difference 𝜑𝜑 = 𝑥𝑥2 −
𝑥𝑥1. Let 𝑓𝑓 = 𝑓𝑓(𝜑𝜑) be a coupling function that delineates the influence of one 
state on the other. Assuming the effect of the influence is small and 
symmetric, the appropriate model for the evolution of these two drivers is: 

𝐷𝐷𝑥𝑥1 = 𝜔𝜔 + 𝜖𝜖𝜖𝜖(𝜑𝜑)      ∶      𝐸𝐸𝑥𝑥1 = 𝑥𝑥1 + 𝜔𝜔 + 𝜖𝜖𝜖𝜖(𝜑𝜑) , 
𝐷𝐷𝑥𝑥2 = 𝜔𝜔 − 𝜖𝜖𝜖𝜖(𝜑𝜑)      ∶      𝐸𝐸𝑥𝑥2 = 𝑥𝑥2 + 𝜔𝜔 − 𝜖𝜖𝜖𝜖(𝜑𝜑) . 

As before, continuous (left) and discrete (right) time systems are similar.  

These are two-dimensional dynamical systems, not solvable using the tools we 
have learned thus far. However, because the coupling term depends on the state 
difference 𝜑𝜑 = 𝑥𝑥2 − 𝑥𝑥1, we can manipulate this system into a reduced system 
using only the difference variable 𝜑𝜑. How does 𝜑𝜑 evolve? Because the evolution 
operators 𝐷𝐷 and 𝐸𝐸 are linear operators, the derivation is simple: 

𝐷𝐷𝐷𝐷 = 𝐷𝐷(𝑥𝑥2 − 𝑥𝑥1) = 𝐷𝐷𝑥𝑥2 − 𝐷𝐷𝑥𝑥1 = �𝜔𝜔 − 𝜖𝜖𝜖𝜖(𝜑𝜑)� − �𝜔𝜔 + 𝜖𝜖𝜖𝜖(𝜑𝜑)� = −2𝜖𝜖𝜖𝜖(𝜑𝜑), 
𝐸𝐸𝐸𝐸 = 𝐸𝐸(𝑥𝑥2 − 𝑥𝑥1) = �𝑥𝑥2 + 𝜔𝜔 − 𝜖𝜖𝜖𝜖(𝜑𝜑)� − �𝑥𝑥1 + 𝜔𝜔 + 𝜖𝜖𝜖𝜖(𝜑𝜑)� = 𝜑𝜑 − 2𝜖𝜖𝜖𝜖(𝜑𝜑) . 

These are in each case a function of 𝜑𝜑 alone: the 2-D system has been reduced 
to a 1-D system on the state difference. Now we can use our tools and search 
for equilibria in 𝜑𝜑. In both discrete and continuous time, equilibria occur at 
roots where 𝑓𝑓(𝜑𝜑) = 0: where there is no influence, solutions continue apace at a 
fixed difference.   
 

SPINNERS 
If we consider a pair of agents with circular as opposed to real states, the 
problem of synchronized phase becomes more subtle. Recalling the topology of 
the circle 𝕊𝕊1 from Chapter 5, we choose a pair of circular states, 𝜃𝜃1 and 𝜃𝜃2, 
represented as angles modulo 2𝜋𝜋. The constant-speed evolution of the form  
 

O 



34 

𝐷𝐷𝜃𝜃1 = 𝜔𝜔      ∶       𝐸𝐸𝜃𝜃1 = 𝜃𝜃1 + 𝜔𝜔 
𝐷𝐷𝜃𝜃2 = 𝜔𝜔      ∶       𝐸𝐸𝜃𝜃2 = 𝜃𝜃2 + 𝜔𝜔  

 

exhibit solutions (𝜃𝜃(𝑡𝑡) = 𝜔𝜔𝜔𝜔 + 𝜃𝜃𝑖𝑖(0) or 𝜃𝜃𝑖𝑖(𝑛𝑛) = 𝜔𝜔𝑛𝑛 + 𝜃𝜃𝑖𝑖(0) respectively) which, 
instead of moving monotonically, rotate without end. The addition of a small 
coupling term gives a system of the form: 
 

𝐷𝐷𝜃𝜃1 = 𝜔𝜔 + 𝜖𝜖𝜖𝜖(𝜑𝜑)      ∶       𝐸𝐸𝜃𝜃1 = 𝜃𝜃1 + 𝜔𝜔 + 𝜖𝜖𝜖𝜖(𝜑𝜑) 
𝐷𝐷𝜃𝜃2 = 𝜔𝜔 − 𝜖𝜖𝜖𝜖(𝜑𝜑)      ∶       𝐸𝐸𝜃𝜃2 = 𝜃𝜃2 + 𝜔𝜔 − 𝜖𝜖𝜖𝜖(𝜑𝜑) 

 

Here, 𝜑𝜑 = 𝜃𝜃2 − 𝜃𝜃1 is the phase angle, the angular difference between the two 
spinners. The coupling function 𝑓𝑓: 𝕊𝕊1 → ℝ must be chosen with care, as it has 
the circle as its domain. In particular, if coordinatized by radians, it must be 
well-defined up to multiples of 2𝜋𝜋: periodic functions of 𝜑𝜑, such as sin 𝜑𝜑 or 
cos 𝜑𝜑 are permissible, but typical polynomial functions of 𝜑𝜑 are not.  

The derivation of a synchronized state is exactly as it was with drivers, 
yielding: 
 

𝐷𝐷𝐷𝐷 = −2𝜖𝜖𝜖𝜖(𝜑𝜑)       :       𝐸𝐸𝐸𝐸 = 𝜑𝜑 − 2𝜖𝜖𝜖𝜖(𝜑𝜑)  (⋆)  
 

With sinusoidal coupling 𝑓𝑓(𝜑𝜑) = sin 𝜑𝜑, the spinners synchronize, since 𝜑𝜑 = 0 is 
an equilibrium for both systems. The derivative of the right-hand side 
evaluated at the equilibrium is −2𝜖𝜖 (continuous) and 1 − 2𝜖𝜖 (discrete) 
respectively. This is stable: always in continuous time and when 𝜖𝜖 < 1  in 
discrete time. Nota bene: there is another equilibrium at 𝜑𝜑 = ±𝜋𝜋, where the 
spinners are perfectly out-of-phase: this equilibrium is unstable. Such a non-
stable equilibrium is nearly unavoidable. 
 
LEMMA: In any spinner system of the form (⋆) with continuous coupling 
function 𝑓𝑓: 𝕊𝕊1 → ℝ, there is no stable equilibrium which attracts all initial 
conditions.  

▷ Proof: A stable 
equilibrium at 𝜑𝜑∗ implies 
that 𝑓𝑓(𝜑𝜑∗) = 0 and this is 
a simple zero (𝑓𝑓 takes on 
positive and negative 
values in an arbitrarily 
small neighborhood of 
𝜑𝜑∗). Continuity of 𝑓𝑓 on 
𝕊𝕊1 implies that there is 
another root of 𝑓𝑓. This is 
a distinct equilibrium which cannot be attracted to 𝜑𝜑∗. ◁ 
 

SYNC vs. LOCK  
A stable equilibrium at φ = 0 is often called synchronization, either in the 
“drivers” or “spinners” model: both parties converge to the same state. Such 
convergence can happen in systems with more than two agents, and this can be 
very satisfying to watch in real-time. It is also the basis of a number of 
interesting physical, biological, and social phenomena, from flocking to 
locomotion: see the next subsection.  
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Synchronization is just the beginning: depending upon the configuration and 
the coupling function 𝑓𝑓, one can have stable equilibria at a nonzero values of 𝜑𝜑. 
This phenomenon is often referred to as (phase) locking, especially when the 
states are angles and the difference 𝜑𝜑 is a phase angle. For example, if you walk 
about freely without paying attention, you may notice that your arms are 
swinging out-of-phase with one another. This is not a coincidence, and you are 
not purposefully doing it (though you can cease if you think about it). You are 
flowing along a dynamical system to a stable equilibrium at 𝜑𝜑 ≈ ±𝜋𝜋. In the 

example of a pair of drivers at 
positions 𝑥𝑥1, 𝑥𝑥2, it may happen 
(if they are in the same lane) 
that there is a stable equilibrium 
at a nonzero difference 𝜑𝜑∗ ≠ 0 
corresponding to a persistent gap 
between vehicles (with very 
unpleasant dynamics if 𝜑𝜑∗ = 0). 
Each of these is an example of a 
phase lock. 

 

APPLICATIONS 
Coupled dynamical systems are central to this text. This initial foray, though 
narrow in scope, suggests several interesting applications. 
 
PRICE FIXING 
When introducing the “drivers” model it was assumed that the agent states 𝑥𝑥1 
and 𝑥𝑥2 corresponded to positions along a line, imagined as vehicles. If instead 
you view these states as prices, then one has a nice model of a pair of competing 
sellers who set price based on a rate of inflation (assumed constant) with a 
small degree of correction based on 𝜑𝜑, the price difference with the 
competition. With a locally linear coupling function 𝑓𝑓(𝜑𝜑), then, as per the 
previous analysis, one tends to a fixed price for both sellers. Note that this 
suspicious-looking convergence to the exact same price over time takes place 
without intentional collusion: it is a natural outcome of small adjustments. 
Such alignments can be seen in data coming from, e.g., private college tuitions 
in the USA. What could be the cause for persistent price differences in other 
markets? Is it a lack of mutual influence, or are there other factors? 
 
CENTRAL PATTERN GENERATORS 
Biological applications of synchronization are perhaps most satisfying, a field 
of fireflies in a synchronized light show being a beautiful and well-trod 
example. Rigorous experiments are easier with a different biological system. A 
central pattern generator (CPG) is a neural network consisting of multiple 
neuronal “spinners” producing oscillatory outputs without sensory feedback. 
Such CPGs appear to be fundamental components in locomotion for 
vertebrates, with conclusive evidence accumulated for lampreys, salamanders, 
and more. Here, the phenomenon of phase locking dominates. Think of the 
manner in which an eel swims through a graceful coordination of undulations: 
these can be modelled by phase-locked CPGs.   
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BIOMIMETIC ROBOTICS 
Coupled oscillators are extremely relevant to 
locomotion in biological and mechanical 
agents alike. Ordinary human walking 
involves two pair of abstract spinners in 
sync (left-arm-right-leg and right-arm-left-
leg), the two sets out-of-phase with each 
other. Organisms with more limbs 
(cockroaches, centipedes, millipedes) or 
more locomotive gaits (trot, gallop, run) 
reveal richer sorts of phase locking. In 
robotics, researchers can program the 
controls on a multi-legged agent (bipedal, 
quadrupedal, or hexapedal being common) 
to engender these or other gaits. This is a rich domain of research, with 
considerations of symmetry, physics, and phase in play.   
 
SOCIAL NETWORKS 
Applications to specific models in biology or robotics are uncontroversial. This 
changes when the system in question is humans coupled by social interaction. 
It certainly seems to be the case that a group of individuals reciting a song or a 
creed do so with a coherence that would be lost without auditory feedback 
from neighbors. To what degree is it possible to entrain human behaviors or 
even opinions based on subtle positive or negative reinforcement from peers? 
Can stability and convergence be analyzed or controlled? This is the subject of 
interesting though more speculative work in fields ranging from marketing to 
psychology and more. Specific, well-defined models of opinion dynamics on 
social networks will be considered in Volume 3.  
 

WHAT IF… 
The applications above should prompt a great many questions.  

1. What happens if the “natural” rate of change, 𝜔𝜔, is not the same for 
both agents? Do they still synchronize states?  

2. The coupling strength 𝜖𝜖 seems not to matter for synchronization. How 
does changing 𝜖𝜖 impact the system behavior? 

3. What happens if there are more than two agents, all influencing each 
other? Do they still synchronize, and, if so, how quickly?  

4. What if there are multiple agents whose network of influence is not 
all-to-all coupling, but rather local and arranged in a line or a circle?  

5. What if the coupling functions differ between agents or change over 
time? 

6. Does directional (one-way) coupling change anything? What if there is 
an external driver which influences but is uninfluenced by others? 

 
Some of these questions can be answered with the tools we have thus far 
learned; others are much more difficult and will require additional resources. 
The first question is one that both is answerable and yet leads to the next 
principle of this subject.  
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For concreteness, consider the spinner model in continuous time, where the 
natural frequencies are given by constants 𝜔𝜔𝑖𝑖  for 𝑖𝑖 = 1, 2. The dynamical system 
on angles is given by: 

𝐷𝐷𝜃𝜃1 = 𝜔𝜔1 + 𝜖𝜖 sin 𝜑𝜑     ∶      𝐷𝐷𝜃𝜃2 = 𝜔𝜔2 − 𝜖𝜖 sin 𝜑𝜑 

The phase difference 𝜑𝜑(𝑡𝑡) = 𝜃𝜃1(𝑡𝑡) − 𝜃𝜃2(𝑡𝑡) has dynamics:  

𝐷𝐷𝐷𝐷 = 𝐷𝐷(𝜃𝜃2 − 𝜃𝜃1) = (𝜔𝜔2 − 𝜔𝜔1) − 2𝜖𝜖 sin 𝜑𝜑 

This has equilibria where sin 𝜑𝜑 = (𝜔𝜔2 − 𝜔𝜔1)/2𝜖𝜖; this yields a pair of equilibria 
for sufficiently small values of 𝜔𝜔1 − 𝜔𝜔2 (or sufficiently large values of 𝜖𝜖). 
However, whenever 2𝜖𝜖 = |𝜔𝜔2 − 𝜔𝜔1|, the two equilibria merge into a single 
degenerate equilibrium (at 𝜑𝜑 = ±𝜋𝜋/2, depending on sign), and for smaller 𝜖𝜖, 
there are no equilibria and no 
phase-locking phenomena. Only 
a certain degree of variation in 
natural frequencies permits 
phase locking.  

This phenomenon of equilibria 
changing depending on constants 
is an example of a bifurcation – a 
significant phenomenon to be 
investigated directly. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 6 
Discrete-time spinners 

1. Torso-waist spring and arm-swinging. 
2. Explore some of the whatifs. 
3. Spinners in a ring: verify that … is an  
4. Can you find a continuous 

𝑓𝑓 such that all initial conditions of the phase dynamics 𝐷𝐷𝐷𝐷 =
𝑓𝑓(𝜑𝜑) eventually converge to 𝜑𝜑 = 0 as 𝑡𝑡 → ∞? What do you have to give up to 
achieve this? 

5. For a spinner system with continuous coupling and a stable equilibrium, must 
there also be an unstable equilibrium? 
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HE NEXT BRANCH in our classification of dynamical phenomena returns to 
equilibria and the examination of what happens in a degenerate case. The 

strategy of using linearization to classify equilibria is effective, so long as the 
linear term in the Taylor expansion does not vanish. One is comforted by that 
supposition that such is a rare event. In individual dynamical systems, this 
holds. This chapter introduces parametrized families of dynamical systems, for 
which failure of linearization is not merely possible but common and 
classifiable. 
 

PARAMETERIZED SYSTEMS 
Let 𝜇𝜇 denote a parameter, by which we mean a variable that a user may change 
but which time may not. Thus, for autonomous continuous or discrete-time 
systems, we have, respectively,  

𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝜇𝜇)      ;       𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥, 𝜇𝜇) . 
In both continuous and discrete time settings, 𝜇𝜇 is a constant (𝐷𝐷𝜇𝜇 = 0; 𝐸𝐸𝜇𝜇 = 𝜇𝜇 
respectively); however, 𝜇𝜇 can be changed and the dynamical system rerun. The 
mental image of a multiverse of contingent systems is perhaps helpful.  

As per the remarks of Chapter 1, such parametrized dynamical systems are in 
fact the norm in applied settings, and multiple parameters are common. 
Knowing which behaviors are possible and how these change as a function of 
parameter values is crucial for planning and control.  

EXAMPLE: A simple continuous-time model for the velocity, 𝑣𝑣, of a body falling with air 
resistance is as follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝑔𝑔 + 𝜅𝜅𝑣𝑣𝑝𝑝 , 

where 𝜅𝜅 > 0 is a parameter known as the drag coefficient. The power, 𝑝𝑝, is an additional 
parameter, usually chosen to be 1 or 2, depending on the physics of the problem. These 
are both parameters, since they do not change over time, but can be changed to modify 
the model.  

EXAMPLE: Recall from the previous chapter, the continuous-time model of the phase 
angle difference between a pair of coupled spinners with different natural frequencies: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝜔𝜔2 − 𝜔𝜔1) − 2𝜖𝜖 sin 𝜑𝜑 . 

This model has three parameters: the two frequencies, 𝜔𝜔𝑖𝑖, and the coupling strength 𝜖𝜖. 
If one fixes values of 𝜔𝜔1 ≠ 𝜔𝜔2  and then runs the system at various coupling strengths, 
the different behaviors emerge. For 𝜖𝜖 ≫ 0 sufficiently large, there are two equilibria; but 
for sufficiently small 𝜖𝜖 > 0, there are no equilibria. The precise value where things 
change is at: 

𝜖𝜖∗ = arcsin
𝜔𝜔2 − 𝜔𝜔1

2  . 

Such special parameters are the subject of this chapter.  
 

LOCAL BIFURCATIONS 
A (local) bifurcation of a dynamical system occurs at an equilibrium 𝑥𝑥∗ and 
parameter 𝜇𝜇∗  if, in any neighborhood of (𝑥𝑥∗, 𝜇𝜇∗), there is a change in the 
number or types of equilibria. Thanks to the Stability Criterion, bifurcations 
occur only when the criterion fails. 
 

T 
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LEMMA: If a dynamical system of the form 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥, 𝜇𝜇) or 𝐸𝐸𝐸𝐸 = 𝑓𝑓(𝑥𝑥, 𝜇𝜇) is 𝐶𝐶1  
(the function 𝑓𝑓 is continuously differentiable in 𝑥𝑥 and 𝜇𝜇), then a bifurcation 
cannot occur unless 𝑓𝑓 vanishes to first order in 𝑥𝑥.  

▷ Proof: For the continuous-time case, let 𝑓𝑓 be smooth and 𝑓𝑓(𝑎𝑎, 𝑏𝑏) = 0 with 
𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥 ≠ 0 at (𝑎𝑎, 𝑏𝑏). By the Implicit Function Theorem, there exist nearby 
equilibria of the form 𝑥𝑥 = 𝑥𝑥(𝜇𝜇)  for (𝑥𝑥, 𝜇𝜇)  near (𝑎𝑎, 𝑏𝑏). Since 𝑓𝑓 is 𝐶𝐶1, 𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥 ≠ 0 
along this path of equilibria for nearby 𝜇𝜇. This completes the proof for 
continuous time. In the discrete time case, repeat the argument using 𝑓𝑓 − 𝑥𝑥. ◁ 

This is more significant than might appear. In a parametrized dynamical 
system, if you are at an equilibrium and you change the parameter, then, unless 
there is a bifurcation, the equilibrium may change its location slightly, but its 
type will remain the same. This holds true in a physical, biological, or social 
system, even if you do not understand the mechanism by which equilibrium is 
restored. Thus, if you wish to argue that changing a parameter in a system 
currently at equilibrium will lead to a cascade of consequences (positive or 
negative) amounting to a change in stability, then it is tantamount to arguing 
that there is a bifurcation in the system. The reader is encouraged to look 
carefully for such arguments in contemporary discussions of economics, 
climate change, public policy, social dynamics, AI, and more.  
 

NORMAL FORMS OF BIFURCATIONS 
Bifurcations arise when the Stability Criterion (i.e. linearization) fails. In this 
case, it is the higher order terms in the Taylor expansion that are 
determinative. These terms serve as a filtration to order the complexity of 
bifurcations. In what follows, we restrict to continuous-time settings and 
provide the simplest possible examples – called normal forms – of three 
elementary bifurcations.  

SADDLE NODE BIFURCATIONS [SN] 
The first and simplest example of a bifurcation is called a saddle-node. It has 
normal form 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇 + 𝑐𝑐𝑥𝑥2 , 
 

where 𝑐𝑐 ≠ 0. The equilibria are located at 𝑥𝑥 = ±�−𝜇𝜇/𝑐𝑐 . For 𝑐𝑐 < 0, this means 
that there are two equilibria when 𝜇𝜇 > 0; one when 
𝜇𝜇 = 0; and none for 𝜇𝜇 > 0, with the pattern reversing 
for 𝑐𝑐 > 0. The two equilibria, when they exist, have 
opposite stability types, as indicated by the 
derivative 2𝑐𝑐𝑐𝑐. The term saddle-node is (for now) 
unmotivated; more sense will be made with the 
addition of a dimension. For the present, it suffices 
to remember that saddle-nodes involve a pair of 

equilibria – one stable, one unstable – colliding and annihilating. 

TRANSCRITICAL BIFURCATIONS [TC] 
The next example of a bifurcation is not as common, but it is important. The 
transcritical bifurcation has normal form 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 + 𝑐𝑐𝑥𝑥2 , 

where 𝑐𝑐 ≠ 0. The equilibria are located at 𝑥𝑥 = 0 and 
𝑥𝑥 = −𝜇𝜇/𝑐𝑐. Linearization tells us that the equilibrium 
at 𝑥𝑥 = 0 is stable for 𝜇𝜇 < 0 and unstable for 𝜇𝜇 > 0. 
When 𝜇𝜇 ≠ 0 the other equilibrium at 𝑥𝑥 = −𝜇𝜇/𝑐𝑐 has 
stability opposite that of the equilibrium at zero – 
unstable for 𝜇𝜇 < 0 and stable for 𝜇𝜇 > 0. This 
bifurcation is characterized by a pair of opposite-
stability equilibria which cross each other, 
exchanging stabilities.  

PITCHFORK BIRUCATIONS [PF] 
A slight change to the transcritical normal form yields the normal form for a 
pitchfork bifurcation.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 + 𝑐𝑐𝑥𝑥3 , 

where 𝑐𝑐 ≠ 0. As before, the equilibrium located at 
𝑥𝑥 = 0 is stable for 𝜇𝜇 < 0 and unstable for 𝜇𝜇 > 0. 
However, there is also a pair of equilibria at 𝑥𝑥 =
±�−𝜇𝜇/𝑐𝑐  when 𝜇𝜇 and 𝑐𝑐 are of opposite sign. This pair 
of equilibria have the opposite stability type to that 

at 𝑥𝑥 = 0: unstable if 𝜇𝜇 < 0 and stable if 𝜇𝜇 > 0. The 
signature of a pitchfork is that a single equilibrium 
reverses stability as it sheds a symmetric pair of 
equilibria of the original stability.  
 

SUPERCRITICAL OR SUBCRITICAL? 
In all three examples above, the parameter 𝜇𝜇 is the 
coefficient of the linear term in 𝑥𝑥, and 𝑐𝑐 is the 
coefficient of the dominant higher-order term. In the case of a saddle-node or 
transcritical bifurcation, the sign of 𝑐𝑐 has marginal impact on the resulting 
dynamics. However, in the case of the pitchfork bifurcation, the sign of 𝑐𝑐 is 
critical to the system behavior. When 𝑐𝑐 < 0, we say that it is a supercritical 
pitchfork bifurcation [PF•]; for 𝑐𝑐 > 0, this is a subcritical pitchfork [PF•] (note 
the super/sub indicated by the accent). The distinction matters a great deal to 
the overall stability of the system.  

Supercritical pitchforks are characterized by a transfer of stability: the stable 
equilibrium gifts its stability to the pair of new equilibria post-bifurcation. 
Whatever instability exists is strictly bounded and contained by the pair of 
stable equilibria. This is reversed for subcritical bifurcations. If the reader 
prefers, super- or sub-criticality is also indicated by the nonlinear stability of 
the equilibrium at the bifurcation value. 

Why does the difference between super- and sub-criticality matter? Assume 
that you are (very close to being) at a stable equilibrium and you pass through a 
pitchfork bifurcation after changing a parameter slightly. You start to notice 
your near-equilibrium state slipping away, the distance growing exponentially. 
Perhaps you wait a bit too long before taking action and trying to reverse 
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course. When you turn the dial back to the original parameter, what happens? 
If your pitchfork was supercritical, the instability is reversible, and you glide 
back to a stable equilibrium. However, in the subcritical case, you may be too 
late, and only a drastic over-correction in the parameter holds any hope of 
returning you to stability. It is dangerous to overgeneralize details of cartoonish 
1-D mathematical models to issues of public policy; yet, the existence (and 
relative ubiquity) of subcritical pitchforks should give one pause when 
dismissing slippery slope arguments out of hand. 

 
A FEW MECHANICAL EXAMPLES 
It can be difficult to see bifurcations or to get an intuition for them. The 
following simple mechanical examples of the three types of elementary 
bifurcations in continuous-time may help. 

BUCKLING BEAMS : [PF•] 
Pitchfork bifurcations are relatively easy to find, so long as there is the correct 
symmetry. Consider a thin elastic beam with pinned ends under a force of 
magnitude 𝜆𝜆. The beam may deflect with the midpoint being bent away from 
the axis of the beam by an amount 𝑥𝑥(𝑡𝑡). Assuming that the elastic forces are 
sufficiently damped, the equation of motion for x(t) is 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝜆𝜆 − 𝑥𝑥3 . 

This has equilibria at 𝑥𝑥 = 0 and 𝑥𝑥 = ±√𝜆𝜆  for 𝜆𝜆 > 0. This means for 𝜆𝜆 < 0, the 
beam is being pulled, and the only equilibrium solution has zero displacement 
and is stable. However, when 𝜆𝜆 > 0, the equilibrium at 𝑥𝑥 = 0 becomes unstable, 

and there are in addition two equilibria at 𝑥𝑥 = ±√𝜆𝜆. The preponderance of 
stable equilibria implies that this is supercritical pitchfork 
bifurcation at 𝑥𝑥 = 0, 𝜆𝜆 = 0. 

INVERTED MAGNETIC PENDULUM : [PF•] 
Subcritical pitchforks have but a fragile wedge of stable 
behaviors, and one wishes to not find too many organic 
examples. One can be constructed by taking an inverted 
rigid-rod pendulum with a magnetic bob and fixing another 
magnet above it, with the parameter being the polarity 
(modeled with intensity as a signed real number). When the 
magnets are repelling, there is a single unstable equilibrium 
at the vertical. Changing the magnet to attracting switches 
this to a stable equilibrium, but 
with a pair of unstable equilibria 

to each side, as evidenced by the catastrophic fall 
once the magnetic attraction is overcome by the 
gravitational pull. 

SPRING-LOADED INVERTED PENDULUM : [TC] 
Transcritical bifurcations require a special type of 
symmetry that is less common in mechanical 
systems. Although these appear frequently in 
population models and models of lasers, neither is 
especially intuitive. Consider, then, the somewhat 
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convoluted mechanical example illustrated, augmenting the magnetic inverted 
pendulum with a neutral spring that pushes back from one side. This system 
experiences a switch in a stable-unstable pair as one changes the suspended 
magnet from attracting to repelling.  

TORQUED PENDULUM : [SN] 
Given a rigid-rod pendulum with rather a lot of damping, it may be 
approximated with a 1-D model on the angle 𝜃𝜃(𝑡𝑡) made against the vertical. 
Such a pendulum has a stable equilibrium at 𝜃𝜃 = 0 and an unstable equilibrium 
at 𝜃𝜃 = ±𝜋𝜋. If one applies a constant torque 𝜏𝜏 to the pendulum, then an 
appropriate model would be  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜏𝜏 − 𝐶𝐶2 sin 𝜃𝜃 , 

where 𝐶𝐶 is a constant and 𝜏𝜏 is the parameter. 
This system (do you recognize the 
equation?) has a pair of equilibria at 𝜃𝜃 =
arcsin 𝜏𝜏/𝐶𝐶2, so long as |𝜏𝜏| < 𝐶𝐶2. For a 
sufficiently large magnitude of torque there 
is a saddle-node bifurcation at 𝜃𝜃 = ±𝜋𝜋/2 and 
𝜏𝜏 = ±𝐶𝐶2. For larger magnitude torques, the 
pendulum “flips over” and is spun 
perpetually. 

 

DISCRETE-TIME BIFURCATIONS 
The discrete-time versions of the three bifurcations we have seen are a 
straightforward adaption. A simple substitution of △ for 𝐷𝐷 yields the following 
normal forms: 

▷ SN :  △ 𝑥𝑥 =  𝜇𝜇 + 𝑐𝑐𝑥𝑥2   ⇒   𝐸𝐸𝐸𝐸 = (1 + 𝜇𝜇) + 𝑐𝑐𝑥𝑥2 
▷ TC :  △ 𝑥𝑥 = 𝜇𝜇𝜇𝜇 + 𝑐𝑐𝑥𝑥2  ⇒   𝐸𝐸𝐸𝐸 = (1 + 𝜇𝜇)𝑥𝑥 + 𝑐𝑐𝑥𝑥2 
▷ PF :   △ 𝑥𝑥 = 𝜇𝜇𝜇𝜇 + 𝑐𝑐𝑥𝑥3  ⇒   𝐸𝐸𝐸𝐸 = (1 + 𝜇𝜇)𝑥𝑥 + 𝑐𝑐𝑥𝑥3 

 

The interpretations of these bifurcations are the same as their continuous-time 
counterparts. It is worth looking at the staircase diagrams for each to discern 
the local changes in number and types of equilibria as 𝜇𝜇 passes through zero.  

Imagining what a system that is close to a 
bifurcation looks like is an instructive 
exercise. For example, suppose that a system 
is very close to a saddle-node bifurcation, but 
just on the side where there are no equilibria 
(locally). Despite the absence of equilibria, 
there is a shadow of the bifurcation to come: 
iterates slow down and hang about the area 
before departing. Such approximate 
equilibria are observable in biological or 
economic systems in which one remains 
nearly stationary for some time in an 
artificial near-equilibrium state. 
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THE PERIOD-DOUBLING BIFURCATION 
There is one new ingredient in discrete-time bifurcations in 1-D. In the above 
normal forms, the equilibrium at zero changes stability type at 𝜇𝜇 = 0, where 
the derivative of the right hand side attains the value +1. However, in discrete 
time, the stability criterion also fails when the derivative evaluates to −1. 
What happens when the derivative passes through the value −1? Consider the 
following normal form:  

▷ PD :     𝐸𝐸𝐸𝐸 = (−1 + 𝜇𝜇)𝑥𝑥 + 𝑐𝑐𝑥𝑥3 
This resembles the pitchfork bifurcation: there is an equilibrium at 𝑥𝑥 = 0 
which changes is stability type from stable to unstable as the (small) parameter 
𝜇𝜇 goes from positive to negative. Are there any other local equilibria? No, not 
for small values of 𝑥𝑥 and 𝜇𝜇. What happens as 
𝜇𝜇 passes through zero? 

A diagram in the case 𝑐𝑐 > 0 reveals 
something new: as 𝜇𝜇 changes from positive 
to negative, the stable equilibrium at 𝑥𝑥 = 0 
becomes unstable, and a small periodic orbit 
of period 2 emerges. This periodic orbit is 
itself stable, entraining nearby initial 
conditions to it. The periodic orbit increases 
in size with 𝜇𝜇: at the bifurcation point, the 
periodic orbit has collapsed onto the 
equilibrium.  

This case when 𝑐𝑐 > 0 is a supercritical period-doubling bifurcation. In the case 
where 𝑐𝑐 < 0, the period-2 orbit exists when 𝜇𝜇 > 0. It is an unstable periodic 
orbit, driving nearby initial condition away. As 𝜇𝜇 → 0+, the unstable period-2 
orbit collapses onto the stable equilibrium, rendering it unstable for 𝜇𝜇 < 0. The 
reader will note the similarity to the pitchfork bifurcation, though with some 
confusion of signs. Not for the last time have we seen this type of bifurcation. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 7 
. Why not in other normal forms? 

1. Laser example. 
2. Show that the torqued pendulum matches the normal form for the SN by 

Taylor expanding about the appropriate point. 
3. Degenerate bifurcations. 
4. Subcritical doom. 
5. Ricker’s population model : 𝑥𝑥𝑛𝑛+1 = 𝛼𝛼𝑥𝑥𝑛𝑛𝑒𝑒−𝑥𝑥𝑛𝑛  : high competition at high densities 

(cannibalism). Fixed point at zero and ln 𝛼𝛼. Transcritical bifurcation at 𝛼𝛼 = 1 
and flip at 𝛼𝛼 = 𝑒𝑒2.  

6. see https://webspace.science.uu.nl/~kouzn101/NLDV/Lect10_11.pdf 
7. Why the difference in super/sub signs for PD versus PF? 

  

https://webspace.science.uu.nl/%7Ekouzn101/NLDV/Lect10_11.pdf
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CHAPTER  8 : 
IDENTIFYING BIFURCATIONS 
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IFURCATIONS are a beautiful language for classifying how systems change 
as a function of parameters. For the local bifurcations we have seen so far, 

there are multiple ways to determine which bifurcations happen where. These 
explorations will lead us to questions of which bifurcations are most common, 
and what can occur outside the safety of simple bifurcations.  
 

TAYLOR EXPANSION 
Bifurcations arise when the Stability Criterion (i.e. linearization) fails. When 
the linear terms are indeterminate, it is to higher-order terms we must look. 
Once again, a Taylor series perspective is most useful.  
 
EXAMPLE: Which bifurcation(s) occur at 𝑥𝑥 = 0 in the following system? 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 − (sin 2𝑥𝑥)2 

Begin with a Taylor expansion about 𝑥𝑥 = 0. This leads to  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜇𝜇𝜇𝜇 − �2𝑥𝑥 −

(2𝑥𝑥)3

3 + 𝑂𝑂(𝑥𝑥5)�
2

=  𝜇𝜇𝜇𝜇 − 4𝑥𝑥2 + 𝑂𝑂(𝑥𝑥4) 

This is a transcritical bifurcation at 𝜇𝜇 = 0 and 𝑥𝑥 = 0. Remember, constants (like the “-4” 
in from of the 𝑥𝑥2 term above) do not change the type of bifurcation. 

EXAMPLE: The following experiences bifurcations at 𝑥𝑥 = 0: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = (𝜇𝜇2 + 6)𝑥𝑥 + 5𝜇𝜇 sinh 𝑥𝑥 

What type and at which parameter values is not obvious – a Taylor expansion of the 
hyperbolic sine is required. To third order, one has: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝜇𝜇2 + 6)𝑥𝑥 + 5𝜇𝜇 �𝑥𝑥 +
𝑥𝑥3

6 + 𝑂𝑂(𝑥𝑥5)� = (𝜇𝜇2 + 𝜇𝜇 + 6)𝑥𝑥 +
5𝜇𝜇
6 𝑥𝑥3 + 𝑂𝑂(𝑥𝑥5) 

The linear terms vanish at 𝜇𝜇 = −2, −3. The form indicates pitchfork bifurcations: which 
subtype is indicated by the sign of the cubic term at the bifurcation parameter value. No 
matter whether 𝜇𝜇 equals −2 or −3, the cubic term is negative, and both bifurcations are 
supercritical pitchforks.    

EXAMPLE: Consider the following system: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 −
𝑥𝑥2

1 + 𝑥𝑥2 

Begin with a Taylor expansion about 𝑥𝑥 = 0. The first term is polynomial; the second is 
accessible via the geometric series. For 𝑥𝑥 small, 

𝜇𝜇𝜇𝜇 −
𝑥𝑥2

1 + 𝑥𝑥2 = 𝜇𝜇𝜇𝜇 − 𝑥𝑥2�1 − 𝑥𝑥2 + 𝑥𝑥4 + 𝑂𝑂(𝑥𝑥6)� = 𝜇𝜇𝜇𝜇 − 𝑥𝑥2 + 𝑂𝑂(𝑥𝑥4) 

Thus, there is a transcritical bifurcation at (0, 0). This is not the only equilibrium. 
Factoring out an 𝑥𝑥, we have additional equilibria where    

𝜇𝜇 =
𝑥𝑥

1 + 𝑥𝑥2    ⇒    𝜇𝜇𝑥𝑥2 − 𝑥𝑥 + 𝜇𝜇 = 0   ⇒    𝑥𝑥 =
1 ± �1 − 4𝜇𝜇2

2𝜇𝜇  

This additional pair of equilibria exist only when |𝜇𝜇| < 1/2. When 𝜇𝜇 = ±1/2, there is a 
single equilibrium at 𝑥𝑥 = ±1, and this vanishes for |𝜇𝜇| > 1/2. This is a pair of saddle-
node bifurcations at 𝑥𝑥 = ±1 and 𝜇𝜇 = ±1/2.  
 

B 
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CONTINUATION 
In the previous example, the equilibrium at zero is unstable for 𝜇𝜇 > 0 by 
linearization. How would one determine the stability of the two additional 
equilibria created in the saddle node bifurcation? One is stable and the other 
unstable, but which is which? Consider the following argument. For 0 < 𝜇𝜇 <
1/2, the two additional equilibria are positive. Since the right-hand-side of the 
differential equation is a continuous function, the sign of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 alternates 
between (+) and (−) values except at the saddle-node bifurcation. Thus, the 
smaller of the two positive equilibria is stable and the larger is unstable: all this 
is driven by continuity and what is known at 𝑥𝑥 = 0.  

This type of argument – using continuity to argue an alternation between 
stable and unstable equilibria – is unique to continuous-time 1-D systems, but 
it is a very powerful method. 

EXAMPLE: The following parametrized system seems difficult to analyze: 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑 = 𝑥𝑥(𝜇𝜇 + 1 − 𝑥𝑥2)(𝜇𝜇 − 1 + 𝑥𝑥2) . 

The equilibria lie in the (𝑥𝑥, 𝜇𝜇) plane along the line 𝑥𝑥 =
0 and the parabolæ 𝜇𝜇 = ±(𝑥𝑥2 − 1). By continuity, the 
complement of these curves in the (𝑥𝑥, 𝜇𝜇) plane 
consists of connected components on which 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is 
strictly positive or strictly negative. Knowledge of 
the sign of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 from a single point in such a region 
suffices to infer the stability of all the equilibria 
which border it, since, by continuity, crossing any 

branch of equilibria (not at a bifurcation) changes 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 from positive to negative or 
vice versa. For example, when 𝑥𝑥 ≫ 𝜇𝜇, then 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is negative (since the leading order 
term is −𝑥𝑥5): therefore, the entire boundary of this region in the (𝑥𝑥, 𝜇𝜇) plane (which lies 
to the left) has stable equilibria. Crossing any of these curves switches 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 from 
negative to positive: one propagates stabilities accordingly.    

In general, you need only one point in the (𝑥𝑥, 𝜇𝜇) plane in order to determine the 
sign of 𝑓𝑓(𝑥𝑥, 𝜇𝜇): all stabilities of all branches of equilibria follow from this. In 
general, good choices for this starting point include places where 𝑥𝑥 or 𝜇𝜇 are 
either very small or (better still) very large.  

This technique – choosing a far-off point at which evaluation is simple then 
inferring the rest by continuity – is a type of continuation argument. This 
method is topological in nature and can be very powerful in more sophisticated 
settings.  
 

DEGENERACY & CODIMENSION 
From the examples we have considered, it would seem that three bifurcations 
[SN, TC, PF] plus an extra in discrete-time [PD] 
complete our classification in 1-D. Not so: a great 
many other bifurcations exist. 

EXAMPLE: The following system  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇2𝑥𝑥 − 𝜇𝜇𝑥𝑥2 − 𝜇𝜇𝑥𝑥3 + 𝑥𝑥4 = (𝜇𝜇𝜇𝜇 − 𝑥𝑥2)(𝜇𝜇 − 𝑥𝑥2) 

At first might appear to be a transcritical at 𝑥𝑥 = 0, 
however, when 𝜇𝜇 = 0, the second and third-order terms 
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also vanish. It is highly degenerate and does not match any of the bifurcation types yet 
covered. By factoring the right hand side as (𝜇𝜇𝑥𝑥 − 𝑥𝑥2)(𝜇𝜇 − 𝑥𝑥2)  and plotting in the (𝑥𝑥, 𝜇𝜇) 
plane, one can view this as a superposition of a TC and SN bifurcation.   

Every local bifurcation involves a failure of the Stability Criterion: in 
continuous-time, this means the first-order term vanishes. What determines 
the type of bifurcation is the leading-order term(s) in the Taylor expansion. 
While it is possible that many terms can vanish at the bifurcation point, it 
would seem to be a “rare” event. What that means is not easy to make precise.   

To get at a quantitative notion of degeneracy, consider adding a small 
perturbation to the right hand side. It is worth contemplating a few examples. 

EXAMPLE: Consider what happens when you add a small function of the form 𝑎𝑎0 +
𝑎𝑎1𝑥𝑥 (for 𝑎𝑎0, 𝑎𝑎1 small in absolute value) to the saddle node bifurcation  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇 − 𝑥𝑥2 + 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥 = (𝜇𝜇 + 𝑎𝑎0) + 𝑎𝑎1𝑥𝑥 − (1 − 𝑎𝑎2)𝑥𝑥2 

No matter what the (sufficiently small) values of 𝑎𝑎0, 𝑎𝑎1 and 𝑎𝑎2 are, this still is a 
quadratic function and gives a parabola opening downward in the (𝑥𝑥, 𝜇𝜇) plane. This 
remains a SN, though at a slightly different location. Note that this would not change 
even if higher order terms 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 were added to the perturbation. Properly argued, these 
observations would lead to the conclusion that SN bifurcations are structurally stable as 
bifurcations.   

EXAMPLE: Repeating the above example with a transcritical bifurcation leads to a 
different outcome. Consider the zero-locus of a TC bifurcation with a 0th order 
perturbation: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎0 + 𝜇𝜇𝜇𝜇 − 𝑥𝑥2 . 

The behavior of this system depends critically 
on whether 𝑎𝑎0 is positive or negative. For a 
fixed 𝑎𝑎0 < 0, the zero-locus is a pair of disjoint 
parabolæ in the (𝑥𝑥, 𝜇𝜇) plane – one opening up 
and one opening down, with the two becoming 
more pointed and morphing into the TC 
diagram as 𝑎𝑎0 → 0−. For 𝑎𝑎0 > 0, the singularity 
at (0,0) splits the other way, and the zero locus 
is a pair of disjoint branches which span all 
(small) values of 𝜇𝜇: there are no bifurcations. 
Again, as 𝑎𝑎0 → 0+, these two branches touch at 
the bifurcation point.  

One can show (with more work) that adding 
higher order terms 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 to the above does not 
change the qualitative features: the TC still 
splits as above. From this analysis, one 
concludes that a TC is thought of as a pair of 
SN bifurcations that meet tangentially. A TC 
bifurcation is, therefore, slightly more degenerate than a SN: unlike an SN, one can 
perturb away a TC.   

The proper term for describing the degeneracy of a bifurcation is its 
codimension. A detailed definition falls outside the scope of this text, but an 
intuitive description is feasible, given the examples above. For example:  
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▷ A SN bifurcation has codimension 1: it is persistent in generic 1-parameter 
families of dynamical systems, but not in 0-parameter families (that is, 
systems without a parameter).  

▷ A TC bifurcation has codimension 2: it is persistent in generic 2-parameter 
families of dynamical systems, but not in 1-parameter families. 

▷ A PF bifurcation has codimension 2, as will be argued in the next section. 
▷ A PD bifurcation in discrete time has codimension 1: (see exercises). 

Codimension records how many parameters are required for the bifurcation to 
be persistent (robust with respect to small perturbations). The word generic 
above is doing the heavy lifting.  

As per the Lemma at the beginning of Chapter 7, a stable or unstable 
equilibrium is of codimension 0: it persists under perturbations. From the 
proof of that Lemma, one guesses that the Implicit Function Theorem (and 
thus rather a lot of nontrivial analysis) goes into understanding and proving 
results about codimension.  
 

THE CUSP BIFURCATION 
In all the examples of this chapter, there is a single parameter, 𝜇𝜇. Such is not 
the case in more realistic settings, where multiple parameters are common. The 
following example of a bifurcation in a 2-parameter system helps explain some 
of the codimension considerations above.  

EXAMPLE: The following 2-parameter system, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝛼𝛼𝛼𝛼 �1 −

𝑥𝑥
𝛽𝛽� −

𝑥𝑥2

1 + 𝑥𝑥2 , 

is a logistic population model, with a nonlinear correction term. Here, 𝛼𝛼, 𝛽𝛽 > 0 are the 
parameters, controlling growth rates and environmental constraints. This is a model of 
infestation, where population breakouts can occur and stabilize, based on choice of 
parameter values.  

There is clearly an equilibrium at 𝑥𝑥 = 0. By linearization, this equilibrium is unstable 
for all 𝛼𝛼 > 0. In the context of a population model, this is natural and uninteresting. 
What matters are the stable equilibria at positive values of 𝑥𝑥. The nonzero equilibria 
occur where  

𝛼𝛼 �1 −
𝑥𝑥
𝛽𝛽

� =
𝑥𝑥

1 + 𝑥𝑥2    ⇒    𝑥𝑥3 − 𝛽𝛽𝑥𝑥2 + �1 +
𝛽𝛽
𝛼𝛼

� 𝑥𝑥 − 𝛽𝛽 = 0 . 

This is a cubic polynomial 
in 𝑥𝑥 and gives rise to a 2-D 
surface in (𝑥𝑥, 𝛼𝛼, 𝛽𝛽) space as 
illustrated. For a fixed pair 
of parameters (𝛼𝛼, 𝛽𝛽), there 
are either 1, 2, or 3 real 
positive solutions to the 
cubic. By a continuity 
argument (and the 
classification at 𝑥𝑥 = 0), 
these equilibria are, in 
increasing order, stable (if 
1), stable – unstable – stable (if 3), or a mix of stable and degenerate (if 2). This serves as 
a general pattern for an infestation, which has stable population sizes that are small (the 
infestation is suppressed) or large (the infestation is established).  
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The graph of such a cubic is called a cusp singularity and contains a great deal of 
structure: an idealized (not to scale) model of a cusp is illustrated. Fixing one parameter 
(𝛼𝛼) and varying the other (𝛽𝛽) gives, for most values of 𝛼𝛼, a branch of stable equilibria 
along with a stable-unstable branch emanating from a saddle-node. As one tunes 𝛼𝛼, 
these two sets of equilibria collide in a pitchfork bifurcation. One can thus think of the 
cusp as an unfolded pitchfork.  

On the other hand, fixing 𝛽𝛽 and varying 𝛼𝛼 slices the cubic surface in way that, 
depending on 𝛽𝛽, either has one branch of stable equilibria, or a “bent” branch with a pair 
of saddle-nodes as illustrated. The cubic curve of equilibria expresses the phenomenon 
of hysteresis: as one varies 𝛼𝛼, the stable equilibrium is annihilated in a saddle-node 
bifurcation, sending one to a far-off stable equilibrium. The salient feature of this 
hysteresis is that this is irreversible. If one, say, is lax in kitchen cleanliness and a 
mouse infestation results (one has tuned 𝛼𝛼 past the point of a saddle-node, drifting 
swiftly to the stable equilibrium of large population size), then a mere return to prior 
cleanliness (changing 𝛼𝛼 back) does little: one is still stuck at the large-size stable 
equilibrium. Only a drastic change to force a saddle-node bifurcation can remedy the 
infestation.    

The bifurcation in the previous example is called a cusp bifurcation; such is 
found whenever a pitchfork bifurcation (that normally requires a symmetry to 
exist) is embedded in a system with an additional (symmetry-breaking) 
parameter. The cusp bifurcation is an excellent example of a codimension-2 
bifurcation. In any cusp bifurcation, one sees in the parameter plane two 
branches of saddle-node curves emanating from a pitchfork point.  

EXAMPLE: One can see (and indeed 
build) a mechanical example of a 
cusp bifurcation with some solid 
pieces and a few springs or rubber-
bands. The ensuing device 
(popularized by Zeeman as the 
“catastrophe machine”) has state 
space 𝕊𝕊1 (the rotation angle of a 
disc) and parameter space ℝ2 (the 
location of the end of the second 
spring in the plane). It is satisfying to feel the hysteretic snap of the saddle-node 
collapse to the remaining stable equilibrium. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 8 
Lots of examples of Taylor 

1. Lots of examples of continuation 
2. Lots of examples of multiparameter systems 
3. PD is codimension 1 
4. TC and PF are codimension 1 within symmetric systems 
5. Drawing a bifurcation diagram for a cusp 
6. Supercritical versus subcritical cusps 
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CHAPTER  9 : 
1-D MYSTERIES 
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HIS VOLUME on 1-D dynamics has told a simple story. There are two types 
of systems – continuous and discrete time – with corresponding calculi. In 

each case, the plan is the same: find the equilibria, linearize the system about 
the equilibria, then classify their stability. In the case of parameters, one looks 
for changes in the number or types of equilibria, with Taylor expansion 
classifying the ensuing bifurcations. The story gets more complicated with the 
possibility of periodic orbits in discrete-time, or in continuous-time on a circle.   

This is the end of the simple story, but it is not the end of dynamics in 1-D. 
Dynamical systems is a beautiful subject, so much so that indulgence becomes 
a temptation. The following vignettes are both foreshadowings of more 
advanced topics in 1-D dynamics and bifurcations, as well as inoculations 
against excess.  
 

SINGULARTY & CATASTROPHE 
There is little room for the numinous in continuous-time 1-D dynamics; 
nevertheless, when considering bifurcations in systems with multiple 
parameters, a way emerges. Classification of bifurcations proceeds through 
understanding Taylor expansions and assigning normal forms and 
codimension. Both terms have highly technical definitions artfully avoided in 
this text.  

A deeper approach to understanding bifurcations comes from singularity 
theory, which classifies local appearances of the zero-locus of polynomial 
functions. We have already seen two fundamental types of singularities which 
(one argues) are persistent under perturbations. These have normal forms as 
follows: 
 

▷ The fold singularity: 𝑎𝑎 + 𝑥𝑥2. 
▷ The cusp singularity: 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑥𝑥3. 

 

In the first case, one has the 1-parameter unfolding of the SN; in the second, 
the 2-parameter unfolding of the PF as the point where a pair of SN curves 
meet in a cusp in the parameter plane. The codimension of these bifurcations 
matches the dimension of the minimal parameter space needed to unfold it in 
the normal form. 

Why stop there? Singularity theory uses changes of coordinates to produce 
normal forms of higher-order singularities (and thus higher codimension 
bifurcations). The next two higher-order singularities have normal forms as 
follows: 
 

▷ The swallowtail singularity: 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑥𝑥2 + 𝑥𝑥4. 
▷ The butterfly singularity: 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3 + 𝑥𝑥5. 

 

The former has a 3-D parameter space, and the singularity can be visualized; 
with work, one sees several lower-order bifurcation curves and surfaces in the 
parameter space. The latter has a 4-D parameter space and is rather more 
challenging.  

The resulting theory and its applications – popularized by Thom in the 1950s 
and Zeeman in the 1960s – was called catastrophe theory. Buoyed by the 
ubiquity of hysteresis phenomena in all manner of systems – physical, 
biological, economic, and social – catastrophists conjured swarms of 
swallowtails in a flurry of articles and books that tipped away from 

T 
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mathematics and more towards socio-morphology. The resulting admixture of 
mysticism and hype caused the subject to live up to its name: it collapsed.  

This is unfortunate, as the mathematics supporting singularity theory branches 
into elegant and powerful techniques, using Lie groups (which obviate the need 
for ever-more-esoteric names of singularities), sheaf theory (and the intersection 
homology which works so well for understanding singularities), and, more 
generally, algebraic geometry (the overarching subject, of which singularity 
theory is a small corner). Despite the failed hype, Thom and Zeeman were 
right: bifurcations and singularities surround us. 
 

PERIOD-DOUBLING CASCADES 
As noted in Chapter 7, bifurcations in discrete-time 1-D systems are the same 
as in continuous time, with one exception: the period doubling [PD] 
bifurcation. This occurs when the value of the derivative at an equilibrium 
passes through −1, and these implicate a period-2 orbit, stable or unstable, 
depending on whether the bifurcation is supercritical [PD•] or subcritical [PD•].  

Such is the simple story. What happens when one sees period-doubling in 
practice can be much more interesting. Consider a logistic model (from Chapter 
3) with parameter 𝜇𝜇 > 0 ,normalized to represent 𝑥𝑥 as a fraction of population: 

𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝜇𝜇) = 𝜇𝜇𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛). 
Any initial condition in [0,1] remains within this interval for all time for any 
choice of 0 < 𝜇𝜇 ≤ 4. This model has equilibria at 𝑥𝑥 = 0 and at 𝑥𝑥 = 1 − 1/𝜇𝜇, with 
the second equilibrium being stable for all 0 < 𝜇𝜇 < 3 (and attracting all initial 
conditions in (0,1)). At 𝜇𝜇1 = 3, there is a supercritical PD• bifurcation, giving 
rise to a stable period-2 orbit for 𝜇𝜇 slightly larger than 3. The equilibrium 
remains unstable for all 𝜇𝜇 > 3. 

What happens next is key. The period-2 orbit can be thought of as an 
equilibrium of the system with right hand side 𝑓𝑓(2) = 𝑓𝑓 ∘ 𝑓𝑓, as mentioned in 
Chapter 5. This equilibrium (and thus the period-2 orbit of the original system) 
can undergo further bifurcations. Indeed, the period-2 orbit remains stable only 
until 𝜇𝜇2 = 1 + √6 ≈ 3.449, at which point the period-2 orbit becomes unstable, 
shedding a stable period-4 orbit. It has undergone another PD•. This period-4 
orbit remains attracting for a short window until, at 𝜇𝜇3 ≈ 3.544, there is a third 
PD• to a stable period-8 orbit. Period-16 is born at 𝜇𝜇4 ≈ 3.564 and period-32 at 
𝜇𝜇5 ≈ 3.569. Within a narrow window of parameter space, this cascade of PD•s 
accumulates to a limit 

𝜇𝜇∞ = lim
𝑛𝑛→∞

𝜇𝜇𝑛𝑛 ≈ 3.5696916089 … 

Past this, more chaotic behaviors ensue.  
 

UNIVERSALITY IN PERIOD-DOUBLING 
The example of the logistic model undergoing a period-doubling cascade is not 
exceptional – it is rather the rule. The reader may try using 𝑓𝑓 = 𝜇𝜇 sin 𝑥𝑥  or 𝑓𝑓 =
𝜇𝜇 − 𝑥𝑥2 or any function that has a simple local maximum. In many cases, there 
appears to be a PD cascade, with the doubling accumulating at some critical, 
explosive parameter.  
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Plotting a diagram in the (𝑥𝑥, 𝜇𝜇) plane as we did with continuous-time systems 
leads to beautiful and mysterious plots. It is best to plot points by taking some 
number of initial conditions and plotting the eventual behavior – say, after 
1000 or so iterates. One can see both the PD cascade as well as the chaos that 
follows. Focusing on the period-doublings, one clearly sees the accumulating 
sequence. 

In the 1970s, it was noted independently by Feigenbaum and by Coullet & 
Tresser that the rate at which the PDs accumulate in many different 1-D 
models (and even in certain physical systems) has a limiting ratio, 

𝜆𝜆 = lim
𝑛𝑛→∞

𝜇𝜇𝑛𝑛−1 − 𝜇𝜇𝑛𝑛−2

𝜇𝜇𝑛𝑛 − 𝜇𝜇𝑛𝑛−1
≈ 4.669201609103 … 

Although the parameter values at which the PDs occur are entirely model-
dependent, their asymptotics appear to be related: it was noticed in numerical 
experiments that this 𝜆𝜆 ≈ 4.669 always appears as the exponential rate at 
which PDs accumulate. Said more precisely, if the 𝑛𝑛th PD bifurcation occurs at 
parameter 𝜇𝜇𝑛𝑛 and these limit to a parameter 𝜇𝜇∞ = lim

𝑛𝑛 𝑛𝑛 𝜇𝜇𝑛𝑛, then the 
observational evidence is that, for some constant 𝐶𝐶, 

𝜇𝜇𝑛𝑛 − 𝜇𝜇∞ ~ 𝐶𝐶𝜆𝜆−𝑛𝑛 . 
Much ado was made over the discovery of this new “universal” Feigenbaum 
number, with comparisons to 𝜋𝜋, 𝑒𝑒, or 𝑖𝑖, as part of the Brandnew Science of Chaos. A 
mysterious irrational number, together with the fractal-like bifurcation 
diagram with the potential for infinitely-fine borders between chaos and order 
is an irresistible temptation for mathematical mysticism.  

Such numerological awe is misplaced. This number, 𝜆𝜆 ,is usually given a 
different symbol in the literature (typically 𝛿𝛿 or 𝜌𝜌).The argument for using “𝜆𝜆” 
can only be hinted at this early in the text: it is the dominant eigenvalue of an 
operator on 1-d discrete-time dynamical systems. In Volumes 2 and 3, 
eigenvalues and eigenvectors will become part of our repertoire for 
understanding dynamical systems. Thanks to the hard work of many 
mathematicians (especially Lyubich, McMullin, and Sullivan), the 
experimentally-motivated conjectures about the universality of the 
asymptotics of period-doublings have precise hypotheses under which precise 
theorems and proofs hold. That this arises from eigenvalues from a dynamical 
system on the space of dynamical systems is what is worthy of awe.  
 

CHAOS 
The logistic model is indeed chaotic for values of 𝜇𝜇 > 3.57, as are many other 1-
d dynamical systems. What does this mean? The diagrams look “wild”, but 
something more principled is in order. We give a precise definition of chaos in 
Volume 4; for now, a foreshadowing is appropriate.  

The logistic map at the parameter 𝜇𝜇 = 4 is, in a sense, more chaotic than at the 
point 𝜇𝜇 = 3.57 just past the accumulation of PDs. At 𝜇𝜇 = 4, orbits of the logistic 
model appear to bounce about the interval [0,1], independent of the initial 
condition. This cannot be quite true, as the system clearly has two (unstable) 
equilibria. Such exceptions pass also to periodic orbits. As we will argue in 
Volume 4, this system at this parameter value has periodic orbits of all periods. 
They are not readily seen because they are all unstable. They are, not, however, 
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hidden: given any initial condition 𝑥𝑥0 ∈ [0,1] and any 𝜖𝜖 > 0, there are infinitely 
many periodic points within 𝜖𝜖 of 𝑥𝑥0. This is not obvious.  

Is that, then, what chaos entails? Not quite. In 1-D discrete-time systems, one 
can have chaotic dynamics without having periodic orbits of all periods. In 
Volume 4, we shall learn of a wonderful theorem that implies, for example, 
that having a periodic orbit of period 44 forces the existence of periodic orbits 
of periods 48 and 32, but not (necessarily) of periods 36, 42, or 11.  Chaos in 1-D 
is well-ordered.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 9 
 
The exercises in this chapter are more optional than in others and may be ignored by 
students encountering the material for the first time.  
 

1. Euler’s method 
 
 
 
 

 



1 

 

 

 

 

 

 

 

 

VOLUME  2   
THE NEXT DIMENSION 

 

 

 

 

  



2 

 
 

 
 
 

 

CHAPTER  10 : 
COUPLED & DECOUPLED SYSTEMS 

 

 

  



3 

HE ASCENT from 1-D to 2-D dynamical systems impacts everything thus far 
learned – from classification of equilibria to the Stability Criterion, 

bifurcations, periodic orbits, and more. The plane is the perfect domain for 
learning dynamics, especially in continuous time. It is just complex enough to 
fascinate, but not so byzantine as to bewilder. 
 

INTERACTIONS 
This Volume considers dynamical systems with two variables, 𝑥𝑥 and 𝑦𝑦, both 
functions of time, continuous or discrete. When the dynamics of one variable 
depends not only on its state but on the other’s state as well, the system is said 
to be coupled. In Chapter 6, we worked with two types of coupled systems – 
drivers and spinners – whose tidy analysis comprised a just-so story of reducing 
everything to a 1-D system on the relative differences between states.   

This will no longer do. The dynamical systems of this Volume are of the 
following general forms:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥, 𝑦𝑦)                  ∶                 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑥𝑥, 𝑦𝑦)                  ∶                 𝑦𝑦𝑛𝑛+1 = 𝑔𝑔(𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛)  

with left and right denoting continuous and discrete time systems respectively. 
Such a general case is far too difficult to solve explicitly, and the qualitative 
methods introduced in Volume 1 will be updated to 2-D. Equilibria (constant 
solutions) will be identified, linearized about, and classified.  

The complexities of 2-D dynamical systems will emerge not from increasingly 
twisted models or manufactured intricacies, but from simple couplings of simple 
systems in 1-D. 

EXAMPLE: Consider the following uncoupled linear systems in continuous and discrete 
time: 

𝐷𝐷𝐷𝐷 = 𝑥𝑥         ∶           𝐸𝐸𝐸𝐸 = 𝑥𝑥 

𝐷𝐷𝐷𝐷 = −𝑦𝑦         ∶           𝐸𝐸𝐸𝐸 = −𝑦𝑦 

These systems each have a single equilibrium at the origin (0,0). Is this equilibrium stable 
or unstable? The dynamics along the 𝑥𝑥-axis are unstable; the dynamics along the 𝑦𝑦-axis 
are stable. Such saddle points are familiar objects from optimization and game theory; 
their dynamical emanations will emerge as a frequent feature in 2-D systems.  

EXAMPLE: Consider the following twisted variant of the previous example: 

𝐷𝐷𝐷𝐷 = 𝑦𝑦         ∶           𝐸𝐸𝐸𝐸 = 𝑦𝑦 

𝐷𝐷𝐷𝐷 = −𝑥𝑥         ∶           𝐸𝐸𝐸𝐸 = −𝑥𝑥 

These are coupled, though in a very simple manner. The solutions to these systems are 
made clear by converting them to a second-order linear equation on a single variable, say, 
𝑥𝑥. Doing so by substitution yields the following: 

𝐷𝐷2𝑥𝑥 = −𝑥𝑥         ∶           𝐸𝐸2𝑥𝑥 = −𝑥𝑥 

The continuous-time version is a simple harmonic oscillator and has general solution a 
combination of sines and cosines; the discrete-time version is a time-discretization 
thereof. Both these systems give rise to oscillatory solutions about the origin. Such 
equilibria are called centers and will drive much of the narrative of this Volume, from 
oscillations to periodic orbits and more.  

 

T 
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TOWARDS LINEAR ALGEBRA 
The story of this Volume begins as the last with a mathematical preface. Here, 
the relevant tools focus on linear algebra as opposed to calculus and Taylor 
expansion. The reader without much experience in linear algebra will find it easy 
to catch up, since we focus on the 2-D case. The reader who has learned linear 
algebra but is unconvinced of its utility will find prime motivations here. 

Linear dynamical systems in 2-D are best cast in the language of matrices: 

𝐷𝐷 �
𝑥𝑥
𝑦𝑦� = �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

� �
𝑥𝑥
𝑦𝑦�                  ∶                 𝐸𝐸 �

𝑥𝑥
𝑦𝑦� = �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

� �
𝑥𝑥
𝑦𝑦� 

Such a linear system is uncoupled if and only if the matrix is diagonal; that is, all 
off-diagonal entries vanish. The two examples from the previous subsection – 
the saddle and the center – are linear systems whose matrices are, respectively, 

�1 0
0 −1�          ∶           �0 −1

1 0 � 

The former is uncoupled and implicates a mix of stable and unstable dynamics; 
the latter corresponds to an oscillatory solution. Both these behaviors are clear 
from the structure of the matrices, the latter being a rotation by a quarter-turn 
in the plane.  

EXAMPLE: Consider the following linear systems in continuous and discrete time: 

𝐷𝐷 �
𝑥𝑥
𝑦𝑦� = �3 −4

2 −3� �
𝑥𝑥
𝑦𝑦�                  ∶                 𝐸𝐸 �

𝑥𝑥
𝑦𝑦� = �3 −4

2 −3� �
𝑥𝑥
𝑦𝑦� . 

These are coupled, and it is not immediately obvious how to proceed. One fruitful 
approach involves a miraculous change of variables. If we let 𝑢𝑢 = 2𝑥𝑥 + 𝑦𝑦 and 𝑣𝑣 = 𝑥𝑥 + 𝑦𝑦, 
then, with sufficient work, one can show that  

𝐷𝐷 �𝑢𝑢
𝑣𝑣� = �1 0

0 −1� �𝑢𝑢
𝑣𝑣�                  ∶                 𝐸𝐸 �𝑢𝑢

𝑣𝑣� = �1 0
0 −1� �𝑢𝑢

𝑣𝑣� . 

This transformed system is uncoupled and agrees with the saddle considered previously. 
Explicit solutions for 𝑢𝑢 and 𝑣𝑣 can be combined to yield solutions for 𝑥𝑥 and 𝑦𝑦. The reader 
who goes to the trouble of doing the sufficient work above will discover much of the 
mechanics of the matrix algebra covered in this chapter. 

This strategy of diagonalization will motivate much of the linear algebra we 
consider. Of note is its apparent limitations: some linear systems (including the 
center we have already seen) are neither diagonal nor diagonalizable. This 
reflects the fact that a rotation cannot be assembled from two independent 1-D 
systems.  
 

TOWARDS CLASSIFICATION 
The particular values that arise on the diagonal of a suitably simplified matrix 
are of prime importance in dynamics. These eigenvalues – real or complex – will 
fully characterize linear dynamics. 

In 1-D, the Stability Criterion was our principal achievement, distinguishing 
between stable and unstable equilibria based on linearization. Eigenvalues will 
drive out update to the Stability Criterion and lead to classification results. The 
one-dimensional dichotomy of stable versus unstable equilibria bifurcates and 
blossoms in 2-D into a taxonomy of equilibrium types: sources, sinks, saddles, 
spirals, centers and more will enter our dynamical lexicon, all delineated by 
eigenvalues and captured through simple matrix properties (notably trace and 
determinant).  
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This eigenvalue approach lines up an attack on nonlinear dynamics in 2-D using 
the same strategies as in Volume 1. First, one finds the equilibria for a system. 
By linearizing the dynamical system at an equilibrium and applying knowledge 
of explicit solutions to linear systems, a local approximation to the full nonlinear 
system ensues. Eigenvalues provide a quick qualitative check on local 
phenomena, easily computed and classified. 

There are, however, some updates to the story. In 1-D, visualization of dynamics 
was relatively straightforward. In 2-D, this is still feasible, but only in 
continuous-time systems: discrete-time systems in 2-D are significantly more 
complex. Our ability to infer the big picture from local linearizations in 1-D was 
effortless; that will no longer be the case. Technical questions of when 
linearization is and is not trustworthy come into play, and we arrive at a novel 
result – the Hartman-Grobman Theorem – that will give guarantees on faithful 
representations.  
 

TOWARDS MODELLING 
Many of the examples in Volume I – from logistic population models to genetic 
switches – were necessarily cartoonish and implausible. The situation is a little 
better with the addition of an extra dimension. An increase in mathematical 
sophistication coincides with increased fidelity and expressiveness of the models 
presented. Realistic models will have to wait for the capabilities of Volume 3, 
but a few somewhat realistic situations will be considered here, including the 
following.  

POPULATION MODELS: The growth and decay of a given population is rarely 
uncoupled from that of other species. The ability to work with coupled systems 
in 2-D will allow for 2-species models of predatory-prey and competitive types. 
Population cohort models (dividing a population into two or three fluctuating 
subgroups) will likewise be analyzable. Though these are still limited in scope, 
the dynamical phenomena that these simple models reveal will be instructive for 
later explorations in Volume 3 that work with arbitrary numbers of species or 
cohorts.   

SECOND ORDER MODELS: Linear differential equations and linear recurrence 
relations of second order (involving quadratic polynomials in the operators 𝐷𝐷 and 
𝐸𝐸 for continuous and discrete time respectively) will comprise an initial 
application of our linear-algebraic techniques. These, then, will permit the 
analysis of nonlinear second-order models, which have applications ranging 
from physical to biological and economic systems, the latter arising in market 
systems with time-delays in price between buyer and seller.  

OSCILLATION MODELS: Second order continuous-time systems are particularly 
useful in working with nonlinear oscillators ranging from mechanical vibrations 
to nonlinear electrical circuits and more. All of this is driven by the existence of 
centers, arising from the wonders of imaginary eigenvalues. In the context of 
parametrized systems, these will lead to bifurcations that, in a very realistic way, 
model the rise of resonant vibrations or oscillations in systems. 
 

TOWARDS GLOBAL PHENOMENA 
Perhaps the biggest challenge in this Volume is the role of global qualitative 
features in controlling dynamics. Consider the bifurcation theory of Volume 1, 
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in which everything was a local phenomenon contained in a neighborhood of an 
equilibrium. In this Volume, such local bifurcations are also abundant, but 
accompanied by a few new entrants. One of these, the Hopf bifurcation, 
implicates periodic orbits, which now can and do exist in abundance.  

The detection of periodic orbits in 2-D is subtle, though not completely 
intractable. Several methods for ascertaining or obstructing the existence of 
periodic orbits will hold our attention later in this Volume. The detection and 
control of non-local phenomena will require non-local mathematics: derivatives 
and Taylor expansion will give way to integrals and topological methods, a taste 
of which concludes this Volume.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 10 
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INEAR ALGEBRA is both the principal tool and the proper perspective with 
which to handle interconnected systems. This chapter is a swift self-

contained primer for those ideas from linear algebra most useful in solving 
coupled systems, frequently focusing on the 2-dimensional case relevant to this 
Volume.  
 

VECTOR SPACES & SUBSPACES 
Linear algebra is the algebra of vector spaces and linear transformations. A (real) 
vector space is a collection of objects – abstract vectors – which admit a vector 
addition operation, along with a (real) scalar multiplication and a collection of 
rules familiar from the use of vectors in geometry and physics. Of note is the 
zero vector, 𝟎𝟎, which is the additive identity.   

Students of multivariable calculus will be familiar with vectors of a more 
concrete form, typically conflated with points in ℝ𝑛𝑛 having explicit coordinates. 
These are excellent examples and will animate much of what we do in this text. 
However, more abstract vector spaces abound. Spaces of signals, images, 
solutions to linear dynamical systems, or subsets of data sets are all excellent 
contemporary examples of abstract vector spaces.  

Any collection of vectors 𝑆𝑆 = {𝒗𝒗𝑖𝑖} in a vector space 𝑉𝑉 has a span consisting of all 
possible linear combinations:  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆) = � 𝑐𝑐𝑖𝑖  𝒗𝒗𝑖𝑖
𝑖𝑖

      ∶         𝑐𝑐𝑖𝑖 ∈ ℝ . 

Such a span is a subspace of 𝑉𝑉: it is closed under addition and scalar 
multiplication. A collection of vectors which spans a vector (sub)space and does 
so minimally (in the sense that they are linearly independent) forms a basis. The 
standard basis in Euclidean ℝ𝑛𝑛 is the usual set of unit vectors along the 
coordinate axes, generalizing the 𝚤𝚤,̂ 𝚥𝚥̂, 𝑘𝑘�  vectors from 3-D physics.  

Given any basis ℬ = {𝑢𝑢𝑖𝑖}𝑖𝑖=1
𝑛𝑛 , a vector 𝒗𝒗 has a well-defined ordered 𝑛𝑛-tuple of 

coordinates which determine that vector completely via the linear combination, 

𝒗𝒗 =

⎝

⎜
⎛

𝑐𝑐1
𝑐𝑐2
𝑐𝑐3
⋮

𝑐𝑐𝑛𝑛⎠

⎟
⎞

= � 𝑐𝑐𝑖𝑖𝒖𝒖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 . 

When writing out vectors in terms of coordinates, a vertical column vector must 
always be used. In this Volume, all vectors will be in spaces of dimension two; 
thus, any basis has precisely two (independent) elements.  

 

LINEAR TRANSFORMATIONS 
Vector spaces by themselves are impotent. What makes vector spaces useful is 
the ability to transform vectors from one vector space to another via linear 
transformations. A linear transformation 𝐴𝐴: 𝑉𝑉 → 𝑊𝑊 is an operation that respects 
the vector addition and scalar multiplication of each. When 𝑉𝑉 and 𝑊𝑊 have 
explicit bases, then 𝐴𝐴 is represented as a matrix with 𝑚𝑚 = dim 𝑊𝑊 rows and 𝑛𝑛 =
dim 𝑉𝑉 columns. In this case, the transformation 𝐴𝐴 acts on a vector 𝑣𝑣 ∈ 𝑉𝑉 via 
matrix-vector multiplication. 

L 
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There are certain subspaces associated to a linear transformation 𝐴𝐴: 𝑉𝑉 → 𝑊𝑊. The 
kernel of 𝐴𝐴, ker 𝐴𝐴,is the subspace of all 𝒗𝒗 ∈ 𝑉𝑉 sent by 𝐴𝐴 to 𝟎𝟎 ∈ 𝑊𝑊. The image of 𝐴𝐴, 
im 𝐴𝐴, is the set of all vectors 𝒘𝒘 ∈ 𝑊𝑊 of the form 𝒘𝒘 = 𝐴𝐴𝒗𝒗 for some 𝒗𝒗 ∈ 𝑉𝑉. That 
these are subspaces follows from linearity of 𝐴𝐴. Linear transformations are the 
core of linear algebra: feedback is the genius of dynamical systems. The linear-
algebraic incarnation of feedback is the class of linear transformations from a 
vector space to itself. These self-targeting linear transformations of the form 
𝐴𝐴: 𝑉𝑉 → 𝑉𝑉 bear the intimidating name of endomorphisms. In explicit coordinates, 
they are square matrices. In this text, almost all the linear transformations seen 
will be endomorphisms. 

 

SIMPLE EIGENSPACES 
We have seen that in dynamical systems, one cares about equilibria: they are 
states which are invariant under the dynamics. Any endomorphism 𝐴𝐴: 𝑉𝑉 → 𝑉𝑉 
also has an equilibrium at the origin: 𝐴𝐴(𝟎𝟎) = 𝟎𝟎. However, there are other 
subspaces of 𝑉𝑉 that are invariant under 𝐴𝐴: any vector in the subspace remains in 
the subspace under the image of 𝐴𝐴. The largest such subspace is 𝑉𝑉 itself; the 
smallest is 𝟎𝟎. What lies between are eigenspaces of 𝐴𝐴.   

A simple eigenspace of 𝐴𝐴: 𝑉𝑉 → 𝑉𝑉  is a 1-dimensional subspace 𝐸𝐸 of 𝑉𝑉 that is 
invariant under 𝐴𝐴. Otherwise said, for any 𝒗𝒗 ∈ 𝐸𝐸, 𝐴𝐴𝒗𝒗 ∈ 𝐸𝐸. Since 𝐸𝐸 is 1-
dimensional, this is equivalent to saying that  

𝐴𝐴𝒗𝒗 = 𝜆𝜆𝒗𝒗   ∶      𝒗𝒗 ∈ 𝐸𝐸 

for some constant 𝜆𝜆. This constant – uniquely defined for 𝐸𝐸 – is called an 
eigenvalue; any 𝒗𝒗 ≠ 𝟎𝟎 in 𝐸𝐸 is an associated eigenvector of 𝐴𝐴. Eigenvalues tend to 
be rare (discrete); eigenvectors are never unique, since for any scalar 𝑐𝑐 a rescaled 
eigenvector 𝑐𝑐𝒗𝒗 satisfies 𝐴𝐴(𝑐𝑐𝒗𝒗) = 𝑐𝑐(𝐴𝐴𝒗𝒗) = 𝑐𝑐(𝜆𝜆𝒗𝒗) = 𝜆𝜆(𝑐𝑐𝒗𝒗). 

How many eigenvalues does an endomorphism have? In what follows, let us 
assume that 𝑉𝑉 = ℝ2 and 𝐴𝐴 is represented as an explicit 2-by-2 matrix. It would 
appear, even in this simple setting, that eigenvalues and eigenspaces may or may 
not exist. Witness the rotation matrix 

𝐽𝐽 = �0 −1
1 0 � . 

This linear transformation would seem to have no simple eigenspaces: any 1-D 
vector subspace is rotated by an angle 𝜋𝜋/2. We will revisit this example. 
 
Beginning with the equation 𝐴𝐴𝒗𝒗 = 𝜆𝜆𝒗𝒗, move everything to one side and factor 
out the linear operator like so: 

(𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒗𝒗 = 𝟎𝟎 . 
Eigenvalues are precisely those values of 𝜆𝜆 at which the above is satisfied for a 
nonzero (eigen)vector 𝒗𝒗. Since an endomorphism is noninvertible if and only if 
it has nonzero kernel, we conclude that 𝜆𝜆 is an eigenvalue of 𝐴𝐴 if and only if  

det(𝐴𝐴 − 𝜆𝜆𝜆𝜆) = 0 . 
This is a polynomial equation in 𝜆𝜆 of degree 𝑛𝑛, where 𝐴𝐴 is 𝑛𝑛-by-𝑛𝑛: the 
characteristic polynomial of 𝐴𝐴. From this more algebraic perspective, one 
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concludes that a 2-by-2 matrix has a pair of eigenvalues, characterized by one of 
the following three cases: 

▷ There are two real, distinct eigenvalues 𝜆𝜆1 ≠ 𝜆𝜆2; 
▷ There are two real, repeated eigenvalues 𝜆𝜆1,2 = 𝜆𝜆; or 
▷ There is a complex conjugate pair of eigenvalues 𝜆𝜆1,2 = 𝛼𝛼 ± 𝑖𝑖𝑖𝑖, with 𝛽𝛽 ≠

0. 

These three cases present a trichotomy that will recur throughout this text. 

EXAMPLE: Diagonal matrices are simple. The diagonal entries (even if zero) are precisely 
the eigenvalues. The 𝑥𝑥-axis is the eigenspace of the first eigenvalue; the 𝑦𝑦-axis is the 
eigenspace of the second, even if the two eigenvalues are the same. 

EXAMPLE: Consider the following linear transformation of ℝ2: 

𝐴𝐴 = �2 2
1 3� . 

The characteristic polynomial is (2 − 𝜆𝜆)(3 − 𝜆𝜆) − 2 = 𝜆𝜆2 − 5𝜆𝜆 + 4, which has roots 𝜆𝜆1 = 1 
and 𝜆𝜆2 = 4. Eigenvectors can be chosen by solving (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒗𝒗 = 𝟎𝟎 for 𝒗𝒗 ≠ 𝟎𝟎. Thus,  

(𝐴𝐴 − 𝜆𝜆1)𝒗𝒗1 = 𝟎𝟎  ⇒   �2 − 1 2
1 3 − 1� 𝒗𝒗1 = 𝟎𝟎  ⇒   𝒗𝒗1 = � 2

−1� , 

(𝐴𝐴 − 𝜆𝜆2)𝒗𝒗2 = 𝟎𝟎  ⇒   �2 − 4 2
1 3 − 4

� 𝒗𝒗2 = 𝟎𝟎  ⇒   𝒗𝒗2 = �1
1� . 

The case of real, distinct eigenvalues is most desirable, as the eigenvectors form 
a basis, an eigenbasis: 

LEMMA: If a linear transformation 𝐴𝐴: ℝ2 → ℝ2 has real distinct eigenvalues, then 
the associated eigenvectors form a basis for ℝ2. 

▷ Proof: By way of contradiction, assume the two eigenvectors are not linearly 
independent. Then they are parallel and must therefore have the same 
eigenvalue, belonging to the same eigenspace. ◁ 

 

REPEATED EIGENVALUES 
In the case of a repeated real eigenvalue 𝜆𝜆, there are two possibilities, 
distinguished by the dimension of the eigenspace. If ker(𝐴𝐴 − 𝜆𝜆𝜆𝜆) has dimension 
two, then, since the vector space is 2-dimensional, every nonzero vector is an 
eigenvector. This is not the only possibility. 

EXAMPLE: Consider the following linear transformation of ℝ2: 

𝐴𝐴 = �1 −1
1 3 � . 

The characteristic polynomial is (1 − 𝜆𝜆)(3 − 𝜆𝜆) + 1 = 𝜆𝜆2 − 4𝜆𝜆 + 4, which has roots 𝜆𝜆1,2 =
2. Solving (𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒗𝒗 = 𝟎𝟎 reveals a 1-dimensional eigenspace, since  

(𝐴𝐴 − 2𝐼𝐼) =   �−1 −1
1 1 � 

has 1-dimensional kernel spanned by the obvious choice of eigenvector 𝒗𝒗 = (1, −1)⊤.  

A basis of eigenvectors is most desirable for solving linear dynamical systems. In 
the case of a repeated eigenvalue with 1-dimensional eigenspace, there is a “best” 
choice for a basis adapted to the linear transformation. Given 𝐴𝐴 with repeated 
eigenvalue 𝜆𝜆 and 1-D eigenspace spanned by 𝑣𝑣, let 𝒘𝒘 be a vector satisfying 

(𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒘𝒘 = 𝒗𝒗 . 
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Such a generalized eigenvector, w, is clearly not parallel to 𝒗𝒗 and thus contributes 
to a basis. This definition will be of use to us in subsequent chapters.   
 

COMPLEX EIGENVALUES 
The final possibility is that one has non-real eigenvalues. This is both simpler 
and more complex than the repeated-root case just considered. Simpler, because 
there is no need for generalized eigenvectors; more complex, in that the 
eigenvectors, like the eigenvalues, come in a complex conjugate pair.  

EXAMPLE: Recall the simple rotation matrix 𝐽𝐽, 

𝐽𝐽 = �0 −1
1 0 � . 

The characteristic polynomial is 𝜆𝜆2 + 1, which has roots 𝜆𝜆 = ±𝑖𝑖. The eigenvectors can be 
found as follows: 

(𝐽𝐽 − 𝑖𝑖𝑖𝑖)𝒗𝒗 = 𝟎𝟎  ⇒   �−𝑖𝑖 −1
1 −𝑖𝑖

� 𝒗𝒗 = 𝟎𝟎  ⇒   𝒗𝒗 = � 𝑖𝑖
1

� . 

The second eigenvector is the complex conjugate of the first, reflecting the second 
eigenvalue.  

Students often dislike complex eigenvalues and eigenvectors. They are 
unpleasant to compute, and the etymological baggage – imaginary and complex – 
create in the student a sense of futile burden. The remedy is to be found in future 
chapters, wherein the intuition of imaginary eigenvalues as characterizing 
rotations and complex eigenvalues arising from vibrations is developed. The 
foreshadowing of such is indicated in the matrix 𝐽𝐽 above. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 11 
 
Triangular matrix, diagonal eigenvalues. 

1.  
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INEAR SYSTEMS are the foundation of nonlinear dynamical systems. Unlike 
in the 1-D setting, higher-dimensional linear systems are intrinsically 

interesting and applicable. For both reasons, we will dwell on details. 
 

MATRIX SOLUTIONS 
In principle, linear dynamical systems in discrete or continuous time are as easy 
to solve in arbitrary dimensions as they are in 2-D. We therefore begin with a 
general solution. 

DISCRETE TIME: a discrete-time linear system on ℝ𝑘𝑘 is a dynamical system of 
the form 𝐸𝐸𝒙𝒙 = 𝐴𝐴𝒙𝒙, where 𝒙𝒙 ∈ ℝ𝑘𝑘 is a vector variable. This has an obvious explicit 
solution in terms of the matrix 𝐴𝐴 and an initial condition 𝒙𝒙0 = 𝒙𝒙(0): 

𝒙𝒙(𝑛𝑛) = 𝐴𝐴𝑛𝑛𝒙𝒙0 . 
This is deceptively simple. It motivates the problem of computing arbitrary 
powers of a square matrix. 

CONTINUOUS TIME: a continuous-time linear system on ℝ𝑘𝑘 is a dynamical 
system of the form 𝐷𝐷𝒙𝒙 = 𝐴𝐴𝒙𝒙 with initial condition 𝒙𝒙0 = 𝒙𝒙(0). This first-order 
ordinary differential equation on 𝒙𝒙 ∈ ℝ𝑘𝑘 has solution: 

𝒙𝒙(𝑡𝑡) = 𝑒𝑒𝐴𝐴𝐴𝐴𝒙𝒙0 , 
 where 𝑒𝑒𝐴𝐴𝐴𝐴 is the matrix exponential, 

𝑒𝑒𝐴𝐴𝐴𝐴 = exp(𝐴𝐴𝐴𝐴) = �
(𝐴𝐴𝐴𝐴)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= 𝐼𝐼 + 𝐴𝐴𝐴𝐴 +
1
2!

𝐴𝐴2𝑡𝑡2 +
1
3!

𝐴𝐴3𝑡𝑡3 + ⋯ 

LEMMA: 𝒙𝒙(𝑡𝑡) = 𝑒𝑒𝐴𝐴𝐴𝐴 solves the linear system 𝐷𝐷𝒙𝒙 = 𝐴𝐴𝒙𝒙. 

▷ Proof: The proof is by direct computation of 𝐷𝐷(𝑒𝑒𝐴𝐴𝐴𝐴): 

=
𝑑𝑑
𝑑𝑑𝑑𝑑

�
(𝐴𝐴𝐴𝐴)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= �
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐴𝐴𝐴𝐴)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= �
𝑛𝑛𝑛𝑛(𝐴𝐴𝐴𝐴)𝑛𝑛−1

𝑛𝑛!

∞

𝑛𝑛=1

= �
𝐴𝐴(𝐴𝐴𝐴𝐴)𝑛𝑛−1

(𝑛𝑛 − 1)!

∞

𝑛𝑛=1

= 𝐴𝐴 �
(𝐴𝐴𝐴𝐴)𝑚𝑚

𝑚𝑚!

∞

𝑚𝑚=0
= 𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴 . 

Note the care in indexing and the use of absolute convergence to differentiate 
term by term. ◁ 

This lemma is satisfying to a mathematician. To an engineer or scientist who 
wants to compute an explicit answer, the problem is but half solved.  

EXAMPLE: Diagonal matrices are trivial to take powers of or to exponentiate:  

�𝜆𝜆1 0
0 𝜆𝜆2

�
𝑛𝑛

= �
(𝜆𝜆1)𝑛𝑛 0

0 (𝜆𝜆2)𝑛𝑛�       ∶      exp ��𝜆𝜆1 0
0 𝜆𝜆2

� 𝑡𝑡� = � 𝑒𝑒𝜆𝜆1𝑡𝑡   0
0 𝑒𝑒𝜆𝜆2𝑡𝑡� . 

The former is trivial and the latter follows from the former and the definition of 𝑒𝑒𝐴𝐴𝐴𝐴.  

This example is the key to computing general solutions to linear systems. If we 
can diagonalize the matrix – if we can decouple the system – then the 1-D solutions 
suffice.  
 

SIMPLE EIGENVALUES 
In 2-D, the solutions to linear systems speciate according to whether the 
eigenvalues of the associated matrix are real or complex, distinct or repeated. The 

L 
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simplest case – real, distinct eigenvalues – is only slightly more complicated than 
the decoupled diagonal case in the previous example.   

Given a 2-by-2 matrix 𝐴𝐴 with real eigenvalues 𝜆𝜆1, 𝜆𝜆2 and corresponding 
eigenvectors 𝒗𝒗1, 𝒗𝒗2, the pair of eigenvectors are linearly independent and thus 
form a basis – an eigenbasis. Changing coordinates via the eigenbasis decouples 
this system. In linear algebra, one learns this as diagonalization. In this setting 
one has: 

𝐴𝐴𝐴𝐴 = 𝑉𝑉Λ     ∶       𝑉𝑉 = [ 𝒗𝒗1 | 𝒗𝒗2 ]     ∶       Λ = �𝜆𝜆1 0
0 𝜆𝜆2

�  . 

Note that this follows directly from translating the definition of eigenvalues and 
eigenvectors into the language of matrices. Powers of 𝐴𝐴 are computed as 

𝐴𝐴𝑛𝑛 = (𝑉𝑉Λ𝑉𝑉−1)𝑛𝑛 = (𝑉𝑉Λ𝑉𝑉−1)(𝑉𝑉Λ𝑉𝑉−1) ⋯ (𝑉𝑉Λ𝑉𝑉−1) = 𝑉𝑉Λ𝑛𝑛𝑉𝑉−1 . 
 Given that Λ is diagonal, Λ𝑛𝑛 is explicitly computed. This conjugation of 𝐴𝐴𝑛𝑛 by the 
matrix 𝑉𝑉 is precisely a coordinate change via the eigenbasis {𝒗𝒗1, 𝒗𝒗2} .   

Exponentiating 𝐴𝐴 is only slightly more involved. By the definition of 𝑒𝑒𝐴𝐴𝐴𝐴, we 
have 

𝑒𝑒𝐴𝐴𝐴𝐴 =  �
(𝐴𝐴𝐴𝐴)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= �
𝑉𝑉Λ𝑛𝑛𝑉𝑉−1𝑡𝑡𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= 𝑉𝑉 ��
(Λ𝑡𝑡)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

� 𝑉𝑉−1 = 𝑉𝑉𝑒𝑒Λ𝑡𝑡𝑉𝑉−1 , 

with some care and justification in the order of matric multiplication. Knowing 
what the exponential of a diagonal matrix is, the problem is solved.   

EXAMPLE: Given the matrix with eigendecomposition 

𝐴𝐴 =  �2 5
3 4�      ∶       𝜆𝜆1 = 7  ;  𝒗𝒗1 = �1

1�      ∶       𝜆𝜆2 =  −1 ;  𝒗𝒗2 = � 5
−3� , 

the solutions to 𝐸𝐸𝒙𝒙 = 𝐴𝐴𝒙𝒙 and 𝐷𝐷𝒙𝒙 = 𝐴𝐴𝒙𝒙 are, respectively, 

𝐴𝐴𝑛𝑛𝒙𝒙0 =  �1 5
1 −3� �7𝑛𝑛 0

0 (−1)𝑛𝑛� �1 5
1 −3�

−1
�

𝑥𝑥0
𝑦𝑦0

� =
1
8 �

(3𝑥𝑥0 + 5𝑦𝑦0)7𝑛𝑛 + 5(𝑥𝑥0 − 𝑦𝑦0)(−1)𝑛𝑛

(3𝑥𝑥0 + 5𝑦𝑦0)7𝑛𝑛 − 3(𝑥𝑥0 − 𝑦𝑦0)(−1)𝑛𝑛� , 

 𝑒𝑒𝐴𝐴𝐴𝐴𝒙𝒙0 =  �1 5
1 −3� �𝑒𝑒7𝑡𝑡 0

0 𝑒𝑒−𝑡𝑡� �1 5
1 −3�

−1
�

𝑥𝑥0
𝑦𝑦0

� =
1
8 �

(3𝑥𝑥0 + 5𝑦𝑦0)𝑒𝑒7𝑡𝑡 + 5(𝑥𝑥0 − 𝑦𝑦0)𝑒𝑒−𝑡𝑡

(3𝑥𝑥0 + 5𝑦𝑦0)𝑒𝑒7𝑡𝑡 − 3(𝑥𝑥0 − 𝑦𝑦0)𝑒𝑒−𝑡𝑡� . 

 

DOMINANCE 
An examination of the previous example points to a phenomenon that we will 
repeatedly exploit in understanding linear systems. In that example the 
eigenvalues are 𝜆𝜆1 = 7 and 𝜆𝜆2 = −1: in the continuous-time setting, this means 
one unstable and one stable eigenvalue. Over time, the solutions to 𝐷𝐷𝒙𝒙 = 𝐴𝐴𝒙𝒙 have 
a component that rapidly grows (along the unstable eigenspace) and a part that 
rapidly shrinks to zero (along the stable eigenspace). In the limit as 𝑡𝑡 → +∞, the 
solution asymptotes to 

𝑥𝑥(𝑡𝑡)
        
�� 𝐶𝐶𝑒𝑒7𝑡𝑡 �1

1�     ∶      𝑡𝑡
      
�� + ∞ , 

where the constant 𝐶𝐶  is dependent on the initial condition. Asymptotically, only 
the first eigenvalue and eigenvector contribute to the solution characteristics. 

This is an example of a dominant eigenvalue. For the time being, we say that in 
a continuous-time 2-D system, 𝜆𝜆1 dominates 𝜆𝜆2 if 𝜆𝜆1 > 𝜆𝜆2. In discrete time, the 
condition becomes |𝜆𝜆1| > |𝜆𝜆2|, in keeping with the Stability Criterion. 

If 𝜆𝜆1 dominates 𝜆𝜆2, then solutions to a linear system have the following 
asymptotics: 
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𝒙𝒙(𝑛𝑛) = 𝐶𝐶1𝜆𝜆1
𝑛𝑛𝒗𝒗1 + 𝐶𝐶2𝜆𝜆2

𝑛𝑛𝒗𝒗2 = 𝜆𝜆1
𝑛𝑛 �𝐶𝐶1𝒗𝒗1 + 𝐶𝐶2 �

𝜆𝜆2

𝜆𝜆1
�

𝑛𝑛

𝒗𝒗2�
            
�⎯⎯� 𝐶𝐶1𝜆𝜆1

𝑛𝑛𝒗𝒗1 

𝒙𝒙(𝑡𝑡) = 𝐶𝐶1𝑒𝑒𝜆𝜆1𝑡𝑡𝒗𝒗1 + 𝐶𝐶2𝑒𝑒𝜆𝜆2𝑡𝑡𝒗𝒗2 = 𝑒𝑒𝜆𝜆1𝑡𝑡�𝐶𝐶1𝒗𝒗1 + 𝐶𝐶2𝑒𝑒(𝜆𝜆2−𝜆𝜆1)𝑡𝑡𝒗𝒗2�
            
�⎯⎯� 𝐶𝐶1𝑒𝑒𝜆𝜆1𝑡𝑡𝒗𝒗1 

The dominant eigenvalue-eigenvector pair controls the long-term behavior of 
almost all solutions (note the presence of the constant 𝐶𝐶1, which can vanish for 
certain initial conditions!). In general, 

▷ The asymptotic growth rate is determined by the dominant eigenvalue. 
▷ The asymptotic ratio of 𝑥𝑥 to 𝑦𝑦 is determined by the dominant 

eigenvector. 

The following example demonstrates that even when both eigenvalues are 
unstable (solutions are growing over time), only the dominant eigenvalue 
matters long-term. 

EXAMPLE: Assume two competing Companies with number of customers, 𝐴𝐴𝑛𝑛 and 𝐵𝐵𝑛𝑛, as 
a function of year 𝑛𝑛, is modeled as a linear system. Each year A-customers naturally 
increase by 7%; for B-customers, this growth rate is 4%. However, each year, 2% of A-
customers switch to B, and 1% of B-customers switch to A. The resulting model is:     

�𝐴𝐴𝑛𝑛+1
𝐵𝐵𝑛𝑛+1

� =  �𝐴𝐴𝑛𝑛 + 0.07𝐴𝐴𝑛𝑛 − 0.02𝐴𝐴𝑛𝑛 + 0.01𝐵𝐵𝑛𝑛
𝐵𝐵𝑛𝑛 + 0.04𝐵𝐵𝑛𝑛 − 0.01𝐵𝐵𝑛𝑛 + 0.02𝐴𝐴𝑛𝑛

� = �1.05 0.01
0.02 1.03� �𝐴𝐴𝑛𝑛

𝐵𝐵𝑛𝑛
� 

The eigenvalues and eigenvectors of this matrix are: 

   𝐴𝐴 =   �1.05 −0.02
0.01 1.03 �     ⇒    𝜆𝜆1 ≈ 1.0573 ; 𝒗𝒗1 ≈ �1.366

1 �   ∶  𝜆𝜆2 ≈  1.0227 ; 𝒗𝒗2 ≈ �−0.366
1 � . 

The long-term dynamics of this system are given by 

�𝐴𝐴𝑛𝑛
𝐵𝐵𝑛𝑛

� =  𝜆𝜆1
𝑛𝑛 �𝐶𝐶1𝒗𝒗1 + 𝐶𝐶2 �

𝜆𝜆1
𝜆𝜆2

�
𝑛𝑛

𝒗𝒗2�
            
�⎯⎯� ≈ 𝐶𝐶1(1.0573)𝑛𝑛 �1.366

1 � , 

so that, over time, the annual growth rate of both companies is identical at ≈ 5.73%. The 
customer base evolves so that Company A has ≈ 57.7% market share and Company B the 
remaining 42.3%. 

 

REPEATED EIGENVALUES 
The case of repeated real eigenvalues is subtle, as there may be one or two linearly 
independent eigenvectors. Assume that 𝐴𝐴 is a 2-by-2 matrix with double 
eigenvalue 𝜆𝜆. If the dimension of the kernel of 𝐴𝐴 − 𝜆𝜆𝜆𝜆 is two, then an eigenbasis 
exists, and the results of the previous section suffice to compute powers and 
exponentials of 𝐴𝐴: the matrix 𝐴𝐴 is diagonalizable. 

In the case that the eigenspace of 𝜆𝜆 is 1-dimensional, then 𝐴𝐴 cannot be 
diagonalized, but it can be simplified. Given an eigenvector 𝒗𝒗, recall from the 
previous section the generalized eigenvector paired to 𝒗𝒗, 𝒘𝒘, satisfying 
(𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝒘𝒘 = 𝒗𝒗. Although one cannot diagonalize the matrix 𝐴𝐴, one can come 
close.  

LEMMA: With 𝐴𝐴, 𝜆𝜆, 𝒗𝒗, and 𝒘𝒘 as above,  

𝐴𝐴 [𝒗𝒗 𝒘𝒘] = [𝒗𝒗 𝒘𝒘] � 𝜆𝜆  1
0 𝜆𝜆� . 

▷ Proof: By direct computation, since 𝐴𝐴𝒗𝒗 = 𝜆𝜆𝒗𝒗, and 𝐴𝐴𝒘𝒘 = 𝒗𝒗 + 𝜆𝜆𝒘𝒘. ◁ 
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By coming as close to a diagonal matrix as possible, we can solve linear systems 
and then change coordinates. In what follows, assume 𝜆𝜆, 𝒗𝒗, and 𝒘𝒘 as in the 
previous Lemma. Consider the following odd-looking matrix: 

𝑁𝑁 = �0 1
0 0� . 

This is an example of a nilpotent matrix, since some finite power of it is zero: in 
fact, 𝑁𝑁2 = 0. That assists in solving repeated eigenvalue linear systems like so: 

LEMMA: For 𝐵𝐵 = 𝜆𝜆𝜆𝜆 + 𝑁𝑁 as above, 

𝐵𝐵𝑛𝑛 = �𝜆𝜆 1
0 𝜆𝜆�

𝑛𝑛
= �𝜆𝜆𝑛𝑛 𝑛𝑛𝜆𝜆𝑛𝑛−1

0 𝜆𝜆𝑛𝑛 �      ∶    𝑒𝑒𝐵𝐵𝐵𝐵 = exp ��𝜆𝜆 1
0 𝜆𝜆� 𝑡𝑡� = �𝑒𝑒𝜆𝜆𝜆𝜆 𝑡𝑡𝑒𝑒𝜆𝜆𝜆𝜆

0 𝑒𝑒𝜆𝜆𝜆𝜆 � .  

▷ Proof: For powers of 𝐵𝐵, the Binomial Theorem implies 

(𝜆𝜆𝜆𝜆 + 𝑁𝑁)𝑛𝑛 = � �𝑛𝑛
𝑘𝑘� (𝜆𝜆𝜆𝜆)𝑛𝑛−𝑘𝑘𝑁𝑁𝑘𝑘

𝑛𝑛

𝑘𝑘=0

= 𝜆𝜆𝑛𝑛𝐼𝐼 + 𝑛𝑛𝜆𝜆𝑛𝑛−1𝑁𝑁 . 

To compute the exponential, note that 𝑒𝑒(𝜆𝜆𝜆𝜆+𝑁𝑁)𝑡𝑡 splits as 𝑒𝑒𝜆𝜆𝜆𝜆𝜆𝜆𝑒𝑒𝑁𝑁𝑁𝑁, though one must 
be careful with commutativity (the identity matrix helps here…). The definition 
of matrix exponentiation together with the nilpotence of 𝑁𝑁 implies 

𝑒𝑒𝑁𝑁𝑁𝑁 = 𝐼𝐼 + 𝑁𝑁𝑁𝑁 = �1 𝑡𝑡
0 1�     ⇒     𝑒𝑒𝐴𝐴𝐴𝐴 = 𝑒𝑒𝜆𝜆𝜆𝜆𝜆𝜆𝑒𝑒𝑁𝑁𝑁𝑁  = �𝑒𝑒𝜆𝜆𝜆𝜆 𝑡𝑡𝑒𝑒𝜆𝜆𝜆𝜆

0 𝑒𝑒𝜆𝜆𝜆𝜆 �  .      ◁ 

One uses the change-of-basis matrix 𝑉𝑉 =  [𝒗𝒗 𝒘𝒘] to transform to (generalized) 
eigenbasis coordinates, importing the solutions to the linear systems above.  

EXAMPLE: Recalling from the last chapter the repeated-eigenvalue example, 

𝐴𝐴 = �1 −1
1 3 � . 

The eigenvalues are 𝜆𝜆1,2 = 2 with 1-dimensional eigenspace spanned by 𝒗𝒗 = (1, −1)⊤. The 
generalized eigenvector paired to 𝒗𝒗 is 𝑤𝑤 = (−1, 0)⊤. To solve the linear systems 𝐸𝐸𝒙𝒙 = 𝐴𝐴𝒙𝒙 
and 𝐷𝐷𝒙𝒙 = 𝐴𝐴𝒙𝒙 we compute   

�1 −1
1 3 �

𝑛𝑛
=  � 1 0

−1 −1� �2 1
0 2�

𝑛𝑛
� 1 0
−1 −1�

−1
=  � 1 0

−1 −1� �2𝑛𝑛 𝑛𝑛2𝑛𝑛

0 2𝑛𝑛 � � 1 0
−1 −1� , 

exp ��1 −1
1 3 � 𝑡𝑡� =  � 1 0

−1 −1� exp ��2 1
0 2� 𝑡𝑡� � 1 0

−1 −1�
−1

= � 1 0
−1 −1� �𝑒𝑒2𝑡𝑡 𝑡𝑡𝑒𝑒2𝑡𝑡

0 𝑒𝑒2𝑡𝑡 � � 1 0
−1 −1� . 

Writing out these matrix multiplications is unpleasant but sufficient. 
 

COMPLEX EIGENVALUES 
We have seen that not all matrices can be diagonalized. In the case of complex 
conjugate eigenvalues, there is a conflict in perspectives. For the mathematician, 
diagonalization in this case is trivial – over the field of complex numbers. For 𝐴𝐴 

with eigenvalues 𝜆𝜆, 𝜆𝜆 = 𝛼𝛼 ± 𝑖𝑖𝑖𝑖 and complex conjugate eigenvectors 𝒗𝒗, 𝒗𝒗, one can 
assert: 

𝑉𝑉−1𝐴𝐴𝐴𝐴 = [𝒗𝒗 𝒗𝒗]−1 𝐴𝐴 [𝒗𝒗 𝒗𝒗]  = �𝜆𝜆 0
0  𝜆𝜆

�. 

This is unsatisfying to the scientists or engineer, as the solutions to a real linear 
system should be real-valued functions of time. To adapt, one can take the real 
and imaginary components of the above solution. Given a complex eigenvector 
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𝒗𝒗 = �
𝑣𝑣1 + 𝑖𝑖 𝑤𝑤1
𝑣𝑣2 + 𝑖𝑖 𝑤𝑤2

�, 

the real and imaginary components together form a change of basis matrix, 𝑉𝑉,  

𝑉𝑉 = �
𝑣𝑣1 𝑤𝑤1
𝑣𝑣2 𝑤𝑤2

�      ⇒      𝑉𝑉−1𝐴𝐴𝐴𝐴 = �
𝑣𝑣1 𝑤𝑤1
𝑣𝑣2 𝑤𝑤2

�
−1

𝐴𝐴 �
𝑣𝑣1 𝑤𝑤1
𝑣𝑣2 𝑤𝑤2

� = �𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 � = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 . 

Having reduced to the simplest case (the normal form), we will find it useful to 
invoke the matrix version of Euler’s Formula. 

LEMMA: 𝑒𝑒𝐽𝐽𝐽𝐽 = (cos 𝑡𝑡)𝐼𝐼 + (sin 𝑡𝑡)𝐽𝐽. 

▷ Proof: The proof is by direct computation, combined with the fact that powers 
of 𝐽𝐽 are either ±𝐼𝐼 or ±𝐽𝐽 based on the power mod 4. Splitting the exponential up 
into even and odd powers makes the result transparent: 

𝑒𝑒𝐽𝐽𝐽𝐽 = �
(𝐽𝐽𝐽𝐽)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= �
(𝐽𝐽𝐽𝐽)2𝑛𝑛

(2𝑛𝑛)!

∞

𝑛𝑛=0

+ �
(𝐽𝐽𝐽𝐽)2𝑛𝑛+1

(2𝑛𝑛 + 1)!

∞

𝑛𝑛=0

= �(−1)𝑛𝑛𝐼𝐼
𝑡𝑡2𝑛𝑛

(2𝑛𝑛)!

∞

𝑛𝑛=0

+ �(−1)𝑛𝑛𝐽𝐽
𝑡𝑡2𝑛𝑛+1

(2𝑛𝑛 + 1)!

∞

𝑛𝑛=0

 . 

Recalling the Taylor series for sine and cosine completes the proof. ◁ 

COROLLARY: For eigenvalues 𝜆𝜆1,2 = 𝛼𝛼 ± 𝑖𝑖𝑖𝑖, the exponential of (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)𝑡𝑡 is: 

𝑒𝑒(𝛼𝛼𝛼𝛼+𝛽𝛽𝛽𝛽)𝑡𝑡 = exp ��𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 � 𝑡𝑡� = �𝑒𝑒𝛼𝛼𝛼𝛼 cos 𝛽𝛽𝛽𝛽 − 𝑒𝑒𝛼𝛼𝛼𝛼sin 𝛽𝛽𝛽𝛽

𝑒𝑒𝛼𝛼𝛼𝛼 sin 𝛽𝛽𝛽𝛽 𝑒𝑒𝛼𝛼𝛼𝛼 cos 𝛽𝛽𝛽𝛽
� . 

▷ Proof: By commutativity of multiplication with 𝐼𝐼 and the previous lemma, 

exp�(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)𝑡𝑡� = exp(𝛼𝛼𝛼𝛼𝛼𝛼) ⋅ exp(𝛽𝛽𝛽𝛽𝛽𝛽) = (𝑒𝑒𝛼𝛼𝛼𝛼 cos 𝛽𝛽𝛽𝛽)𝐼𝐼 + (𝑒𝑒𝛼𝛼𝛼𝛼 sin 𝛽𝛽𝛽𝛽)𝐽𝐽 .   ◁ 

To take powers of the matrix (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽), the polar representation helps. Rewriting 
𝛼𝛼 ± 𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑒𝑒±𝑖𝑖𝑖𝑖, where the modulus, 𝑟𝑟, and argument, 𝜃𝜃, are defined by the usual 
polar coordinate formulae as 

𝑟𝑟 = �𝛼𝛼2 + 𝛽𝛽2      ;       𝜃𝜃 = arctan
𝛽𝛽
𝛼𝛼

 , 

 we compute powers of (𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) = (𝑟𝑟𝑟𝑟)𝑒𝑒𝐽𝐽𝐽𝐽 as 

�𝛼𝛼 −𝛽𝛽
𝛽𝛽 𝛼𝛼 �

𝑛𝑛
= �𝑟𝑟𝑟𝑟 𝑒𝑒𝐽𝐽𝐽𝐽�𝑛𝑛 = 𝑟𝑟𝑛𝑛 �cos 𝑛𝑛𝑛𝑛 − sin 𝑛𝑛𝑛𝑛

sin 𝑛𝑛𝑛𝑛 cos 𝑛𝑛𝑛𝑛 � . 

This is the simplest possible form of a real matrix with complex eigenvalues. The 
general case, including a change of coordinates to 𝐴𝐴𝐴𝐴 = 𝑉𝑉(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽), is 
computable, but generally unpleasant.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 12 
1. Computations… Euler for 𝐽𝐽𝐽𝐽 hahaha 
2. LIE THEORY PERSPECTIVE: the infinitesimal rotation kicks off the full group. 
3. Chemostats and dominance: from 

http://www.math.utah.edu/~gustafso/2250systems-de.pdf 
4. from same source… lidocaine in bloodstream versus body tissue. 
5. from same source: affine model for production & sales… 

 
 

http://www.math.utah.edu/%7Egustafso/2250systems-de.pdf
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CHAPTER  13 : 
2ND ORDER LINEAR SYSTEMS 
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ATRICES & MATRIX ALGEBRA, while vital, are not the complete picture. 
Much of the motivation for 2-D dynamical systems comes from linear 

differential equations or recurrence relations of 2nd order. In this chapter, we 
build connections from these to the matrix methods previously covered, while 
showing how to simplify some of the more arbitrary methods one sometimes 
learns in a differential equations class.  
 

LINEAR SECOND-ORDER ODEs 
Consider the linear 2nd-order autonomous differential equation 

𝑎𝑎
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 𝑏𝑏

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑐𝑐𝑐𝑐 = 0       ⇔        (𝑎𝑎𝐷𝐷2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐)𝑥𝑥 = 0 . 

In a differential equations course, one learns to extract the characteristic 
equation,  

𝑎𝑎𝜆𝜆2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 , 
and solve for the characteristic roots, 𝜆𝜆1 and 𝜆𝜆2. This equation, predicated on the 
convenient ansatz that 𝑒𝑒𝜆𝜆𝜆𝜆 should be a solution, gives a pair of basis solutions, 
𝜙𝜙1,2, which vary based on the usual trichotomy of distinct/repeated/complex 
roots: 

▷ Real, distinct 𝜆𝜆1 ≠ 𝜆𝜆2 ∶  𝜙𝜙1 = 𝑒𝑒𝜆𝜆1𝑡𝑡  and 𝜙𝜙2 = 𝑒𝑒𝜆𝜆2𝑡𝑡. 
▷ Real, repeated 𝜆𝜆1 = 𝜆𝜆2 = 𝜆𝜆 ∶  𝜙𝜙1 = 𝑒𝑒𝜆𝜆𝜆𝜆  and 𝜙𝜙2 = 𝑡𝑡𝑡𝑡𝜆𝜆𝜆𝜆. 
▷ Complex 𝜆𝜆1,2 = 𝛼𝛼 ± 𝑖𝑖𝑖𝑖 ∶  𝜙𝜙1 = 𝑒𝑒𝛼𝛼𝛼𝛼 cos 𝛽𝛽𝛽𝛽  and 𝜙𝜙1 = 𝑒𝑒𝛼𝛼𝛼𝛼 sin 𝛽𝛽𝛽𝛽. 

 
The general solution is then a linear combination of basis solutions 

𝑥𝑥(𝑡𝑡) = 𝐶𝐶1𝜙𝜙1(𝑡𝑡) + 𝐶𝐶2𝜙𝜙2(𝑡𝑡) , 
where the constants, 𝐶𝐶1,2, can be determined from a pair of initial conditions.  

This story, often taught in classic differential equations or calculus classes, has 
a parallel interpretation via linear systems. If we introduce a new variable, 𝑦𝑦, and 
set it equal to 𝑦𝑦 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, then we can convert the linear 2nd-order ODE to a 1st-
order system in 2-D: 

𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑥𝑥
𝑦𝑦� = �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

� = �
𝑦𝑦

−
𝑐𝑐
𝑎𝑎

𝑥𝑥 −
𝑏𝑏
𝑎𝑎

𝑦𝑦� = �
0 1

−
𝑐𝑐
𝑎𝑎

−
𝑏𝑏
𝑎𝑎

� �
𝑥𝑥
𝑦𝑦� 

The 2-by-2 matrix, 𝐴𝐴, above right, has characteristic polynomial 𝑎𝑎𝜆𝜆2 + 𝑏𝑏𝜆𝜆 + 𝑐𝑐 =
0. This explains the connection between the approach of factoring the 
differential operator  

(𝑎𝑎𝐷𝐷2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐)𝑥𝑥 = (𝐷𝐷 − 𝜆𝜆1𝐼𝐼)(𝐷𝐷 − 𝜆𝜆2𝐼𝐼)𝑥𝑥 = 0, 
and using the eigenvalues of the matrix 𝐴𝐴. From our solution to 𝐷𝐷𝐷𝐷 = 𝐴𝐴𝐴𝐴,we 
have, in the case of real, distinct eigenvalues 𝜆𝜆1 ≠ 𝜆𝜆2  with eigenvectors 𝒗𝒗1, 𝒗𝒗2, 

�
𝑥𝑥
𝑦𝑦� = 𝑒𝑒𝐴𝐴𝐴𝐴 �

𝑥𝑥0
𝑦𝑦0

� = [𝒗𝒗1 𝒗𝒗2] �𝑒𝑒𝜆𝜆1𝑡𝑡 0
0 𝑒𝑒𝜆𝜆2𝑡𝑡� [𝒗𝒗1 𝒗𝒗2]−1 �

𝑥𝑥0
𝑦𝑦0

� . 

As such, x(t) is observed to be a linear combination of the basis solutions 𝜙𝜙1 =
𝑒𝑒𝜆𝜆1𝑡𝑡  and 𝜙𝜙2 = 𝑒𝑒𝜆𝜆2𝑡𝑡. Solving for the constant involves knowing the initial 

M 
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conditions. From the work in Chapter 12, one observes the basis solutions for the 
other (non-real or non-distinct) cases arising in the matrix exponentials.   

In general, if given a 2nd-order ODE, it is simplest to work with basis solutions 
rather than converting everything to matrices, as seen in the examples to follow. 
However, there will be instances (especially in Volume 3) when an approach 
using matrices and eigenvalues is advantageous. 

 

SIMPLE HARMONIC OSCILLATOR 
It is no surprise that the solutions to the linear oscillator 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 𝜔𝜔2𝑥𝑥 = 0     ⇔       (𝐷𝐷2 + 𝜔𝜔2𝐼𝐼)𝑥𝑥 = 0 , 

consist of periodic waves. This harmonizes with the characteristic roots 𝜆𝜆1,2 =
±𝑖𝑖𝑖𝑖 and the basis solutions 𝜙𝜙1 = cos 𝜔𝜔𝜔𝜔  and 𝜙𝜙2 = sin 𝜔𝜔𝜔𝜔. The general solution is 

𝑥𝑥(𝑡𝑡) = 𝐶𝐶1 cos 𝜔𝜔𝜔𝜔 + 𝐶𝐶2 sin 𝜔𝜔𝜔𝜔 = 𝐶𝐶 sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑) , 
where one often converts to a single sine wave of amplitude 𝐶𝐶 and phase 𝜑𝜑. The 
addition of a small amount of friction to the system gives 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 𝜈𝜈

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜔𝜔2𝑥𝑥 = 0     ⇔       (𝐷𝐷2 + 𝜈𝜈𝜈𝜈 + 𝜔𝜔2𝐼𝐼)𝑥𝑥 = 0 

where 𝜈𝜈 > 0 is a small damping parameter. The characteristic roots are no longer 
pure imaginary, but have a negative real part:  

𝜆𝜆1,2 =
−𝜈𝜈 ± 𝑖𝑖√4𝜔𝜔2 − 𝜈𝜈2

2
 . 

For small amounts of friction 𝜈𝜈 < 2𝜔𝜔, the basis solutions are waves with 
amplitudes that decay like 𝑒𝑒−𝜈𝜈/2. For 𝜈𝜈 > 2𝜔𝜔, the system is overdamped, and the 
solution is an exponential decay to the equilibrium. The case of a repeated root, 
where 𝜈𝜈 = 2𝜔𝜔, corresponds to a critical damping.  

 

LINEAR SECOND-ORDER RECURRENCE RELATIONS 
The discrete-time version of a 2nd-order equation 

𝑎𝑎𝑥𝑥𝑛𝑛+2 + 𝑏𝑏𝑥𝑥𝑛𝑛+1 + 𝑐𝑐𝑥𝑥𝑛𝑛 = 0       ⇔        (𝑎𝑎𝐸𝐸2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐)𝑥𝑥 = 0 , 
is analogous. The ensuing characteristic equation, 𝑎𝑎𝜆𝜆2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 has roots 𝜆𝜆1 
and 𝜆𝜆2. The corresponding basis solutions, 𝜙𝜙1,2, are of the form 

▷ Real, distinct 𝜆𝜆1 ≠ 𝜆𝜆2 ∶  𝜙𝜙1 = (𝜆𝜆1)𝑛𝑛 and 𝜙𝜙2 = (𝜆𝜆2)𝑛𝑛. 
▷ Real, repeated 𝜆𝜆1 = 𝜆𝜆2 = 𝜆𝜆 ∶  𝜙𝜙1 = 𝜆𝜆𝑛𝑛  and 𝜙𝜙2 = 𝑛𝑛𝜆𝜆𝑛𝑛. 
▷ Complex 𝜆𝜆1,2 = 𝛼𝛼 ± 𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑒𝑒±𝑖𝑖𝑖𝑖: 𝜙𝜙1 = 𝑟𝑟𝑛𝑛 cos 𝑛𝑛𝑛𝑛 and 𝜙𝜙2 = 𝑟𝑟𝑛𝑛 sin 𝑛𝑛𝑛𝑛. 

 
The general solution is then a linear combination of basis solutions 

𝑥𝑥𝑛𝑛 = 𝐶𝐶1𝜙𝜙1(𝑛𝑛) + 𝐶𝐶2𝜙𝜙2(𝑛𝑛) , 
where the constants, 𝐶𝐶1,2, can be determined from a pair of initial conditions.  

If we introduce a new variable, 𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛+1, then we can convert the linear 2nd-
order recurrence relation to a 1st-order system in 2-D: 
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�
𝑥𝑥𝑛𝑛+1
𝑦𝑦𝑛𝑛+1

� = �
𝑥𝑥𝑛𝑛+1
𝑥𝑥𝑛𝑛+2

� = �
𝑦𝑦𝑛𝑛

−
𝑐𝑐
𝑎𝑎

𝑥𝑥𝑛𝑛 −
𝑏𝑏
𝑎𝑎

𝑦𝑦𝑛𝑛
� = �

0 1

−
𝑐𝑐
𝑎𝑎

−
𝑏𝑏
𝑎𝑎

� �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛

� 

The matrix, 𝐴𝐴 ,above, has characteristic polynomial 𝑎𝑎𝜆𝜆2 + 𝑏𝑏𝜆𝜆 + 𝑐𝑐 = 0, and the 
basis solutions arise from the entries in powers of 𝐴𝐴. For example, in the case of 
real, distinct eigenvalues 𝜆𝜆1 ≠ 𝜆𝜆2  with eigenvectors 𝒗𝒗1, 𝒗𝒗2, 

�
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛

� = 𝐴𝐴𝑛𝑛 �
𝑥𝑥0
𝑦𝑦0

� = [𝒗𝒗1 𝒗𝒗2] �
(𝜆𝜆1)𝑛𝑛 0

0 (𝜆𝜆2)𝑛𝑛� [𝒗𝒗1 𝒗𝒗2]−1 �
𝑥𝑥0
𝑦𝑦0

� . 

Other cases follow similarly. As with the continuous-time case, one typically 
skips conversion to a matrix and jumps straight to the basis solutions. A few 
examples below illustrate the method and its utility.   
 

FIBONACCI 
Consider the classical Fibonacci sequence 

𝐹𝐹 = (𝐹𝐹𝑛𝑛) = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … ). 
These numbers – and their connection to the numinous golden ratio – have long 
been the subject of cosmic speculation. On the more terrestrial plane of this text, 
the Fibonacci sequence is the solution to the 2nd-order recurrence relation 

𝐹𝐹𝑛𝑛 = 𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝑛𝑛−2        ∶         𝐹𝐹0 = 0  ;   𝐹𝐹1 = 1 . 
To solve this, our first step will be to apply the shift 
operator, 𝐸𝐸, twice to obtain 

𝐹𝐹𝑛𝑛+2 − 𝐹𝐹𝑛𝑛+1 − 𝐹𝐹𝑛𝑛 = 0 . 
This can be expressed in operator notation as 

(𝐸𝐸2 − 𝐸𝐸 − 𝐼𝐼)𝐹𝐹 = 0 . 
This factors as 

(𝐸𝐸 − 𝜆𝜆1𝐼𝐼)(𝐸𝐸 − 𝜆𝜆2𝐼𝐼)𝐹𝐹 = 0   ∶      𝜆𝜆1,2 =
1 ± √5

2
 , 

where 𝜆𝜆1,2 are the roots of the characteristic equation 𝜆𝜆2 − 𝜆𝜆 − 1 = 0: in this 
example, the roots are, of course, the golden and silver ratios. The general 
solution is a linear combination of basis solutions:  

𝐹𝐹𝑛𝑛 = 𝐶𝐶1 �
1 + √5

2
�

𝑛𝑛

+ 𝐶𝐶2 �
1 − √5

2
�

𝑛𝑛

. 

The initial conditions 𝐹𝐹0 = 0, 𝐹𝐹1 = 1 imply that 𝐶𝐶1 = −𝐶𝐶2 = 1/√5. 
 
Though the solution is complete, it is perhaps a bit unsatisfying to think of the 
effort of computing the 1000th Fibonacci number using this formula – all those 
square roots and powers! Fortunately, the lessons of Volume 1 remain: the 
second eigenvalue, 𝜆𝜆2, being less than one in absolute value, has powers which 
rapidly converge to zero. Thus, 𝐹𝐹𝑛𝑛 can be obtained by estimating 𝐶𝐶1(𝜆𝜆1)𝑛𝑛 using 
inexpensive logarithms and rounding to the nearest integer.  
 

THE RAISING OF HOGS 
The following example of a 2nd-order recurrence relation comes from a market 
system with time delay. Consider the market for a commodity (let us say hogs) 
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that requires an investment of time before the product comes to market 
(semiconductors, video games, and other products being analogous). The supply 
and demand curves for this product are assumed to be affine functions of price 
𝑃𝑃: 

𝑆𝑆(𝑃𝑃) = 𝑆𝑆0 + 𝑎𝑎𝑎𝑎     ∶       𝐷𝐷(𝑃𝑃) = 𝐷𝐷0 − 𝑏𝑏𝑏𝑏 

In this case, the constants 𝑎𝑎 and 𝑏𝑏 are positive, reflecting the fact that buyers and 
sellers are price-sensitive: the higher the price of bacon, the more hogs a farmer 
is motivated to raise.  

The subtle point in this model is an (idealized) assumption that it takes exactly 
two years to raise a hog to market. While the suppliers make their choice based 
on current prices, the buyers make their choices two years hence. Thus, adding 
the element of (discrete) time 𝑛𝑛 and equating supply and demand implies the 
following recurrence relation for equilibrium price: 

𝑆𝑆0 + 𝑎𝑎𝑃𝑃𝑛𝑛 = 𝐷𝐷0 − 𝑏𝑏𝑃𝑃𝑛𝑛+2    ⇒     𝑃𝑃𝑛𝑛+2 +
𝑎𝑎
𝑏𝑏

𝑃𝑃𝑛𝑛 =
𝐷𝐷0 − 𝑆𝑆0

𝑏𝑏
  . 

This second-order recurrence relation is not linear, but affine. There is an 
equilibrium at  

𝑃𝑃∗ =
𝐷𝐷0 − 𝑆𝑆0

𝑎𝑎 + 𝑏𝑏
 . 

A change of coordinates to 𝑄𝑄 = 𝑃𝑃 − 𝑃𝑃∗  converts the affine recurrence relation to 
the linear relation (𝐸𝐸2 + 𝑎𝑎/𝑏𝑏 𝐼𝐼)𝑄𝑄 = 0. Its characteristic equation,  

𝜆𝜆2 +
𝑎𝑎
𝑏𝑏

= 0   ⇒     𝜆𝜆 = ±𝑖𝑖�
𝑎𝑎
𝑏𝑏

  ,  

has pure imaginary roots. Converting to polar form and taking powers gives a 
general solution 

𝑄𝑄𝑛𝑛 = 𝐶𝐶1 �
𝑎𝑎
𝑏𝑏

�
𝑛𝑛
2 cos

𝑛𝑛𝑛𝑛
2

+ 𝐶𝐶2 �
𝑎𝑎
𝑏𝑏

�
𝑛𝑛
2 sin

𝑛𝑛𝑛𝑛
2

  .  

This implies a perfect 4-year cycle of prices rising and falling, with suppliers 
following whatever the current trend is and always over- or under-producing (by 
an amount dependent on the distance to the equilibrium).  

The key is the ratio of supply price sensitivity 𝑎𝑎 to demand price sensitivity 𝑏𝑏. If 

sellers are more price-sensitive than buyers (𝑎𝑎 > 𝑏𝑏), then |𝜆𝜆| > 1 and the 
equilibrium is unstable: suppliers overreact to the latest trend and cyclically 
overproduce/underproduce, causing price crashes/surges, in a 4-year cycle with 
things getting worse each cycle. This lag-response cycle is not unique to 
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production processes. One sees this in many time-delayed control systems, such 
as when you turn the temperature dial in the shower and the flow takes a few 
seconds to respond. In that case, oversensitivity leads to an unstable spiral of 
overreaction.   

On the other hand, when buyers are more price-sensitive than sellers (𝑎𝑎 < 𝑏𝑏) 
then the oscillations damp out over time and the price converges to equilibrium. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 13 
What types of eigenvalues? 

1. Initial condition problems. 
2. Boundary conditions. 
3. Affine systems.  

 
 
 
  



24 

 
 

 
 
 

 

CHAPTER  14 : 
CLASSIFICATION OF EQUILIBRIA 

 

 

  



25 

HE INITIAL EMPHASIS on linear-algebraic techniques in linear dynamics 
obscures the visual elements so helpful in 1-D. This chapter is a segue from 

the algebraic and analytic to the more geometric and dynamical aspects of linear 
systems. 
 

ILLUSTRATING PLANAR DYNAMICS 
Recall from Chapter 4 when illustrating 
continuous-time dynamics in 1-D the 
pivot from graphs of solutions based on 
time to a more implicit representation 
based on direction of the dynamics: a 
vector field. In 2-D, things are more 
complicated, but not unfamiliar. Planar 
vector fields are familiar from calculus 
class. They are precisely what a 
continuous-time 2-D nonlinear system 
of the form 𝐷𝐷𝒙𝒙 = 𝐹𝐹(𝒙𝒙) specifies. 
Equilibria of the dynamics are zeroes, or 
locations where the vector field 
vanishes.   

More useful than vector fields are flows. 
Given any point (𝑥𝑥0, 𝑦𝑦0) ∈ ℝ2, thought of as an initial condition, the solution to 

𝐷𝐷𝒙𝒙 = 𝐹𝐹(𝒙𝒙) is a parametrized curve 
�𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡)� in the plane, called a 
flowline. These flowlines are oriented 
(by time) and fill up (or foliate) the 
plane (apart from the equilibria). This 
echoes 1-D, in which the line ℝ1 is 
partitioned by the equilibria into a 
small set of disjoint open intervals: 
flowlines. The topology of ℝ2 is more 
expansive and allows for greater 
freedom of flow.  

It is a recurring lesson of this Volume 
that discrete-time systems are harder 
and less manageable: visualizing 2-D 
discrete-time dynamics is a challenge. 

The continuous-time method is sometimes applicable: e.g., to linear systems of 
the form 𝐸𝐸𝒙𝒙 = 𝐴𝐴𝒙𝒙 where the eigenvalues of 𝐴𝐴 are both positive. In such a case, 
one has a foliation of the plane into invariant “flowlines” and the discrete-time 
dynamics are akin to “jumping” ahead by some time Δ𝑡𝑡. Negative eigenvalues 
(that correspond to axis flips) and full nonlinear dynamics can break this 
visualization method. We therefore begin with continuous-time linear systems.  
 

THE GARDEN OF EQUILIBRIA 
In 1-D, equilibria are classified by the stable-unstable-degenerate trichotomy, 
determined by the Stability Criterion applied to the derivative at the 
equilibrium. Recognizing this derivative as an eigenvalue (for the trivial 1-by-1 

T 



26 

matrix derivative) tempts the reader to think that equilibrium types will be 
doubled in 2-D. More complexity is warranted, as eigenvalues can come in 
conjugate pairs.   

One classifies the equilibrium at the origin of a linear system qualitatively. These 
have their own taxonomy, complete with zoological nomenclature.  

▷ SOURCE : 0 < 𝜆𝜆2 < 𝜆𝜆1 : unstable along both eigendirections. 
▷ SINK : 𝜆𝜆2 < 𝜆𝜆1 < 0 : stable along both eigendirections. 
▷ SADDLE : 𝜆𝜆2 < 0 < 𝜆𝜆1 : mixed stable-unstable behavior. 
▷ SPIRAL SOURCE : 𝜆𝜆 = 𝛼𝛼 ±  𝑖𝑖𝑖𝑖 ;   𝛼𝛼 > 0 : spirals out. 
▷ SPIRAL SINK : 𝜆𝜆 = 𝛼𝛼 ±  𝑖𝑖𝑖𝑖 ;   𝛼𝛼 < 0 : spirals in. 
▷ CENTER : 𝜆𝜆 = ±𝑖𝑖𝑖𝑖 ;  𝛽𝛽 ≠ 0 :  foliated by ellipses. 

This is not all. There are degenerate equilibria, characterized by the presence of 
a zero eigenvalue. If the other eigenvalue is nonzero, then it introduces either a 
stable or unstable element to the dynamics. Some authors distinguish fine 
shades of ever-weaker forms of stability (such as weak, neutral, or semi-); this text 
admits the existence of degeneracy but avoids dwelling there long enough to 
product a taxonomy. Also of questionable identification is the case of repeated 
roots, either stable (negative) or unstable (positive). Though their linear-algebra 
is burdensome, their qualitative behavior is simple – they are sinks or sources, 
on the very edge of spiraling into or out of control.  

EXAMPLE: Computing the eigenvalues of the following linear system is simple: 

𝐷𝐷𝐷𝐷 = 𝐴𝐴𝐴𝐴     ∶       𝐴𝐴 = �3 0
8 −7�        ↔       

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3𝑥𝑥   ;  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 8𝑥𝑥 − 7𝑦𝑦 . 

They are precisely the diagonal entries, as the matrix is triangular. This continuous-time 
system thus has a saddle at the origin. The 𝑦𝑦-axis is the stable eigenvector. 
 



27 

THE TRACE-DETERMINANT METHOD 
In 2-D continuous-time linear systems, there is a wonderful method for quickly 
classifying the equilibrium at the origin. Observe that, for a 2-by-2 matrix 𝐴𝐴, the 
characteristic equation is 𝜆𝜆2 − tr(𝐴𝐴)𝜆𝜆 + det 𝐴𝐴, where tr(𝐴𝐴) is the trace of the 
matrix. Solving for the eigenvalues gives: 

𝜆𝜆1,2 =
1
2

�tr(𝐴𝐴) ± �tr2(𝐴𝐴) − 4 det 𝐴𝐴�. 

The key term is the discriminant, tr2(𝐴𝐴) − 4 det 𝐴𝐴. When this is negative, then 
the eigenvalues are complex with nonzero imaginary part. If, in addition, trace 
vanishes, then the eigenvalues are pure imaginary. A positive discriminant 
implies real eigenvalues; a zero discriminant implies repeated real eigenvalues.  

Combined with the fact that for any square matrix, the determinant is the 
product of the eigenvalues and the trace is the sum of the eigenvalues, we have 
a few useful conclusions about the equilibrium at the origin: 

▷ SADDLE  if  det 𝐴𝐴 < 0 
▷ SINK  if  tr 𝐴𝐴 < 0 and 0 < det 𝐴𝐴 < (tr 𝐴𝐴)2/4 
▷ SPIRAL SINK  if  tr 𝐴𝐴 < 0 and det 𝐴𝐴 > (tr 𝐴𝐴)2/4 
▷ SOURCE  if  tr 𝐴𝐴 > 0 and 0 < det 𝐴𝐴 < (tr 𝐴𝐴)2/4 
▷ SPIRAL SOURCE  if  tr 𝐴𝐴 > 0 and det 𝐴𝐴 > (tr 𝐴𝐴)2/4 
▷ CENTER  if  tr 𝐴𝐴 = 0 and det 𝐴𝐴 > 0 
▷ DEGENERATE  if  det 𝐴𝐴 = 0 

This leads to a complete 
determination of the type 
of equilibrium in 2-D 
continuous-time linear 
dynamics based solely on 
the trace and determinant 
of the matrix. This is 
neatly encoded in a trace-
determinant diagram, to 
be memorized and used 
frequently.   

EXAMPLE: Computing the 
eigenvalues of the following 
linear system would be 
unpleasant: 

𝐷𝐷𝐷𝐷 = 𝐴𝐴𝐴𝐴     ∶       𝐴𝐴 = �√7 ln
1

100
𝑒𝑒5 −𝜋𝜋

� . 

However, determining the type of equilibrium at the origin is clean. The trace of 𝐴𝐴 is small 
and negative; the determinant is positive and large relative to trace. This is a spiral sink.  
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DISCRETE SUBTLETIES 
The trace-determinant method 
of classification is not as well-
known in discrete time. The 
Stability Criterion switches focus 
from positive/negative to 
magnitude of eigenvalues. 
However, the computation of 
eigenvalues in terms of trace and 
determinant remains intact: we 
proceed by partitioning the plane 
and classifying components. 
First, the discriminant vanishes 
along tr2(𝐴𝐴) − 4 det 𝐴𝐴, and above 
this lies complex conjugate 
eigenvalue pairs. The centers 
occur in this region where 

det 𝐴𝐴 = 1; below that lie spiral sinks; above, spiral sources. The remaining 
partitions of the plane are governed by the equations 

1
2

�tr(𝐴𝐴) ± �tr2(𝐴𝐴) − 4 det 𝐴𝐴� = ±1, 

which implies det 𝐴𝐴 = −1 ± tr 𝐴𝐴 . These degenerate lines, where one real 
eigenvalue crosses ±1, cuts the trace-determinant plane into saddles, sources, 
and sinks.  The comparison of this diagram with its continuous-time analogue 
reveals the subtleties of eigenvalues in 2-D.  

 

 

STABILITY CRITERION REDUX 
With the classification of equilibria in linear systems complete, a reformulation 
of the Stability Criterion is in order. The 2-D is more involved than the 1-D case; 
however, we can lift the 1-D case to individual eigenvalues, pronouncing them 
to be stable, unstable, or neutral based on the 1-D Stability Criterion. This leads 
to the following.  

STABILITY CRITERION, CONTINUOUS TIME 
For a linear 2-D dynamical system 𝐷𝐷𝒙𝒙 = 𝐴𝐴𝒙𝒙 with eigenvalues 𝜆𝜆1,2, the stability of 
the equilibrium at the origin is based on the real component of the eigenvalues:  

▷ STABLE  if   ℜ𝑒𝑒(𝜆𝜆𝑖𝑖) < 0 for all 𝑖𝑖 
▷ UNSTABLE  if  ℜ𝑒𝑒(𝜆𝜆𝑖𝑖) > 0 for some 𝑖𝑖 
▷ NEUTRAL  if  ℜ𝑒𝑒(𝜆𝜆𝑖𝑖) = 0 for some 𝑖𝑖 

 
STABILITY CRITERION, DISCRETE TIME 
For a linear 2-D dynamical system 𝐸𝐸𝒙𝒙 = 𝐴𝐴𝒙𝒙 with eigenvalues 𝜆𝜆1,2, the stability of 
the equilibrium at the origin is based on the modulus of the eigenvalues: 

▷ STABLE  if  |𝜆𝜆𝑖𝑖| < 1 for all 𝑖𝑖 
▷ UNSTABLE  if  |𝜆𝜆𝑖𝑖| > 1 for some 𝑖𝑖 
▷ NEUTRAL  if  |𝜆𝜆| = 1 for some 𝑖𝑖 
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It is imperative to examine this carefully. First, the logical subtlety: stability 
requires all eigenvalues to be stable: any instability destabilizes the system. This 
is sensible: witness the dynamics near a saddle equilibrium. Next, the distinction 
between continuous and discrete time is sharpened: what was murky in 1-D 
becomes clear in the context of the complex plane of potential eigenvalues. The 
Exponential Lemma of Chapter 2 – that “𝑒𝑒𝐷𝐷 = 𝐸𝐸” – is the key. The partition of 
the complex plane into domains of stable, degenerate, and unstable eigenvalues 
for 𝐷𝐷, when exponentiated (via Euler’s formula), yield the stable-neutral-unstable 
partition for the shift operator 𝐸𝐸. This is sublime.  

It is also to be noted that there are finer shades of stability and instability one 
can define. Our use of terms stable and unstable imply exponential behavior; one 
might consider subexponential growth or decay as being similarly categorized. 
In this text, we do not add to the terminology with these emanations of stability 
(asymptotic, neutral, Lyapunov, etc.): stability means linear stability as above.  

EXAMPLE: Consider the following linear system in continuous time: 

𝐷𝐷𝒙𝒙 = 𝐴𝐴𝒙𝒙     ∶       𝐴𝐴 = �0 1
0 0� . 

The double-zero eigenvalue means that it is a (very) degenerate equilibrium. It has no 
unstable eigenvalues. Nevertheless, almost all initial conditions “go to infinity”, as can be 
seen by computing an explicit solution: 𝑥𝑥(𝑡𝑡) = 𝐶𝐶1 + 𝐶𝐶2𝑡𝑡. This can be regarded as a weak 
form of instability, but we will not call such an equilibrium [linearly] unstable.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 14  
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CHAPTER  15 : 
NONLINEAR 2-D SYSTEMS 
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INEAR SYSTEMS have been our primary focus: we are now prepared to turn to 
fully nonlinear systems in 2-D. The approach will imitate that of 1-D, with a 

few additional twists; some complications come from the mechanics of linear 
algebra in 2-D, whereas others come from the less highly constrained topology 
of the plane.   
 

LINEARIZATION AT EQUILIBRIA 
The story from 1-D systems continues to 2-D: given a nonlinear system, we find 
the equilibria, linearize the dynamics about the equilibria, and then use our 
knowledge of linear systems, informed by eigenvalues and eigenvectors. 
Specifically, given 

𝐷𝐷𝒙𝒙 = 𝐹𝐹(𝒙𝒙)  or  𝐸𝐸𝒙𝒙 = 𝐹𝐹(𝒙𝒙)  where  𝒙𝒙 = �
𝑥𝑥
𝑦𝑦�   &  𝐹𝐹(𝒙𝒙) = �𝐹𝐹1(𝑥𝑥, 𝑦𝑦)

𝐹𝐹2(𝑥𝑥, 𝑦𝑦)�, 

one finds an equilibrium 𝒂𝒂 and linearizes 𝐹𝐹(𝒙𝒙) about 𝒙𝒙 = 𝒂𝒂 using the derivative 
[𝐷𝐷𝐷𝐷] evaluated at 𝒂𝒂. As 𝐹𝐹 is a function with two inputs and two outputs, the 
derivative is a linear transformation represented as a 2-by-2 matrix 

[𝐷𝐷𝐷𝐷]𝒂𝒂 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐹𝐹1

𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹1

𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹2

𝜕𝜕𝜕𝜕
𝜕𝜕𝐹𝐹2

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

𝒂𝒂

. 

Some authors insist on a separate name for this (the Jacobian), but that is to be 
avoided: it is simply the derivative. Setting 𝒉𝒉 = 𝒙𝒙 − 𝒂𝒂 as a perturbation to an 
equilibrium, the induced dynamics on this perturbation are given by 

𝐷𝐷𝒉𝒉 = 𝐷𝐷𝒙𝒙 − 𝐷𝐷𝒂𝒂 = 𝐹𝐹(𝒂𝒂 + 𝒉𝒉) = 𝐹𝐹(𝒂𝒂) + [𝐷𝐷𝐷𝐷]𝒂𝒂𝒉𝒉 + 𝑂𝑂(|𝒉𝒉|2) ≈ [𝐷𝐷𝐷𝐷]𝒂𝒂𝒉𝒉 
𝐸𝐸𝒉𝒉 = 𝐸𝐸𝒙𝒙 − 𝐸𝐸𝒂𝒂 = 𝐹𝐹(𝒂𝒂 + 𝒉𝒉) − 𝒂𝒂 = [𝐷𝐷𝐷𝐷]𝒂𝒂𝒉𝒉 + 𝑂𝑂(|𝒉𝒉|2) ≈ [𝐷𝐷𝐷𝐷]𝒂𝒂𝒉𝒉 

These are the linearized dynamics about the equilibrium, to which we apply our 
knowledge of eigenvalues, eigenvectors, and linear solutions. Perturbations to 
the equilibria grow according to the linear solutions: 

𝒉𝒉(𝑡𝑡) ≈ exp([𝐷𝐷𝐷𝐷]𝒂𝒂𝑡𝑡) 𝒉𝒉0       ∶        𝒉𝒉𝑛𝑛 ≈ ([𝐷𝐷𝐷𝐷]𝒂𝒂)𝑛𝑛𝒉𝒉0 . 
Any confusion at this point should be alleviated by rereading Chapter 3 before 
proceeding. 

EXAMPLE: Consider the linear system given by 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥 − 𝑦𝑦      ∶       
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 1 − 𝑥𝑥𝑥𝑥 . 

There are equilibria where 𝑥𝑥 = 𝑦𝑦 and 𝑥𝑥𝑥𝑥 = 1; thus at (1,1) and (−1, −1). The derivative of 
the right-hand side evaluated at these equilibria yields:  

� 1 −1
−𝑦𝑦 −𝑥𝑥�

1,1
=  � 1 −1

−1 −1�       &      � 1 −1
−𝑦𝑦 −𝑥𝑥�

−1,−1
=  �1 −1

1 1 �. 

In the former case, we have negative determinant and conclude that (1,1) is a saddle. In 
the latter case, the trace and determinant each equal 2: this implies that (−1, −1) is a 
spiral source.  
 

L 
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SOME ASSEMBLY REQUIRED 
In 1-D, continuous-time, knowing what happens at all the equilibria completely 
determines the rest of the dynamics. This is not the case in 2-D, and it is 
nontrivial to interpolate between the local dynamics about equilibria.  

There are several means of discerning the transition from local to global, 
including the following: 

▷ Pick a Point: For a spiral or center, knowing the direction of rotation is 
helpful. Though converting to local polar coordinates and determining 
the dynamics on the angular coordinate would work, it is usually simpler 
to pick a single point near the equilibrium and evaluate the dynamics 
there. 

▷ Isoclines: For continuous-time dynamics, visualizing curves where the 
vector field takes on a particular slope (iso-cline) can be a help. Setting 
the components 𝐹𝐹1 = 0 or 𝐹𝐹2 = 0 (or even 𝐹𝐹1 = ±𝐹𝐹2) is often helpful in 
piecing together the flow of things. See the exercises for more on this. 

▷ Occam’s Razor: When in doubt, the simplest assembly of local dynamics 
into a global picture is to be preferred as ab initio a good guess. As with 
other applications of the Razor, simplicity is not guaranteed.  

Applying these hints to the previous example indicates that the spiral is spinning 
counterclockwise and that these spiral trajectories feed into the local dynamics 
of the saddle. Could there be more happening? Could the linear approximation 
have been misleading? These are important questions. 
 

THE HARTMAN-GROBMAN THEOREM 
The limits of linearization were more apparent in 1-D: degenerate equilibria, at 
which the derivative yields neither stability nor instability, were clearly not 
classified by the derivative. In higher dimensions, this story persists, but at the 
level of eigenvalues: any neutral eigenvalues are sufficient to call linearization 
into doubt.   

One says that an equilibrium is hyperbolic if it has no neutral eigenvalues. This 
terminology, emanating from deep corners of geometry, is central to dynamical 
systems, and it shall be in continuous use. The result that guarantees the 
accuracy of linearization utilizes the language of topological conjugacy (see 
Chapter 5) to compare the qualitative behavior of nonlinear and linearized 
dynamics.   

HARTMAN-GROBMAN THEOREM: On a sufficiently small neighborhood of a 
hyperbolic fixed point 𝒂𝒂, the nonlinear dynamics of 𝐹𝐹 (assumed 𝐶𝐶1) are 
topologically conjugate to the dynamics of the linearized system [𝐷𝐷𝐷𝐷]𝒂𝒂.  

▷ Idea: The proof is nontrivial and involves building a nonlinear change of 
coordinates to match the nonlinear dynamics with the local linearized dynamics. 
As one might guess, the Implicit Function Theorem plays a starring role. The 
continuous-time and discrete-time proofs are very similar in spirit. ◁ 

This means in practice that one can be confident in the presence of sources, 
sinks, spirals, and saddles, but centers are a suspicious occurrence. Nota bene: this 
is a local result which applies only to a neighborhood of a hyperbolic equilibrium.  
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STABLE & UNSTABLE CURVES 
With a bit more attention to detail in the application of the Implicit Function 
Theorem, one can extract some additional information from the proof of the 
Hartman-Grobman Theorem. In the case of a hyperbolic equilibrium of saddle-
type,  the stable and unstable eigenspaces of the linearized dynamics are one-
dimensional and point in the directions along which the dynamics are stable and 
unstable respectively. What about the nonlinear dynamics? The stable and 
unstable eigenspaces are linearizations of stable and unstable curves for the 
dynamics. For a saddle equilibrium 𝒂𝒂 define the following:  

▷ STABLE CURVE:  𝑊𝑊𝑠𝑠(𝒂𝒂) = {𝑥𝑥 ∈ ℝ2 ∶ 𝒙𝒙 → 𝒂𝒂 as time goes to +∞}. 
▷ UNSTABLE CURVE:  𝑊𝑊𝑢𝑢(𝒂𝒂) = {𝑥𝑥 ∈ ℝ2 ∶ 𝒙𝒙 → 𝒂𝒂 as time goes to −∞}.  

The notation may seem odd: it will be generalized greatly and put to general use 
in Volumes 3 and 4. It is a deep result that these stable and unstable curves are 
indeed curves, not merely locally but globally. The Stable Manifold Theorem of 
Volume 3 will cover this and more. 
 

INTEGRALS & CENTERS 
When applying the Hartman-Grobman Theorem, it certainly feels correct that 
one should not trust degenerate equilibria: there’s simply not enough 
information. Centers – in contrast – give the appearance of being well-behaved. 
Why are these not to be trusted? Do they ever truly exist?  

EXAMPLE: Consider the following continuous time system: 

𝐷𝐷 �
𝑥𝑥
𝑦𝑦� = � 2𝑦𝑦 + 4𝑦𝑦3

−2𝑥𝑥 − 4𝑥𝑥3� . 

This system has an equilibrium at the origin whose linearization indicates a center. This 
is in fact a true nonlinear center, as is hinted by a simulation. To confirm, one makes the 
inspired choice to investigate the function Φ = 𝑥𝑥2 + 𝑦𝑦2 + 𝑥𝑥4 + 𝑦𝑦4. The level sets of Φ 
coincide with the orbits of the flow since, by the Chain Rule, 

𝑑𝑑Φ
𝑑𝑑𝑑𝑑 =

𝜕𝜕Φ
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 +

𝜕𝜕Φ
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = (2𝑥𝑥 + 4𝑥𝑥3)(2𝑦𝑦 + 4𝑦𝑦3) − (2𝑥𝑥 + 4𝑥𝑥3)(2𝑦𝑦 + 4𝑦𝑦3) = 0 . 

This means that flowlines maintain a constant value of Φ and, indeed, sweep out level 
sets. Since Φ has a minimum at the origin, it is surrounded by simple closed curves: a 
center. 

A system is said to be integrable (or conservative) if there is a (locally non-
constant) integral Φ: ℝ2 → ℝ such that Φ does not change along orbits of the 
dynamics. Assuming (as we shall) that Φ is continuously differentiable, this 
means that 

▷ CONTINUOUS:  𝐷𝐷Φ = 0 ; that is, 
𝑑𝑑

𝑑𝑑𝑑𝑑
Φ�𝒙𝒙(𝑡𝑡)� = 0. 

▷ DISCRETE:  𝐸𝐸Φ = 0 ; that is, Φ(𝒙𝒙𝑛𝑛+1) = Φ(𝒙𝒙𝑛𝑛).  

The existence of an integral greatly constrains the types of behavior seen in 2-D. 

LEMMA: Orbits of integrable 2-D systems are contained within level sets of the 
integral Φ. Equilibria of such systems can be saddles, centers, or degenerate: no 
sinks or sources – regular or spiral – exist. 

▷ Proof: The first statement follows from the definition of the integral. The 
second statement can be argued by contradiction: in a neighborhood of any sink 
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or source, such a Φ must by continuity and invariance be a constant, violating 
the non-constant assumption. ◁ 

The problem with this method – as you may have guessed – is that there is no 
oracle to tell you what the integral Φ might be if you suspect that one exists. 

There is one method for finding a conserved quantity which resonates with 
certain ideas from multivariable calculus. A 2-D continuous-time system is said 
to be Hamiltonian if there is a (𝐶𝐶1) function 𝐻𝐻: ℝ2 → ℝ such that  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

     ∶      
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 . 

Hamiltonian systems in 2-D are integrable (with integral 𝐻𝐻), since mixed 
partials commute. The converse is not true: there are many integrable systems 
which are not Hamiltonian. However, on the plane, Hamiltonian-ness is 
detectible.  

LEMMA: A continuous-time (𝐶𝐶1) system 𝐷𝐷𝒙𝒙 = 𝐹𝐹(𝒙𝒙) on ℝ2 is Hamiltonian with 
(a 𝐶𝐶2) integral 𝐻𝐻 if and only if its divergence is zero: ∇ ⋅ 𝐹𝐹 = 0. 

▷ Idea: Necessity follows from the definition of Hamiltonian and the fact that 
mixed partial derivatives commute. Sufficiency comes from a 2-D version of the 
Poincaré Lemma from multivariable calculus (any divergence-free field is a curl).  
◁ 
 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 15 
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CHAPTER  16 : 
POPULATION MODELS 
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ONLINEAR SYSTEMS can exhibit a great many types of equilibria. Our 
immediate goal is to put this expressiveness to work in modelling 

complicated phenomena. This chapter focuses on population models. 

Most of the models in this chapter are attributed to Lotka and Volterra; the term 
Lotka-Volterra model is common, but often ambiguous, as there are several 
different types of population models. We therefore use more descriptive titles.  
 

PREDATOR-PREY MODEL 
The following models two species. The first, 𝑥𝑥, grows naturally in its 
environment and is modelled with linear dynamics 𝐷𝐷𝐷𝐷 = 𝑟𝑟1𝑥𝑥 for 𝑟𝑟1 > 0 a 
constant. The second species, 𝑦𝑦, is predative, and, in the absence of food, dies off; 
thus, 𝐷𝐷𝐷𝐷 = −𝑟𝑟2𝑦𝑦 for 𝑟𝑟2 > 0. Such an uncoupled linear system clearly gives a 
saddle equilibrium at the origin, with unbounded growth in 𝑥𝑥 and eventual 
extinction for 𝑦𝑦.  

To make the model more interesting, assume that 𝑦𝑦 is predator and 𝑥𝑥 prey. 
Whenever predators and prey meet, there is a benefit to 𝑦𝑦 and a detriment to 𝑥𝑥. 
The rate of predator-prey encounters depends on the relative sparsity of 
populations; very little prey or very few predators means that an encounter will 
be less frequent. The model therefore assumes that encounters occur at a rate 
proportional to 𝑥𝑥𝑥𝑥, with constants of proportionality tuning both frequency and 
net benefit/detriment. The predator-prey model emerges: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥 − 𝛼𝛼𝛼𝛼𝛼𝛼 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑟𝑟𝑟𝑟 + 𝛽𝛽𝛽𝛽𝛽𝛽 

Here, we have rescaled populations so that the prey has unit reproduction rate 
and predators have a relative ratio 𝑟𝑟 > 0, with the minus sign forcing natural 
decline. The predator-prey detriment/benefit rates are (resp.) 𝛼𝛼, 𝛽𝛽 > 0. 

Let us follow the story. There is an equilibrium at (0,0), and, since the linear 
portion is clear, one observes that it is a saddle with eigenvalues 𝜆𝜆1 = 1 and 𝜆𝜆2 =
−𝑟𝑟. Note as well that the 𝑥𝑥 and 𝑦𝑦 axes are the (invariant) stable and unstable 
curves – once you start there, you never leave. This is a typical occurrence in 
population models, since populations do not burst forth ex nihilo. 

There is a second equilibrium at 𝑥𝑥 = 𝑟𝑟/𝛽𝛽 and 𝑦𝑦 = 1/𝛼𝛼. The derivative of the right 
hand side of the model at this point is 

�
1 − 𝛼𝛼𝛼𝛼 −𝛼𝛼𝛼𝛼

𝛽𝛽𝛽𝛽 𝛽𝛽𝛽𝛽 − 𝑟𝑟�
𝑟𝑟
𝛽𝛽,1𝛼𝛼

 = �
0 −

𝑟𝑟𝑟𝑟
𝛽𝛽

𝛽𝛽
𝛼𝛼

0
� . 

With trace zero and determinant positive, we are met with a center as the 
linearized dynamics. Our next step – to invoke the Hartman-Grobman Theorem 
and declare victory – falls flat, as this is one of the fragile cases in which we 
cannot say for sure that the linearization is accurate, as higher-order terms not 
seen by the linearization can destroy a center. Does the Hamiltonian method of 
Chapter 15 imply that it is a center? No, it does not. Nevertheless, this is a true 
nonlinear center.  

N 
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LEMMA: The predator-prey model is integrable with integral 

Φ = 𝛽𝛽𝛽𝛽 − 𝑟𝑟 ln 𝑥𝑥 + 𝛼𝛼𝛼𝛼 − ln 𝑦𝑦 . 
▷ Proof: Direct computation shows that 𝑑𝑑Φ/𝑑𝑑𝑑𝑑 = 0.  

𝑑𝑑Φ
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽(1 − 𝛼𝛼𝛼𝛼) −
𝑟𝑟𝑟𝑟(1 − 𝛼𝛼𝛼𝛼)

𝑥𝑥
+ 𝛼𝛼𝛼𝛼(𝛽𝛽𝛽𝛽 − 𝑟𝑟) −

𝑦𝑦(𝛽𝛽𝛽𝛽 − 𝑟𝑟)
𝑦𝑦

= 0 .   ◁ 

It is not hard to see that level sets of Φ in the first quadrant are simple closed 
curves surrounding the equilibrium as illustrated. The entire first quadrant is 
filled and foliated with periodic orbits.  

What this means for the population model is that, away from equilibrium, 
populations of predators and prey rise and fall periodically, though not in sync. 
As with the time-delay hogs model from Chapter 13, an undersupply of predators 
leads to an oversupply of prey, which encourages greater numbers of predators, 
etc. One curious feature of the model is that for certain initial conditions of too 
many predators and prey, the population sizes take turns collapsing to nearly 
zero before slowly building back to same inflated numbers.  

 

COMPETITIVE MODEL 
Instead of an asymmetric predator-prey model, one can work with a model in 
which the two species, 𝑥𝑥 and 𝑦𝑦, compete for shared resources. The following 2-
species competitive model has, like the previous model, a single parameter, 𝑟𝑟 >
0, encoding a relative reproduction rate, as well as parameters 𝛼𝛼, 𝛽𝛽 > 0 which 
record the relative impact of competitive encounters between species. 
Populations are normalized so that 1 is the carrying capacity of each population 
in the absence of the other. Beginning with decoupled logistic models and adding 
in negative quadratic interaction terms as before yields the competitive (Lotka-
Volterra) model: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥(1 − 𝑥𝑥 − 𝛼𝛼𝛼𝛼) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟(1 − 𝑦𝑦 − 𝛽𝛽𝛽𝛽)  

This system requires a more substantive analysis. There are four possible 
equilibria, located at (0,0), (1,0), (0,1), and  

�
1 − 𝛼𝛼

1 − 𝛼𝛼𝛼𝛼
,

1 − 𝛽𝛽
1 − 𝛼𝛼𝛼𝛼

� , 

which is a “realistic” equilibrium only when 𝛼𝛼 and 𝛽𝛽 are both less than one or 
both greater than one. The derivative of the dynamics is the following matrix:  

�
1 − 2𝑥𝑥 − 𝛼𝛼𝛼𝛼 −𝛼𝛼𝛼𝛼

−𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟 − 2𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟𝑟𝑟� 

The four equilibria are classified as follows. 

1: (0,0) is always a source, since the derivative here is  

�1 0
0 𝑟𝑟� , 

and 𝑟𝑟 > 0. This means that when population sizes are low, there is no 
competition: both species are free to reproduce at their natural rates.  

2: (1,0) is a sink for 𝛽𝛽 > 1 and a saddle for 𝛽𝛽 < 1, since the derivative is  
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�−1 −𝛼𝛼
0 𝑟𝑟(1 − 𝛽𝛽)� . 

and 𝑟𝑟 > 0. Since 𝛽𝛽 measures the inhibitory impact of the 𝑥𝑥 species on 𝑦𝑦, larger 𝛽𝛽 
is beneficial to establishing 𝑥𝑥 as the dominant species.  

3: (0,1) is a sink for 𝛼𝛼 > 1 and a saddle for 𝛼𝛼 < 1: a symmetric analysis to (1,0). 

4: The final equilibrium, when both populations have nonzero size, is of most 
interest. In the exercises, you will be led through the computation to show: 

▷ This is a sink when 𝛼𝛼, 𝛽𝛽 < 1. 
▷ This is a saddle when 𝛼𝛼, 𝛽𝛽 > 1. 

When 𝛼𝛼, 𝛽𝛽 < 1, we have a state of cooperation or coexistence: neither species is 
stable in its full size, but both admit sustainable “market shares”. When 𝛼𝛼, 𝛽𝛽 >
1, we have a critical situation called competitive exclusion: there can be only one 
winner. With work, including computation of the stable and unstable curves to 
the saddle, one gets additional information. The unstable curve limits at the two 
winner-take-all population sinks. The stable curve forms a separatrix – a  
boundary that separates the two futures. 

Note that if you find yourself near the stable curve to a saddle in the context of 
competitive exclusion, you may be lulled into supposing that you are in a period 
of cooperation, coexistence, or stalemate. It may take a while for the unstable 
eigenvalue to kick in. When it does, you will be dismayed at how fast your 
fortunes can change, whether in business, biology, or war.  
 

DISCRETE-TIME VERSIONS 
Replacing the continuous-time differentiation operator with the discrete-time 
forward difference yields the following version of the competitive model:  

𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛 − 𝛼𝛼𝑦𝑦𝑛𝑛) 
𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 = 𝑟𝑟𝑦𝑦𝑛𝑛(1 − 𝑦𝑦𝑛𝑛 − 𝛽𝛽𝑥𝑥𝑛𝑛) 

The analysis is similar: there are again four equilibria at the exact same locations. 
The difference is that we have extra terms on the diagonal of the derivative, due 
to moving the 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 over to the right hand side. The derivative is:  

�
2 − 2𝑥𝑥 − 𝛼𝛼𝛼𝛼 −𝛼𝛼𝛼𝛼

−𝑟𝑟𝑟𝑟𝑟𝑟 1 + 𝑟𝑟 − 2𝑟𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑟𝑟𝑟� 

The rest of the classification is similar; the trace-determinant method is still 
helpful here.   

It is an exercise for the reader to repeat this discretization with the predator-
prey model. One should find that the analysis of equilibria is similar. What is 
different is in the periodic orbits. In discrete-time, there is still a center, but the 
invariant loops can exhibit rational or irrational rotation behavior, depending on 
initial conditions.  

 

POPULATION COHORT MODELS 
Instead of using the freedom of two dimensions to model a pair of species in an 
adversarial or symbiotic relationship, one can work with two cohorts within a 
population. Such can occur in linear or nonlinear dynamics in discrete or 
continuous time.  
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One famous model for infectious disease is the SIR model, which decomposes a 
population of size 𝑁𝑁 into three cohorts: susceptible, infected, and recovered, of 
respective sizes 𝑆𝑆 + 𝐼𝐼 + 𝑅𝑅 = 𝑁𝑁. The resulting system of dynamics is (after 
eliminating the 𝑅𝑅 variable) given by 

𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑆𝑆
𝐼𝐼� = � −𝛽𝛽𝛽𝛽𝛽𝛽/𝑁𝑁

𝛽𝛽𝛽𝛽𝛽𝛽/𝑁𝑁 − 𝛾𝛾𝛾𝛾� , 

where 𝛽𝛽, 𝛾𝛾 > 0 are transmission and remission parameters. Their ratio, 𝑅𝑅0 = 𝛽𝛽/𝛾𝛾, 
is the all-too-familiar reproduction number of the infectious disease.   

Here, the limitations of 2-D are apparent. One frequently needs more than two 
cohorts in order to properly model populations. For example, in epidemiology, 
one might care about additional cohorts 𝐸𝐸 (exposed), 𝐶𝐶 (asymptomatic carrier), 
and 𝐷𝐷 (deceased). Chapter 26 in Volume 3 will go into greater detail.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 16 
 

1. SIR models and the reduction to a 2-d system. 
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CHAPTER  17 : 
NONLINEAR OSCILLATORS 
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UCH OF THE INITIAL WORK in 20th century dynamics came from engineers 
and physicists seeking to understand nonlinear oscillators. This chapter sets 

up several classical models, expressed as continuous-time second-order 
nonlinear differential equations. Though this will give an opportunity to practice 
classification of equilibria, the limits of our existing tools will soon be seen, 
prompting a turn to additional theoretical work.  
 

NONLINEAR PENDULUM 
The simple harmonic oscillator of Chapter 13 is a woefully inadequate model, 
good only for small angles. A more accurate model of a rigid-rod pendulum 
whose bob makes an angle 𝜃𝜃 with the vertical axis is  

𝑚𝑚𝐿𝐿2 𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2 = −𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝜃𝜃 . 

As a first-order system, this becomes: 

�𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑� =   �

𝑣𝑣
−

𝑔𝑔
𝐿𝐿

sin 𝜃𝜃� 

There are equilibria where 𝑣𝑣 = 0 and sin 𝜃𝜃 = 0. Since 𝜃𝜃 ∈ 𝕊𝕊1 is an angular variable 
(recall Chapter 5), we have precisely two equilibria: (0,0) and (0, ±𝜋𝜋), with the 
system best viewed as having state space equal to a cylinder 𝕊𝕊1 × ℝ1. The 
derivative of the right-hand-side is simple to compute: 

�
0 1

−
𝑔𝑔
𝐿𝐿

cos 𝜃𝜃 0� . 

Given that the trace is zero, the classification of equilibria depends only on 𝜃𝜃. 
Linearization declares the equilibrium at 𝜃𝜃 = 0 to be a center; the equilibrium at 
𝜃𝜃 = ±𝜋𝜋 is a saddle. The former is suspicious, but ultimately accurate. The lack of 
friction points to an integral for the (Hamiltonian) system given by  

𝐻𝐻 =
1
2

𝑣𝑣2 −
𝑔𝑔
𝐿𝐿

cos 𝜃𝜃 . 

Orbits of this system thus lie on level sets of 𝐻𝐻.  As the origin is a local minimum 
of 𝐻𝐻, it is a true center. 

The second equilibrium is worth investigation. This equilibrium corresponds to 
a perfectly still vertical pose: clearly unstable. However, the saddle point 𝒑𝒑 does 
have stable and unstable curves (cf. Chapter 15). A perfectly executed kick from 
the bottom can send this pendulum converging to the vertical as time slowly 
unfolds. With slightly less energy, the pendulum will forever swing back and 
forth in large arcs. With more, the pendulum winds about the circular state ad 
infinitum.  

The exceptional behavior on display can be summarized as:  

𝑊𝑊𝑠𝑠(𝒑𝒑) ∩ 𝑊𝑊𝑢𝑢(𝒑𝒑) ≠ ∅ . 
In other words, the stable and unstable curves to the vertical pose intersect in an 
orbit that limits to 𝒑𝒑. Such an orbit which converges in both forwards and 
backwards time to a saddle equilibrium is an example of a homoclinic orbit: it 
inclines to the same equilibrium solution in directions of time. 

M 
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SPINNING PENDULUM  
A slight generalization leads to some interesting complications. Take this same 
frictionless planar pendulum and spin the rig about a vertical axis at a constant 
angular velocity, 𝜔𝜔, here treated as a parameter. The relevant equation of motion 
(with mass cancelled out) is: 

𝐿𝐿
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2 = 𝐿𝐿𝜔𝜔2 sin 𝜃𝜃 cos 𝜃𝜃 − 𝑔𝑔 sin 𝜃𝜃 . 

As a first-order system, this becomes: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣     ∶       
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔2 sin 𝜃𝜃 cos 𝜃𝜃 −
𝑔𝑔
𝐿𝐿

sin 𝜃𝜃 . 

The system has equilibria at (0,0), (±𝜋𝜋, 0), and, assuming the angular speed 𝜔𝜔 to 
be sufficiently high, (arccos 𝑔𝑔/𝐿𝐿𝜔𝜔2 , 0). Note that since 𝜃𝜃 ∈ 𝕊𝕊1, there is a single 
equilibrium at 𝜃𝜃 = ±𝜋𝜋. In addition, one must be careful about the inverse cosine 
function: there are two values of arccos 𝑔𝑔/𝐿𝐿𝜔𝜔2. To what physical configurations 
do these correspond?  

Given the previous example, one would guess that the equilibrium at 𝜃𝜃 = ±𝜋𝜋 is 
a saddle, and that at 𝜃𝜃 = 0 is a center. To verify, one computes the derivative as 

�
0 1

𝜔𝜔2(cos2 𝜃𝜃 − sin2 𝜃𝜃) −
𝑔𝑔
𝐿𝐿

cos 𝜃𝜃 0� . 

The trace is always zero, so linearization gives either saddles or centers 
depending on the sign of the determinant. For 𝜔𝜔2 > 𝑔𝑔/𝐿𝐿, both these equilibria 
are saddles: sufficiently fast rotation destabilizes the origin, sending nearby 
initial conditions on a swing. The two remaining equilibria, where the bob is still 
and rotating with the frame, are each centers. The lack of friction in this problem 
portends that the system has an integral, and that these are true centers.   
 

VAN DER POL OSCILLATOR 
Simple electrical circuits give rise to systems of linear differential equations. The 
introduction of a non-linear circuit element can prompt a novel twist in even a 
simple layout. Such is the case for the Van der Pol circuit, in which a nonlinear 
resistor in an RLC circuit yields a simple, unforced Van der Pol oscillator:  

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 𝜖𝜖(𝑥𝑥2 − 1)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑥𝑥 = 0. 

Here, 𝜖𝜖 > 0 is a small constant. This resembles a simple harmonic oscillator with 
a damping term that is dependent on the size of 𝑥𝑥: there is positive damping 
(friction) for large values of 𝑥𝑥 and negative damping (excitation) for small values.  
Converting this to a first-order system yields: 

�𝑥̇𝑥
𝑦̇𝑦� =   � 0 1

−1 𝜖𝜖� �
𝑥𝑥
𝑦𝑦� + � 0

−𝜖𝜖𝜖𝜖2𝑦𝑦�  . 

For 𝜖𝜖 > 0 small there is a unique equilibrium at the origin. With a small positive 
trace, and a positive determinant, one concludes a spiral source. This would seem 
to be all that can be said. The existence of positive damping far off would merit 
examining a larger neighborhood of the origin. Upon so doing, one finds the 
existence of an attracting periodic orbit – a limit cycle – is apparent in 
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simulations. Proving that such an orbit exists is a nontrivial task: see Chapter 
20.  
 

DUFFING OSCILLATOR 
The Duffing oscillator is of great classical interest and is again a modification of 
a damped simple harmonic oscillator. To the linear term a cubic term is added, 
yielding: 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝛿𝛿𝛿𝛿 + 𝑥𝑥3 = 0 . 

The physically interesting case occurs where 𝛿𝛿 < 0. Physical examples to which 
this model applies include various double well potential mechanical systems, such 
as an elastic beam being pulled be a pair of magnets or springs. Converting this 
to a first-order system yields: 

�𝑥̇𝑥
𝑦̇𝑦� =   � 0 1

−𝛿𝛿 −1� �
𝑥𝑥
𝑦𝑦� + � 0

−𝑥𝑥3�  . 

There is clearly an equilibrium at the origin and, with the linear part clear, the 
classification is seen to depend upon the parameter 𝛿𝛿. For 𝛿𝛿 < 0, the origin is a 
saddle; for 𝛿𝛿 > 0, the origin is stable (since trace is negative). It is a sink for 0 >
𝛿𝛿 ≥ 1/4, and a spiral sink for 𝛿𝛿 > 1/4. The other equilibria of this system occur 

where 𝑦𝑦 = 0 and 𝑥𝑥(𝛿𝛿 + 𝑥𝑥2) = 0; thus at 𝑥𝑥 = ±√−𝛿𝛿. This pair of equilibria only 
exist for 𝛿𝛿 < 0; the derivative evaluated at these equilibria equals: 

� 0 1
−𝛿𝛿 − 3𝑥𝑥2 −1�

±√−𝛿𝛿,0
=  � 0 1

2𝛿𝛿 −1�. 

This has trace −1 and determinant −2𝛿𝛿 > 0: sinks, spiraling for 𝛿𝛿 < − 1
8
 .  

 

PERIODICALLY FORCED 
Many of the oscillators in this chapter have especially interesting behavior in the 
nonautonomous setting, where the right-hand side of the ODE is time-
dependent. For example, a periodically forced Duffing oscillator is: 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝛿𝛿𝛿𝛿 + 𝑥𝑥3 = 𝐴𝐴 cos 𝜔𝜔𝜔𝜔 , 

where 𝐴𝐴 is the amplitude of the forcing and 𝜔𝜔 its frequency. Such systems are 
beyond what we can as yet handle: though second-order, this system’s time-
varying dynamics increments the dimension. It is especially interesting to 
visualize solutions evolving in time. Though the unforced case has a pair of sinks 
(for 𝛿𝛿 < 0), the forced oscillator does not converge to an equilibrium state. This 
will be one motivation for our work in Volume 4.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 17 
 

1. Adding friction to the pendulum model. 
2. Fill in the details that the spinning pendulum problem has a pair of 

centers as the side equilibria. 
3. Upon adding friction to the spinning hoop model, show that the pair of 

centers become spiral sinks. 
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CHAPTER  18 : 
BIFURCATIONS REDUX 
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ARAMETERS are essential components of most good models; witness the 
population and oscillator models of the previous two chapters. As a result, 

one expects to see bifurcations – qualitative changes in the dynamics as a 
function of parameters. The next step after classification of equilibria is the 
classification of bifurcations of equilibria.  
 

DECOUPLED SYSTEMS & BIFURCATIONS 
To a large degree, bifurcations in 2-D systems recapitulate the 1-D classification. 
Our strategy for classifying equilibria in 2-D systems has involved performing a 
coordinate change to decouple the linearized system. The corresponding strategy 
for classifying bifurcations works similarly, though the actual coordinate 
changes are, as in 1-D bifurcation theory, more subtle that this text can manage 
at full detail. 

The simplest way to lift the bifurcation types from Volume 1 to 2-D is to embed 
the bifurcation in the following decoupled system, 

𝐷𝐷 �
𝑥𝑥
𝑦𝑦� = �𝑓𝑓(𝑥𝑥, 𝜇𝜇)

𝜆𝜆𝜆𝜆 �      ∶       𝐸𝐸 �
𝑥𝑥
𝑦𝑦� = �𝑓𝑓(𝑥𝑥, 𝜇𝜇)

𝜆𝜆𝜆𝜆 � , 

where 𝑓𝑓(𝑥𝑥, 𝜇𝜇) expresses the normal form of the bifurcation with parameter 𝜇𝜇. 
Here, 𝜆𝜆 ≠ 0 is the eigenvalue for the (linear) dynamics on the second variable.  

For example, the continuous-time 2-D saddle-node bifurcation can be expressed 
in a decoupled form as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇 − 𝑥𝑥2      ∶       
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝜆𝜆 . 

This system expresses the usual saddle-node in the 𝑥𝑥 variable, having either no 
equilibria (𝜇𝜇 < 0) or two equilibria of opposite stabilities (𝜇𝜇 > 0). Together with 
the linear dynamics in 𝑦𝑦, the system has a pair of equilibria at (√𝜇𝜇, 0) which 
collide at 𝜇𝜇 = 0 and disappear as 𝜇𝜇 becomes negative.   

What types of equilibria are these? This depends on 𝜆𝜆. For 𝜆𝜆 > 0, the two 
equilibria which appear are a source and a saddle, but for 𝜆𝜆 < 0, the equilibria are 
a saddle and a sink respectively. This explains at last the etymology of the term 
saddle-node: a node is an outdated term for a source or a sink. In 2-D, the saddle-
node creates one saddle and one node.   

In general, one does not (want to) perform a coordinate change to decouple the 
system. The investigation of equilibria suffices to identify the relevant 
bifurcation.  

EXAMPLE: The following parametrized system is a better version of the genetic switch 
considered in Chapter 8. Here, 𝑥𝑥(𝑡𝑡) is related to the amount of a protein produced and 
𝑦𝑦(𝑡𝑡) is related to messenger RNA, with the pair evolving in continuous time as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑦𝑦 − 𝑎𝑎𝑎𝑎 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝑏𝑏𝑏𝑏 +

𝑥𝑥2

1 + 𝑥𝑥2 

The parameters 𝑎𝑎, 𝑏𝑏 > 0 are both positive. There is always an equilibrium at the origin; 
the linearized dynamics has eigenvalues 𝜆𝜆1 = −𝑎𝑎, 𝜆𝜆2 = −𝑏𝑏. There is also a pair of equilibria 
at 

P 
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�
1 ± √1 − 4𝑎𝑎2𝑏𝑏2

2𝑎𝑎𝑎𝑎 ,
1 ± √1 − 4𝑎𝑎2𝑏𝑏2

2𝑏𝑏 � . 

This pair of equilibria exists only when the term in the square root is nonnegative: 2𝑎𝑎𝑎𝑎 ≤
1. Moving across the hyperbola 𝑎𝑎𝑎𝑎 = 1/2 in the parameter plane changes the system from 
one equilibrium to three. Is this a pitchfork bifurcation? No. The pair of new equilibria 
appear at (1/2𝑎𝑎𝑎𝑎, 1/2𝑏𝑏), not the origin. Thus, this bifurcation is a curve of saddle-nodes.  

 

OSCILLATIONS REDUX 
Several interesting bifurcations occur in models of nonlinear oscillators, seen in 
Chapter 17. These can be a little complicated in the case of an integrable system, 
but the standard classification of 1-D bifurcations is usually sufficient.  

EXAMPLE: Recall the Duffing oscillator, written as a first-order system: 

𝐷𝐷 �
𝑥𝑥
𝑦𝑦� =   � 0 1

−𝛿𝛿 −1� �
𝑥𝑥
𝑦𝑦� + � 0

−𝑥𝑥3�  . 

For 𝛿𝛿 < 0, the origin is a saddle; it is a sink for 0 < 𝛿𝛿 ≤ 1/4, and a spiral sink for 𝛿𝛿 > 1/4. 

The other equilibria appear at (±√−𝛿𝛿, 0) for 𝛿𝛿 < 0. These are sinks, changing to spiral 
sinks for 𝛿𝛿 < −1/8. The interesting bifurcation happens at the origin at 𝛿𝛿 = 0, where the 
two sinks collide with the saddle at the origin, converting it to a sink. This is a pitchfork 
bifurcation. The preponderance of stability implies supercriticality.  

EXAMPLE: Recall the spinning planar pendulum: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑣𝑣     ∶       

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜔𝜔2 sin 𝜃𝜃 cos 𝜃𝜃 −

𝑔𝑔
𝐿𝐿 sin 𝜃𝜃 . 

The system has equilibria at (0,0), (±𝜋𝜋, 0), and (arccos 𝑔𝑔/𝐿𝐿𝜔𝜔2 , 0). There are two values of 
arccos 𝑔𝑔/𝐿𝐿𝜔𝜔2 for 𝜔𝜔2 > 𝑔𝑔/𝐿𝐿, and each of the associated equilibria are centers. At the critical 
angular speed where 𝜔𝜔2 = 𝑔𝑔/𝐿𝐿, these two centers collapse to the origin, and as 𝜔𝜔 
decreases, the origin changes from a saddle to a center. This is a supercritical pitchfork 

bifurcation at the origin when the parameter 𝜔𝜔 is at �𝑔𝑔/𝐿𝐿. Though similar to the Duffing 
oscillator, this is different: the lack of friction gives an integral which forces equilibria to 
be either saddles or centers. 

 

POPULATIONS REDUX 
Transcritical bifurcations are very common in population models, due to the 
biological constraint that a zero-size population is always an equilibrium.  

EXAMPLE: Recall the continuous-time competitive model of Lotka-Volterra from Chapter 
16. The four equilibria were classified: (0,0) is always a source, but the other three, 

(1,0) ; (0,1) ; �
1 − 𝛼𝛼

1 − 𝛼𝛼𝛼𝛼
,

1 − 𝛽𝛽
1 − 𝛼𝛼𝛼𝛼

�  

were either sinks or saddles depending on the values of 𝛼𝛼 and 𝛽𝛽. It is a worthwhile exercise 
to argue that this system experiences a transcritical bifurcation at (1,0) when 𝛼𝛼 = 1 and 
at (0,1) when 𝛽𝛽 = 1. This, then, explains what happens to the fourth equilibrium when it 
fails to be physically realistic: it has passed through one of the transcritical bifurcations. 

Other types of bifurcations are of course possible, including types that we have 
not yet encountered. 

EXAMPLE: The predator-prey model of Lotka-Volterra from Chapter 16 has a discrete-
time version (due to J. M. Smith): 

𝑥𝑥𝑛𝑛+1 = 𝑟𝑟𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛) − 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛      ∶       𝑦𝑦𝑛𝑛+1 = 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛/𝑐𝑐 . 
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Here, 𝑐𝑐, 𝑟𝑟 > 0 are parameters. This system has equilibria at (0,0) and at (𝑐𝑐, 𝑟𝑟(1 − 𝑐𝑐) − 1), 
meaning that one wants 𝑟𝑟(1 − 𝑐𝑐) > 1. This nonzero equilibrium has derivative 

�𝑟𝑟 − 2𝑟𝑟𝑟𝑟 − 𝑦𝑦 −𝑥𝑥
𝑦𝑦/𝑐𝑐 𝑥𝑥/𝑐𝑐�

𝑐𝑐,𝑟𝑟(1−𝑐𝑐)−1
 =  �

1 − 𝑐𝑐𝑐𝑐 −𝛽𝛽
1
𝑐𝑐

(𝑟𝑟 − 𝑟𝑟𝑟𝑟 − 1) 1
� . 

This has trace 2 − 𝑐𝑐𝑐𝑐 and determinant equal to 𝑟𝑟(1 − 2𝑐𝑐); this system undergoes a 
discrete-time bifurcation when 𝑐𝑐𝑐𝑐 < 4 and 𝑟𝑟 = 1/(1 − 2𝑐𝑐), changing between spiral sink 
and spiral source. This is a fascinating and an instructive system from the point of view 
of bifurcations and periodic orbits, as will be seen in the next chapter. 

 

FORESHADOWING 
As indicated by the previous example, our story of bifurcations is by no means 
complete. Everything thus far has centered on equilibria and how one unfolds 
changes in the number and types of equilibria about a singularity. However, 
there is one exception to this – a foreshadowing of things to come. 

In discrete time 1-D systems, the period-doubling bifurcation implicated not only 
an equilibrium, but a periodic orbit as well: the periodic orbit sprang forth from 
the equilibrium at a change of stability. This required a negative derivative, or, 
more suggestively, a local flipping of the reals about the equilibrium. That local 
rotation by half-a-turn in turn drove a novel bifurcation implicating period-2 
orbits. 

In 2-D systems, in discrete or continuous time, there is more room for flipping 
and rotation in general, and room must be made for the bifurcations this enables. 
No longer constrained by the topology of the line to suppress periodic orbits, 
planar dynamics in continuous time will evince bifurcations with and from 
periodic orbits, as will be seen in the next chapter and the remainder of this 
Volume. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 18 
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CHAPTER  19 : 
THE HOPF BIFURCATION 
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IFURCATIONS can implicate more than merely equilibria. One of the 
genuinely novel features of 2-D dynamics arises when considering 

bifurcations associated to systems that are “oscillatory” in nature. For most this 
chapter, we restrict to the case of continuous-time systems, noting at the end 
the vast increase in complexity when adapting to discrete-time.  
 

THE NORMAL FORM 
All the bifurcations thus far presented in the Volume are uncoupled, in the sense 
that, after a change of coordinates, there is a 1-D system with bifurcation that is 
independent of what is happening in the other dimension. This implies that all 
the equilibria involved have real eigenvalues (since, otherwise, independent 
directions cannot be decoupled). 

Consider the following parametrized system whose linearization at the origin 
has complex eigenvalues:  

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� = �
𝜇𝜇 −𝜔𝜔
𝜔𝜔 𝜇𝜇 � �

𝑥𝑥
𝑦𝑦� + 𝑐𝑐 �𝑥𝑥(𝑥𝑥2 + 𝑦𝑦2)

𝑦𝑦(𝑥𝑥2 + 𝑦𝑦2)� (⋆) 

Here 𝜔𝜔 ≠ 0 and 𝑐𝑐 ≠ 0 are constants and 𝜇𝜇 is a parameter. This system has a 
unique equilibrium at the origin. Its linearization is explicit from the equation: 
the eigenvalues can be read off as 𝜆𝜆1,2 = 𝜇𝜇 ± 𝑖𝑖𝜔𝜔. When 𝜇𝜇 < 0, there is a spiral sink; 
it becomes a spiral source when 𝜇𝜇 > 0. 

What happens at 𝜇𝜇 = 0 is a bifurcation, since the type of the equilibrium 
changes. Linearization predicts a center, but the Hartman-Grobman Theorem 
counsels caution: the nonlinear terms might break the center when 𝜇𝜇 = 0.  
 

THE BIRTH OF A LIMIT CYCLE 
To see what happens, it is best to convert to polar coordinates. This is motivated 
by the appearance of 𝑟𝑟2 = 𝑥𝑥2 + 𝑦𝑦2 in the nonlinear terms.  Recall the formulæ for 
converting Euclidean derivatives to polar: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑟𝑟

�𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�      ∶      
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑟𝑟2 �𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� . 

Substituting in (⋆) yields 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 + 𝑐𝑐𝑟𝑟3      ∶      
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔 . 

This is a decoupled system. The angular coordinate evolves like a spinner, 
rotating at speed 𝜔𝜔 ≠ 0. It is the radial coordinate that is interesting. There is an 
equilibrium at 𝑟𝑟 = 0 which is stable for 𝜇𝜇 < 0 and unstable for 𝜇𝜇 > 0, 
corresponding to the change from spiral sink to spiral source. Noting that 𝑟𝑟 ≥ 0 
in polar coordinates, we observe that there is an equilibrium in the radial 
variable:  

𝑟𝑟∗ = �−𝜇𝜇/𝑐𝑐    ∶     𝜇𝜇/𝑐𝑐 < 0 . 

For the appropriate values of 𝜇𝜇 (opposite the sign of 𝑐𝑐), there is a radial 
equilibrium 𝑟𝑟∗ > 0. If you begin at an initial condition (𝑥𝑥0, 𝑦𝑦0) in the plane with 
𝑥𝑥0

2 + 𝑦𝑦0
2 = 𝑟𝑟∗

2, what happens? The radial coordinate is invariant, while the angle 
𝜃𝜃 evolves at a constant nonzero rate: you trace out a circle in the Euclidean plane.  

B 
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This periodic orbit is different than those seen in a center: they are limit cycles. 
A limit cycle is a periodic orbit to which nearby initial conditions are attracted in 
either forward or backward time. To see that this happens with a Hopf 
bifurcation, note that the stability of the radial equilibrium at 𝑟𝑟 = 𝑟𝑟∗ is given by 
linearization at 𝑟𝑟∗: 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜇𝜇𝜇𝜇 + 𝑐𝑐𝑟𝑟3)|𝑟𝑟∗ = 𝜇𝜇 + 3𝑐𝑐𝑟𝑟∗
2 = 𝜇𝜇 − 3𝜇𝜇 = −2𝜇𝜇 . 

Thus, for 𝜇𝜇 > 0, the limit cycle is stable and attracts nearby orbits; for 𝜇𝜇 < 0, the 
limit cycle is unstable and repels solutions away from it.  

What happens in practice is that the periodic orbit emerges suddenly and grows 

rapidly in radius. This is explained via the formula 𝑟𝑟∗ = �−𝜇𝜇/𝑐𝑐 : the rate of 
change of the radius with respect to the parameter at the bifurcation is infinite. 
One experiences this sudden change viscerally in physical instances of the 
bifurcation.   
 

SUPERCRITICAL VS. SUBCRITICAL 
Note that the Hopf bifurcation depends critically on the sign of coefficient, 𝑐𝑐, of 
the cubic terms. The resemblance to a pitchfork bifurcation is more than 
coincidence: Hopf bifurcations come in supercritical and subcritical variants.  

A supercritical Hopf, where 𝑐𝑐 < 0, is characterized by a spiral sink becoming 
unstable and throwing off a stable limit cycle. A subcritical Hopf, where 𝑐𝑐 > 0, 
has the spiral source stabilizing and throwing off an unstable limit cycle. In 
either case, one can distinguish super/subcriticality by examining what happens 
at 𝜇𝜇 = 0, whether it is a weakly spiraling sink or source.  

The difference between the two is not academic. Subcritical Hopf bifurcations, 
like their pitchfork counterparts, are genuinely dangerous. You may have a 
system in equilibrium at a spiral sink – a small perturbation oscillates with 
exponentially decreasing amplitude. If you are very close to a Hopf bifurcation 
and change your parameter just past the bifurcation, what happens? The stable 
spiral sink becomes and unstable spiral source, and the oscillations you think 
should damp out in fact begin to grow in amplitude.  

Your future now depends critically on which Hopf you have. If this was a 
supercritical Hopf bifurcation, the amplitude of your oscillations levels out as you 
converge to a  stable limit cycle. Once you notice this, you can in principle turn 
the dial back and reverse the bifurcation, with your oscillations now damping 
back to the stable equilibrium. However, if your Hopf was subcritical, there is no 
nearby limit cycle on this side of the bifurcation: your oscillations will continue 
to increase in amplitude. Perhaps, noting this, you decide to turn the dial back to 
where it was before the bifurcation. Too late! Your new initial condition is no 
longer very close to the equilibrium. If you are outside the unstable limit cycle, 
then your oscillations will continue to grow, even though your parameter is back 
to where it was when you were safe. 
 

THE UBIQUITOUS HOPF 
The Hopf bifurcation is of codimension one, and thus is generic in 1-parameter 
families of systems. Of all the bifurcations covered in this text, the continuous-
time Hopf bifurcation is likely the most widely observed. Consider the following 
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types of behaviors, all of which can arise at a critical transition between 
equilibrium and periodic states.  

▷ Vibrating: When driving an old car on the highway, it can happen that near a 
certain speed, the vehicle begins to vibrate and rumble.  

▷ Shuddering: A similar phenomenon happens with a faulty shopping cart wheel, 
wherein at a critical speed, it begins shaking in its direction.  

▷ Fluttering: Wind blowing through blinds covering an open window can induce a 
fluttering of the blinds that is both visible and audible.  

▷ Fishtailing: Towing a trailer can be dangerous, depending on the weight 
distribution. Perturbations to bearing can either damp out or swing wildly out 
of control. 

▷ Dripping: Very carefully controlling the flow rate of a faucet appears to give a 
bifurcation between steady, laminar flow, and regular dripping. 

▷ Knocking: In old pipes, changing the flow rate of a faucet can lead to a loud 
knocking, with regular cavitation of the flow within. One can hear the amplitude 
of the resulting limit cycle.  

▷ Rolling: Atmospheric fluid with a weak temperature gradient (warm on the 
bottom; cool on the top) conducts heat smoothly. With a sharp enough gradient, 
the warm fluid below rises, inducing convection rolls and periodic flow.  

▷ Shedding: Flow over an airplane wing at low speeds is smooth and laminar. As 
the speed increases, it can happen that vortices are generated periodically.  

▷ Shaking: Musculo-skeletal control systems that you use to steady your hands can, 
in certain circumstances, fail in such a way as to give tremors. In patients with 
Parkinson’s disease, this can be endemic and debilitating.   

▷ Firing: Certain models of electrochemical potentials in neurons exhibit behaviors 
that range from steady-state to periodic firing based on parameters. 

▷ Dying: Depending on growth rates and resource consumption rates of predator-
prey models, populations can either equilibriate or fall into boom-bust cycles of 
resource depletion, famine, death, and regrowth. 

Which of these truly express Hopf bifurcations? This depends on the precise 
details of the continuous-time models used to describe them. Without models, 
examples can quickly become speculative to an immoderate degree. Are bipolar 
mood swings the result of a Hopf bifurcation, and with respect to what 
parameter? Is the business cycle the result of a Hopf bifurcation? Without giving 
in too much to unscientific speculation, knowing how to identify bifurcations in 
systems in which you have no explicit model is a worthwhile skill to develop. 
 

A CHEMICAL OSCILLATOR 
Perhaps you recall the canonical chemistry experiment [the Briggs-Rauscher  
reaction] where the right combination of reactants (typically hydrogen peroxide 
and iodate) change colors in a spectacular oscillatory manner: that would suggest 
a Hopf bifurcation. One simple model for a chemical oscillator is the following:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 − (𝑏𝑏 + 1)𝑥𝑥 + 𝑎𝑎𝑥𝑥2𝑦𝑦     ∶       
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑥𝑥2𝑦𝑦 

The variables 𝑥𝑥, 𝑦𝑦 ≥ 0 represent concentrations, and there are two positive 
parameters 𝑎𝑎, 𝑏𝑏 > 0. This system has a unique equilibrium located at 𝑥𝑥 = 1 and 
𝑦𝑦 = 𝑏𝑏/𝑎𝑎. The linearized dynamics has derivative: 

�−𝑏𝑏 − 1 + 2𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑥𝑥2

𝑏𝑏 − 2𝑎𝑎𝑎𝑎𝑎𝑎 −𝑎𝑎𝑥𝑥2�
1,𝑏𝑏/𝑎𝑎

= �𝑏𝑏 − 1 𝑎𝑎
−𝑏𝑏 −𝑎𝑎� . 
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We expect a Hopf bifurcation to take place when the determinant is positive and 
the trace vanishes: this is precisely where 𝑏𝑏 = 𝑎𝑎 + 1. Consequently, we have a 
line in the (𝑎𝑎, 𝑏𝑏) plane along which a Hopf bifurcation is expected. When 𝑏𝑏 < 𝑎𝑎 +
1, the trace is negative and we have a spiral sink; for 𝑏𝑏 > 𝑎𝑎 + 1, a spiral source. 
Experiments would suggest that for 𝑏𝑏 > 𝑎𝑎 + 1 there is a stable limit cycle – the 
chemical oscillator. However, we cannot conclude that rigorously without 
knowing more.    
 

A CRITERION 
Determining super- or sub-criticality is not easy. Fortunately, there is an analytic 
criterion that, if not straightforward, is at least simple to implement. If, at the 
parameter value at which a Hopf bifurcation takes place, the system in local 
coordinates at the equilibrium is of the following form: 

𝐷𝐷 �
𝑥𝑥
𝑦𝑦� = �0 −𝜔𝜔

𝜔𝜔 0 � �
𝑥𝑥
𝑦𝑦� + �𝑓𝑓(𝑥𝑥, 𝑦𝑦)

𝑔𝑔(𝑥𝑥, 𝑦𝑦)� , 

where 𝑓𝑓 and 𝑔𝑔 are in 𝑂𝑂(𝑥𝑥2 + 𝑦𝑦2) (that is, they are of order quadratic and higher 
terms), then to determine the nature of the Hopf bifurcation, compute the 
following combination of partial derivatives of 𝑓𝑓 and 𝑔𝑔: 

𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑔𝑔𝑦𝑦𝑦𝑦𝑦𝑦

+
1
𝜔𝜔

�𝑓𝑓𝑥𝑥𝑥𝑥�𝑓𝑓𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑦𝑦𝑦𝑦� − 𝑔𝑔𝑥𝑥𝑥𝑥�𝑔𝑔𝑥𝑥𝑥𝑥 + 𝑔𝑔𝑦𝑦𝑦𝑦� − 𝑓𝑓𝑥𝑥𝑥𝑥𝑔𝑔𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑦𝑦𝑦𝑦𝑔𝑔𝑥𝑥𝑥𝑥�. 
 
LEMMA: If the quantity above is positive, the bifurcation is subcritical; if 
negative, it is supercritical. 

▷ Idea: The proof is an unpleasant exercise in manipulating Taylor series, polar 
coordinates, and time, in order to extract the coefficient of the 𝑟𝑟3 term. ◁ 

EXAMPLE: Consider the following second order ODE  

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝑥𝑥 − 𝑥𝑥2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 + 𝑥𝑥3 = 0 . 

Writing this as a first order system with 𝑦𝑦 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 yields 

�
𝑥𝑥
𝑦𝑦� = � 0 1

−1 −𝜇𝜇� �
𝑥𝑥
𝑦𝑦� + � 0

𝑥𝑥3 − 𝑥𝑥2𝑦𝑦�. 

With 𝜔𝜔 = −1, 𝑓𝑓 = 0, and 𝑔𝑔 = 𝑥𝑥3 − 𝑥𝑥2𝑦𝑦, one computes from the criterion that this 
equation has a subcritical Hopf bifurcation at the origin.  

 

IN DISCRETE TIME 
It is perhaps an unusual departure for this text to ignore discrete time when 
handling a subject so important as that of a Hopf bifurcation. Is it because there 
is no discrete-time analogue? No. In a 2-D discrete time system, when an 
equilibrium transitions from spiral sink to spiral source, there is a bifurcation 
that is very like the Hopf. It is different enough to merit its own name: the 
Neimark-Sacker bifurcation. It is difficult enough to merit its own place at the 
end of the Volume, where most readers will not mind a truncated overview. 

The simplest example of a Neimark-Sacker bifurcation at the origin is best 
written out directly in polar coordinates: 

𝑟𝑟𝑛𝑛+1 = (1 + 𝜇𝜇)𝑟𝑟𝑛𝑛 + 𝑐𝑐𝑟𝑟𝑛𝑛
3     ∶        𝜃𝜃𝑛𝑛+1 = 𝜃𝜃𝑛𝑛 + 𝜔𝜔 , 



54 

where 𝑐𝑐 ≠ 0 is real and 𝜔𝜔 ∈ 𝕊𝕊1 are constants. From this decoupled system, so long 
as 𝜔𝜔 is not poorly chosen, one has a spiral sink at the origin for 𝜇𝜇 < 0 small and a 
spiral source for 𝜇𝜇 > 0 small. The pitchfork-like bifurcation in the (nonnegative) 
radial direction comes in supercritical (𝑐𝑐 < 0) and subcritical (𝑐𝑐 > 0) varieties. In 
either case, a family of invariant attracting (super-) or repelling (sub-) circles of 

radius �−𝜇𝜇/𝑐𝑐 springs from the origin at the bifurcation.  

EXAMPLE: Recall the predator-prey model from Chapter 18: 

𝑥𝑥𝑛𝑛+1 = 𝑟𝑟𝑥𝑥𝑛𝑛(1 − 𝑥𝑥𝑛𝑛) − 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛      ∶       𝑦𝑦𝑛𝑛+1 = 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛/𝑐𝑐 . 
The equilibrium at (𝑐𝑐, 𝑟𝑟(1 − 𝑐𝑐) − 1) has derivative 

�
𝑟𝑟 − 2𝑟𝑟𝑟𝑟 − 𝑦𝑦 −𝑥𝑥

𝑦𝑦/𝑐𝑐 𝑥𝑥/𝑐𝑐�
𝑐𝑐,𝑟𝑟(1−𝑐𝑐)−1

 =  �
1 − 𝑐𝑐𝑐𝑐 −𝛽𝛽

1
𝑐𝑐

(𝑟𝑟 − 𝑟𝑟𝑟𝑟 − 1) 1
� . 

When 𝑐𝑐𝑐𝑐 < 4, 𝑐𝑐 < 4/9, and 𝑟𝑟 = 1/(1 − 2𝑐𝑐), there is a Neimark-Sacker bifurcation. 
Numerical simulation indicates that it is supercritical.  

Though this would appear to be a simple discrete-time analogue of the Hopf, 
there are several points at which the narrative diverges from that of the cleaner 
continuous-time story: Chapter 22 will take up the story. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 19 
 

1. Examples of Hopfs 
2. Conversion to polar 
3. Examples of G-H criterion 
4. Fifth order terms in a subcritical Hopf 
5. Discrete-time L-V predator prey model with N-S bifn. 
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CHAPTER  20 : 
FINDING PERIODIC ORBITS 
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ERIODIC ORBITS and limit cycles are just as important as equilibria in 
understanding global qualitative features of dynamical systems. 

Unfortunately, they are by no means easy to detect. This chapter focuses on tools 
for establishing or eliminating the existence of periodic orbits and limit cycles in 
planar systems.  

 

THE BENDIXSON-DULAC CRITERION 
When trying to find a periodic orbit, it is sometimes best to check whether such 
is even possible. The following criterion is one approach to ruling out existence. 

THEOREM: Let 𝐹⃗𝐹 = 𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝚤𝚤̂ + 𝑔𝑔(𝑥𝑥, 𝑦𝑦)𝚥𝚥̂ be a continuously-differentiable 
vector field on a simply-connected domain 𝑈𝑈 ⊂ ℝ2. If, for some scalar field 
𝜌𝜌: 𝑈𝑈 → ℝ, the divergence ∇ ⋅ (𝜌𝜌𝐹⃗𝐹) is nonzero on 𝑈𝑈, then the continuous-time 
dynamics induced by 𝐹⃗𝐹 has no periodic orbits contained in 𝑈𝑈.  

▷ Proof: This is a classic application of Green’s Theorem. Assume that 𝛾𝛾 is a 
periodic orbit of 𝐹⃗𝐹 in 𝑈𝑈; then 𝐹⃗𝐹 (and 𝜌𝜌𝐹⃗𝐹) is everywhere tangent to 𝛾𝛾. The 
(topological) disc 𝐷𝐷 of which 𝛾𝛾 is the boundary lies within 𝐷𝐷 by simple-
connectivity. The flux of 𝐹⃗𝐹 (and 𝜌𝜌𝐹⃗𝐹) out of 𝐷𝐷 is zero by tangency, and Green’s 
Theorem implies that 

0 =  � 𝜌𝜌𝐹⃗𝐹 ⋅ 𝑛𝑛�⃗  𝑑𝑑ℓ
 

𝛾𝛾
=  � ∇ ⋅ (𝜌𝜌𝐹⃗𝐹) 𝑑𝑑𝑑𝑑

 

𝐷𝐷
≠ 0 . 

This is a contradiction to the assumption. ◁ 

As with most results based on Green’s Theorem, when it works it is magical, but 
it rarely works. Frustration comes from the infinite supply of possible rescalings 
𝜌𝜌, with no algorithm for how to choose.  

EXAMPLE: The simple version of Bendixson-Dulac does not work with the dynamics 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑦𝑦      ∶       

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝑥𝑥 − 𝑦𝑦 + 𝑥𝑥2 + 𝑦𝑦2 , 

since the divergence is −1 + 2𝑦𝑦. However, rescaling the vector field by 𝜌𝜌 = 𝑒𝑒−2𝑥𝑥  works, as 
the divergence is now −2𝑒𝑒−2𝑥𝑥𝑦𝑦 + 𝑒𝑒−2𝑥𝑥(−1 + 2𝑦𝑦) =  −𝑒𝑒−2𝑥𝑥 < 0. There are no periodic 
orbits. 

Where did this 𝜌𝜌 = 𝑒𝑒−2𝑥𝑥 come from? That is the crux of the difficulty.  
 

THE POINCARÉ-BENDIXSON THEOREM 
Ruling out the existence of periodic orbits is not always possible, especially when 
they exist. In 2-D continuous, time, there is a remarkably powerful theorem for 
detecting limit cycles. This result uses the topology of the plane to constrain the 
possible limiting behaviors of forward-time orbits which do not escape to 
infinity.  

POINCARÉ-BENDIXSON THEOREM: A forward-time orbit of 𝐷𝐷𝒙𝒙 = 𝐹𝐹(𝒙𝒙) which 
lies within a closed bounded region of ℝ2 either (1) is a periodic orbit; (2) limits 
to a periodic orbit; or (3) limits to an equilibrium.  

[Our use of the phrase limits to has a technical sense: see the exercises for details.] 

▷ Idea: There is no simple proof of Poincaré-Bendixson: it is a deep result relying 
on the topology of the plane. The key technical steps are the construction of a 

P 



57 

Poincaré return map (see Volume 3) to a recurrent orbit, combined with a fixed 
point theorem that implies a limit cycle. ◁ 

The interested reader is welcome to discover the elements of the proof by taking 
a page of paper (the bounded region) and drawing a flowline which winds about, 
never crossing itself nor slowing down.  

This theorem is especially useful for forcing the existence of limit cycles. One 
common application involves the setting of a trap to lure orbits to a periodic 
prison.  

EXAMPLE: The following system has a difficult-to-find periodic orbit: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝑥𝑥 − 2𝑦𝑦 − 2𝑥𝑥3 − 3𝑥𝑥𝑦𝑦2       ∶       
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 2𝑥𝑥 + 2𝑦𝑦 − 𝑥𝑥2𝑦𝑦 − 𝑦𝑦3 . 

There is a unique equilibrium at the origin. Converting to polar coordinates yields 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

1
𝑟𝑟 �(2𝑥𝑥2 − 2𝑥𝑥𝑥𝑥 − 2𝑥𝑥4 − 3𝑥𝑥2𝑦𝑦2) + (2𝑥𝑥𝑥𝑥 + 2𝑦𝑦2 − 𝑥𝑥2𝑦𝑦2 − 𝑦𝑦4)� 

     =
1
𝑟𝑟

(2𝑟𝑟2 − 2𝑥𝑥4 − 4𝑥𝑥2𝑦𝑦2 − 𝑦𝑦4) = 2𝑟𝑟 �1 − 𝑟𝑟2 −
1
2 𝑟𝑟2 sin4 𝜃𝜃� . 

Consider the annular region 
1
2

≤ 𝑟𝑟 ≤ 2 in the plane. At 𝑟𝑟 = 1
2
, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0, and when 𝑟𝑟 = 2, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

<
0. This region is forward-invariant: any point on the boundary is pushed within and 
cannot escape. As there are no equilibria in this annulus, there must, by Poincaré-
Bendixson, be a limit cycle within this annulus. Checking the monotonicity of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 
shows that this in fact encircles the origin in a counter-clockwise fashion.   

Such an inescapable equilibrium-free maze for orbits to run is known as a 
trapping region. One can (with more delicate and difficult work) find a trapping 
region for the Van der Pol oscillator of Chapter 17 and confirm the existence of 
the limit cycle hinted at.  

 

GRADIENT VS HAMILTONIAN DYNAMICS 
Certain classes of dynamics can be more tractable with respect to periodic orbits, 
exhibiting either an abundance or scarcity in turn.  

A dynamical system in continuous or discrete time is said to be a gradient system 
if the right hand side is exactly a gradient for some 𝐻𝐻: ℝ2 → ℝ : 

𝐷𝐷𝒙𝒙 = −∇𝐻𝐻(𝒙𝒙)      ∶       𝐸𝐸𝒙𝒙 = −∇𝐻𝐻(𝒙𝒙) . 
The negative sign is artificial but suggestive of the lazy nature of a downhill sink 
into minima. In 2-D (and beyond) gradient systems are devoid of periodic orbits, 
due to the interpretation of the gradient vector as the direction of maximal rate 
of increase of a function.  

The situation is different for Hamiltonian systems. Recall from Chapter 13 the 
special case of a Hamiltonian system in continuous time, which we may write 
using matrix-vector notation as the following: 

𝐷𝐷𝒙𝒙 = −𝐽𝐽∇𝐻𝐻(𝒙𝒙)      ∶       𝐽𝐽 = �0 −1
1 0 � . 

The matrix 𝐽𝐽 is the representation of the imaginary unit in real 2-by-2 matrices. 
It has the effect of twisting a gradient system into one that runs along level sets 
of 𝐻𝐻 instead of across them. Such an 𝐻𝐻 is thus, as per Chapter 13, an integral of 
the system. There is a preponderance of periodic orbits, though no limit cycles, 
as the dynamics are area-preserving.  
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GLOBAL BIFURCATIONS & LIMIT CYCLES 
Our treatment of bifurcation theory in Chapter 18 continued the story from 
Volume 1 by focusing on bifurcations in a neighborhood of a singular 
equilibrium. Such local bifurcations are the foil of the more generally wild global 
bifurcations which often implicate periodic orbits. A complete classification of 
such is impossible; however, a few foundational examples are worth 
contemplation. 

[HB] HOMOCLINIC BIFURCATION. Recall from the example of the nonlinear pendulum 
in Chapter 17 that a homoclinic orbit is one which limits to an equilibrium, 𝒂𝒂, in both 
directions of time, forwards and backwards. Consider a continuous-time system with a 
homoclinic orbit to a saddle. This is an exceptional circumstance, as the stable and 
unstable curves of the saddle must globally evolve in such a manner as to perfectly line 
up and overlap. A small perturbation to the system would cause the stable and unstable 
curves to slightly miss. 

There is a codimension-one global bifurcation which breaks a homoclinic orbit into a limit 
cycle. The parameter 𝜇𝜇 corresponds (roughly) to the amount of separation between 𝑊𝑊𝑠𝑠(𝒂𝒂) 
and 𝑊𝑊𝑢𝑢(𝒂𝒂). On one side of the bifurcation lies a limit cycle nearing the saddle 𝒂𝒂, whose 
period increases without bound. At the critical parameter, the stable and unstable curves 
match, and the limit cycle becomes a homoclinic orbit – an “infinite period” cycle. What 
happens as the parameter passes through the bifurcation value is that the stable and 
unstable curves separate in the other direction: the limit cycle is no more.  

[SNP] SADDLE-NODE of PERIODIC ORBITS. Consider a pair of nested limit cycles in the 
plane – one stable and one unstable. These can experience a global bifurcation of saddle-
node type in which, as the parameter is varied, the two cycles come closer and eventually 
merge and annihilate. A simple decoupled example can be written out in polar 
coordinates: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑟𝑟(𝜇𝜇 − (𝑟𝑟 − 𝐶𝐶)2)        ∶        

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜔𝜔 . 

Here, 𝜔𝜔 and 𝐶𝐶 > 0 are constants and 𝜇𝜇 is a parameter. One can easily spot the limit cycles 
as solutions to 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0. In this case, there are a pair of circular limit cycles at radii 𝐶𝐶 ±
√𝜇𝜇 for 𝜇𝜇 > 0. These collide and annihilate at 𝑟𝑟 = 𝐶𝐶 when 𝜇𝜇 vanishes. 

Both of the above are examples of global bifurcations: one cannot localize them 
to take place within the neighborhood of an equilibrium. Although the 
homoclinic bifurcation implicates an equilibrium, from a local perspective, 
nothing has changed during the bifurcation. In each case it is the global 
interaction with a limit cycle that matters. 
 

BOGDANOV-TAKENS BIFURCATION 
A brief exposition of one interesting codimension-2 bifurcation ties together 
much of what we have seen. Consider the 2-D continuous-time system  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑦𝑦     ∶      
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝑥𝑥2 + 𝑥𝑥𝑥𝑥 , 

where 𝛼𝛼 and 𝛽𝛽 are parameters. The bifurcation unfolds about the origin and 
where both parameters vanish. This is sometimes called a double-zero-
eigenvalue bifurcation for reasons that should be clear. The reader should as an 
exercise find and classify the equilibria is this system, with the goal of showing 
the following: 
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▷ For 𝛼𝛼 > 0, there are no equilibria. 
▷ The line 𝛼𝛼 = 0 is a curve of saddle-node bifurcations. 
▷ There is a curve of Hopf bifurcations where 𝛽𝛽 = √−𝛼𝛼. 

 

What is less straightforward is to determine where the limit cycles exist. Does 
Bendixson-Dulac help here? What happens to the limit cycles created in the 
Hopf? With (euphemistically) a little more work it can be shown that:  

▷ The Hopf bifurcations are supercritical, and a stable limit cycle exists for 
𝛽𝛽 just below the curve √−𝛼𝛼 in the (𝛼𝛼, 𝛽𝛽) plane. 

▷ There is a curve of homoclinic bifurcations along 𝛼𝛼 ≈ − 29
45

𝛽𝛽2 + �𝛽𝛽3. 

This curve of homoclinic bifurcations confines the limit cycles to a narrow wedge 
of parameter space. If you pick parameters at random, you are likely to miss it.  

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 20 
Bendixson-Dulac 

1. B-D for a 2nd order ODE  
2. Omega limit set definition 
3. Example of limiting to a heteroclinic/homoclinic cycle in P-B 
4. P-B trapping region 
5. Trapping region for VdP? 
6. Gradients  
7. Prove that gradient systems in discrete time have no periodic orbits. Can 

you do so using the language of discrete calculus? 
8. Prove that a gradient system cannot possess either spiral sources, spiral 

sinks, or centers. Hint: what do all three of these have in common? 
9. Hamiltonians 
10. What is a discrete-time Hamiltonian? 
11. Heteroclinic cycles and bifurcations. 
12. Generalizing SNP’s to TCP’s and PFP’s. Why not PDP’s? 
13. What 2nd order ODE does the B-T bifurcation arise from? 
14. The Bautin (Generalized Hopf) bifurcation: codim 2. 
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CHAPTER  21 : 
TOWARDS INDEX THEORY 
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XISTENCE IS rarely straightforward. Proving that limit cycles exist or do not 
exist can be a challenge, and even equilibria can be evasive. In 2-D 

continuous-time systems, there is an elegant self-contained theory that serves as 
a gateway to more advanced topological methods in dynamical systems. This 
chapter will give a brief introduction to index theory.   

 

A 1-D PRECURSOR 
Index-theoretic methods are topological in nature. This means that they depend 
upon continuity properties and qualitative features: minimal assumptions. 
What is the price of a method that gives strong existence results from such 
simple inputs with nearly no computational effort? The price – as usual – is an 
increase in abstraction.  

As a warm-up example, consider a system of the form 𝐷𝐷𝐷𝐷 = 𝑓𝑓(𝑥𝑥) for 𝑥𝑥 ∈ ℝ and 
𝑓𝑓 continuous. If one knows the value of 𝑓𝑓 at a pair of points, say, 𝑎𝑎 < 𝑏𝑏, then 
what can be said? Since this system has no periodic orbits, the best one can hope 
for is information about equilibria. Assume for simplicity that there are a finite 
number of equilibria. An application of Rolle’s Theorem and a little thought 
should suffice to convince the reader of the following: 

▷ If 𝑓𝑓(𝑎𝑎) < 0 < 𝑓𝑓(𝑏𝑏), then there is an unstable equilibrium within (𝑎𝑎, 𝑏𝑏). 
▷ If 𝑓𝑓(𝑎𝑎) > 0 > 𝑓𝑓(𝑏𝑏), then there is a stable equilibrium within (𝑎𝑎, 𝑏𝑏). 
▷  If 𝑓𝑓(𝑎𝑎) and 𝑓𝑓(𝑏𝑏) have the same sign, nothing can be concluded. There may or 

may not be any equilibria in the interval (𝑎𝑎, 𝑏𝑏). 

What is interesting is how this lifts to 2-D. Instead of sampling a vector field at 
a pair of points (the boundary of an interval in the line), one or more simple 
closed curves (the boundary of a domain in the plane) is needed. The reader who 
is reminded of Green’s Theorem is prepared for what comes next. The reader 
who is not should perhaps take a moment and review that topic from the 
calculus of vector fields.  

 

INDEX OF A LOOP 
Index in 2-D continuous-time systems is a perfect subject – just difficult enough 
to be interesting, but close enough to ideas from vector calculus as to not be 
obtuse. In what follows, we use the term loop to mean a simple closed curve that 
is piecewise differentiable. Throughout, we assume a fixed 2-D continuous-time 
dynamical system on ℝ2, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥, 𝑦𝑦)     ∶      
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑥𝑥. 𝑦𝑦), 

where 𝑓𝑓 and g are continuously-differentiable (𝐶𝐶1) functions of 𝑥𝑥 and 𝑦𝑦. Given 
any loop 𝛾𝛾 that avoids equilibria (that is, 𝑓𝑓 and 𝑔𝑔 do not simultaneously vanish 
on any point in the image of 𝛾𝛾), the following path integral (using the language 
of 1-forms familiar from vector calculus) yields a well-defined integer called the 
index of γ: 

𝐼𝐼𝛾𝛾 =
1

2𝜋𝜋
�

𝑓𝑓 𝑑𝑑𝑑𝑑 − 𝑔𝑔 𝑑𝑑𝑑𝑑
𝑓𝑓2 + 𝑔𝑔2

 

𝛾𝛾
 . 

LEMMA: The index of 𝛾𝛾 is an integer.    

E 
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▷ Proof: The claim, along with a valuable interpretation of 𝐼𝐼𝛾𝛾, comes from the 
following observation. Think of the dynamical system as giving a vector field on 

the plane, 𝐹⃗𝐹 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝚤𝚤̂ + 𝑔𝑔(𝑥𝑥, 𝑦𝑦)𝚥𝚥.̂ Let 𝜙𝜙(𝑥𝑥, 𝑦𝑦) denote the angle made by the vector 
𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝚤𝚤̂ + 𝑔𝑔(𝑥𝑥, 𝑦𝑦)𝚥𝚥̂ (as measured counterclockwise from the positive 𝑥𝑥 direction). 
The differential of 𝜙𝜙, 𝑑𝑑𝜙𝜙, can then be computed as 

𝑑𝑑𝜙𝜙 = 𝑑𝑑 �arctan
𝑔𝑔
𝑓𝑓

� =
𝑓𝑓 𝑑𝑑𝑑𝑑 − 𝑔𝑔 𝑑𝑑𝑑𝑑

𝑓𝑓2 + 𝑔𝑔2  . 

Thus, the index of 𝛾𝛾 is expressible as a winding number,  

𝐼𝐼𝛾𝛾 =
1

2𝜋𝜋
� 𝑑𝑑𝑑𝑑

 

𝛾𝛾
 , 

that measures how many full rotations the vector field expresses as you walk 
along the loop 𝛾𝛾. As written, the path integral measures the total change in angle 
of the vector field along 𝛾𝛾. Since 𝛾𝛾 is a loop, this is an integer multiple of 2𝜋𝜋.  ◁  
 

EXAMPLES OF INDEX 
Given the geometric interpretation of index as a total change in angle, the best 
way to do computations is visually. A few examples lead to several observations: 

▷ The index of a small loop that does not encircle any equilibria is 0. 
▷ The index of a CCW loop that encircles a source or a sink is +1. 
▷ The index of a CCW loop that encircles a saddle is −1.  
▷ The index of a CCW loop that is also a periodic orbit is +1. 
▷ Depending on the dynamics, any integer is attainable as the index of a loop. 

The first example above generalizes from a local observation to a global 
proposition.  

LEMMA: The index of any loop 𝛾𝛾 that encircles no equilibria is zero.    

▷ Proof: Since 𝛾𝛾 encircles no equilibria, the domain 𝐷𝐷 ⊂ ℝ2 that 𝛾𝛾 bounds satisfies 
the hypotheses of Green’s Theorem; namely, that the integrand of the index,  

𝑑𝑑𝑑𝑑 =
𝑓𝑓 𝑑𝑑𝑑𝑑 − 𝑔𝑔 𝑑𝑑𝑑𝑑

𝑓𝑓2 + 𝑔𝑔2  

is well-defined on 𝐷𝐷 (the denominator does not vanish). The reader familiar with 
differential forms notation need merely compute that 𝑑𝑑(𝑑𝑑𝑑𝑑) = 0. More 
explicitly, Green’s Theorem, along with a change-of-variables, implies 

𝐼𝐼𝛾𝛾 =
1

2𝜋𝜋
�

𝑓𝑓 
𝑓𝑓2 + 𝑔𝑔2 𝑑𝑑𝑑𝑑 −

𝑔𝑔 
𝑓𝑓2 + 𝑔𝑔2 𝑑𝑑𝑑𝑑

 

𝛾𝛾
= �

𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑓𝑓 

𝑓𝑓2 + 𝑔𝑔2� +
𝜕𝜕

𝜕𝜕𝜕𝜕
�

𝑔𝑔 
𝑓𝑓2 + 𝑔𝑔2� 𝑑𝑑𝑑𝑑

 

𝐷𝐷
= 0 . 

This completes the proof.  ◁ 
 

INDEX OF AN EQUILIBRIUM 
The proof of the above lemma is more broadly useful in establishing the index as 
a topological invariant of the equilibrium: it is independent of the loop chosen.  

LEMMA: The index of an isolated equilibrium 𝑝𝑝 is well-defined and independent 
of the (CCW oriented, simple) loop used to encircle 𝑝𝑝.  



63 

▷ Proof: Let 𝛾𝛾 be a given simple closed curve encircling 𝑝𝑝 (and no other 
equilibria). Choose a sufficiently small circle 𝑢𝑢 centered at 𝑝𝑝. Let 𝛾𝛾� denote a 
piecewise-smooth loop which executes the following: 

1. It starts at a point 𝑎𝑎 on 𝛾𝛾 closest to 𝑝𝑝; 
2. It follows 𝛾𝛾 in a counterclockwise direction back to 𝑎𝑎; 
3. It then traverses a straight path 𝑐𝑐 from 𝑎𝑎 to a point 𝑏𝑏 on 𝑢𝑢; 
4. follows 𝑢𝑢 in a clockwise orientation back to 𝑏𝑏; 
5. traverses the path 𝑐𝑐 from 𝑏𝑏 back to the starting point 𝑎𝑎. 

This loop 𝛾𝛾� bounds a region which encloses no equilibria. By the previous 
lemma, its index is zero. Additivity of path integrals yields: 

0 = 𝐼𝐼𝛾𝛾� =
1

2𝜋𝜋
� 𝑑𝑑𝑑𝑑

 

𝛾𝛾�
=

1
2𝜋𝜋

�� 𝑑𝑑𝑑𝑑
 

𝛾𝛾
+ � 𝑑𝑑𝑑𝑑

 

𝑐𝑐
− � 𝑑𝑑𝑑𝑑

 

𝑢𝑢
− � 𝑑𝑑𝑑𝑑

 

𝑐𝑐
� = 𝐼𝐼𝛾𝛾 − 𝐼𝐼𝑢𝑢 . 

Any two loops surrounding only 𝑝𝑝 thus have the same index. ◁ 

As a result, we denote by 𝐼𝐼(𝑝𝑝) the index of the (isolated) equilibrium.  
 

ADDITIVITY OF INDEX 
Having seen the efficacy of Green’s Theorem in this instance, one wants to put 
that wondrous theorem to work. Only a little additional effort is required to 
achieve a significant computational result: an additivity theorem. 

THEOREM: If 𝛾𝛾 bounds a disc 𝐷𝐷 containing a finite number of equilibria, its 
index is computed as 

𝐼𝐼𝛾𝛾 = � 𝐼𝐼(𝑝𝑝)
𝑝𝑝∈𝐷𝐷

 .  

▷ Proof: As there are a finite number of equilibria, each is isolated. Modify 𝛾𝛾 to a 
loop 𝛾𝛾� that consists of 𝛾𝛾 interspersed with straight-line excursions to tiny circles 
about the (finite, hence isolated) equilibria as per the proof of the previous 
Lemma.  The index of 𝛾𝛾� is zero (it bounds no equilibria), and the linear 
excursions cancel to give the difference between 𝐼𝐼𝛾𝛾 and the sum of the indices 
over the interior equilibria.  ◁ 

This has many useful applications.  

COROLLARY: Any periodic orbit encloses at least one equilibrium whose index 
is positive. 

▷ Proof: By the additivity of index. Note that the sum of indices over an empty 
set is automatically zero. ◁ 

The reader is encouraged to try and draw an example of a periodic orbit that 
surrounds only a saddle equilibrium: this will reveal much about the index, the 
Poincaré-Bendixson Theorem, and more.   
 

INDEX AT INFINITY 
The previous proposition – the additivity of index – is part of a deep topological 
theorem that connects many areas of Mathematics. The first hints of this come 
when defining a notion of index at infinity.  
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Several of the ideas and techniques of this chapter are reminiscent of those in an 
elementary complex analysis course – witness the similarity to contour integrals 
and the Cauchy Residue Theorem. By analogy with completion of the complex 
plane ℂ to the Riemann sphere 𝕊𝕊2, one might contemplate what happens when 
completing a vector field from the plane to the sphere by adding an abstract 
equilibrium at “infinity”. What is the index at infinity? This can be computed 
explicitly and inelegantly via a change of coordinates that amounts to a reflection 
of a radial coordinate: see the exercises. 

The following theorem allows one to work directly with vector fields on a sphere 
(working in local planar patches to define the index) or to easily compute the 
index at infinity in terms of all other local indices.  

POINCARÉ-HOPF THEOREM: For any continuous vector field on a sphere 𝕊𝕊2 
with a finite number of equilibria, the sum of the indices of all equilibria equals 
two.  

Thus, for a field on ℝ2, the fixed point at infinity has index equal to two minus 
the sum of all other indices of equilibria. The reason that the net sum is precisely 
two stems from the Euler characteristic of the sphere. This takes us to the 
boundary of algebraic topology, a subject too vast and wonderful for this thin 
text. 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 21 
1.  
2. Lots of examples of index problems.  
3. What to do about non-simple curves.  
4. Towards winding number… 
5. Homologous loops? 
6. Smoothness issues.  
7. Index at infinity problems.  
8. Index of a 2-D discrete-time system: what goes wrong? 
9. Towards Euler characteristic.  
10. Index on surfaces other than ℝ2. 
11. Turn the 1-D example into a numerical index. Take 1/2 times sum over 

endpoints of function values normalized to ±1. Index is either −1, 0, +1. 
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CHAPTER  22 : 
2-D MYSTERIES 
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LANAR 2-DIMENSIONAL DYNAMICS is the perfect setting for learning: it is 
complex enough to be able to model and capture interesting phenomena 

(saddles, spirals, periodic orbits, Hopf bifurcations…) while being simple enough 
to admit straightforward analysis (trace-determinant methods, Poincaré-
Bendixson, index theory…). The apparent simplicity has been carefully arranged; 
just past the borders of the maps laid out lie intimidating if not dangerous 
entities. This chapter gives a quick peek at what lies beyond. The conclusion of 
Volume 1 (Chapter 9) contained a warning not to mistake chaotic pictures and 
emergent numbers for the deep truths. The need for such cautions has not 
diminished (and will recur prominently in Volume 4), but this Volume ends on 
a more adventurous note, as we are presently within reach of several very deep 
ideas that begin in Dynamical Systems and resonate throughout Mathematics.   
 

BIFURCATION THEORY BEYOND HOPF 
Our story of bifurcations has broadened somewhat in this Volume from the 
simple set of four (SN/TC/PF/PD) 1-D bifurcations to include a few new items. 
The ubiquitous Hopf bifurcation is the newest, clearest example: as a 
codimension-1 bifurcation in 2-D continuous-time systems, it is even more 
commonly identifiable than most 1-D bifurcations. This is, however, not a fully 
2-dimensional bifurcation. Recall that when written in polar coordinates, the 
Hopf is revealed to be a pitchfork bifurcation on the radial variable (with the 
angular variable uninvolved). This explains why Hopfs come in both 
supercritical and subcritical variants. 

A fully 2-D bifurcation is the discrete-time version of the Hopf known as the 
Neimark-Sacker bifurcation. This also is codimension-1 and at first resembles the 
Hopf in most respects: in the supercritical case, a spiral sink equilibrium changes 
to a spiral source, ejecting an invariant closed curve in the plane that surrounds 
the equilibrium. That closed curve – the discrete time analogue of a stable limit 
cycle – is attracting but not at all a single orbit. There are typically multiple 
periodic orbits of a fixed period, but there may be no periodic orbit at all (recall 
the irrational rotations of Chapter 5). The periods change with parameter, 
meaning that there are many (many!) subsidiary bifurcations of periodic orbits 
implicated. The simple example given at the end of Chapter 19 belies the 
complexity of the Neimark-Sacker bifurcation, whose general form (in polar 
coordinates) is: 

𝑟𝑟𝑛𝑛+1 = (1 + 𝜇𝜇 + 𝐴𝐴(𝜇𝜇)𝑟𝑟𝑛𝑛
2)𝑟𝑟𝑛𝑛 + 𝐵𝐵(𝜇𝜇, 𝑟𝑟𝑛𝑛)𝑟𝑟𝑛𝑛

4     ∶     𝜃𝜃𝑛𝑛+1 = 𝜃𝜃𝑛𝑛 + 𝜔𝜔(𝜇𝜇) + 𝐶𝐶(𝜇𝜇, 𝑟𝑟𝑛𝑛)𝑟𝑟𝑛𝑛
2 , 

where 𝜔𝜔 ∈ 𝕊𝕊1 and 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 are smooth functions. Unlike in the continuous-time 
Hopf bifurcation, the parametric dependence of higher-order coefficients has an 
impact. There are a great many subtle phenomena present, including resonances 
and Arnol’d tongues, which themselves are entwined with number-theoretic 
properties of the rotation number on the invariant curve. For such Diophantine 
conditions and other related numerical intricacies, the curious reader will need to 
consult other references. 

 

FROM LOCAL TO GLOBAL 
This Volume has also witnessed our first examples of non-local (that is, global) 
bifurcations, not discernable through a simple Taylor expansion. These include 
saddle-node bifurcations of periodic orbits [SNP] and homoclinic bifurcations 

P 
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[HB], the latter featuring prominently in the Bogdanov-Takens bifurcation as a 
new method of birthing (or killing) a periodic orbit. Both of these examples were 
given in continuous-time systems.  

The other simple 1-D bifurcations also arise as global bifurcations of periodic 
orbits. For example, in a transcritical bifurcation of periodic orbits [TCP], a pair 
of periodic orbits converge, collide, and “trade stabilities” with respect to one 
direction. Pitchfork bifurcations of periodic orbits can also occur: see the 
Exercises for more. Is there a period-doubling bifurcation of periodic orbits? Yes, 
but only for systems (in continuous time) of dimension three and higher, the 
reason being a deep connection to the famous Möbius strip and its unembeddable 
nature in 2-D.    

Are there other global bifurcations? Certainly. The problem is that one cannot 
use Taylor expansion and singularity theory as a guide to how to proceed 
inductively, cataloguing all that can occur. Instead, one must be led by a 
combination of imagination and numerical investigation in the search for global 
bifurcations. Such duck-hunts can be very difficult, as in the case of a canard, an 
elusive short-lived limit cycle in certain singularly-perturbed problems. For 
example, in a singular version of the Van der Pol oscillator of Chapter 17, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝜖𝜖

�𝑦𝑦 −
𝑥𝑥3

3
+ 𝑥𝑥�        ∶        

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇 − 𝑥𝑥  , 

there are stable limit cycles for 0 < 𝜖𝜖 ≪ 1 and 𝜇𝜇 ≈ 0.998740451245 … which 
persist only in minute slivers of the parameter space, to the point where they are 
nearly impossible to detect computationally, appearing and disappearing in a 
effervescence of global bifurcations. 

Global bifurcations in the context of discrete time are, even in 2-D, too terrible 
to detail. Volume 4 will trace the chaos that can ensue in the context of a simple-
seeming homoclinic bifurcation in 2-D discrete time. 

 

INDEX THEORY BEYOND GREEN 
Several times in this Volume, we have seen methods that work very well for 
continuous-time dynamics – trace-determinant classification, the Poincaré-
Bendixson Theorem, the Bendixson-Dulac criterion – but for which no discrete-
time analogue exists. Such would seem to be the case for index theory as well. 
Note the sensitive dependence on Green’s Theorem for all the index-theoretic 
results proved in Chapter 21.  

Is index theory unique to 2-D continuous time? In discrete time on the plane, a 
great many things break down. One can have a periodic orbit of any period 
(greater than one) without there being an equilibrium in the system. If there is 
an invariant closed curve – a loop that bounds a disc – then there must indeed be 
an equilibrium contained within. However, such an equilibrium may be a 
nondegenerate saddle, unlike the case of continuous time. (See the Exercises for 
hints on how to construct these and more examples.) 

The surprising truth is that index theory makes sense in all dimensions in both 
discrete as well as continuous time. The setting of 2-D continuous time is the 
most beautiful and easily intuited case, but index theory more broadly 
interpreted is a deep and powerful subfield of Mathematics.  
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There are a number of indices for equilibria in discrete-time systems in 2-D and 
beyond: the Morse index, the Lefshetz index, and the Conley index are three of 
the most classical and powerful in the context of dynamics. All these indices 
require tools from algebraic topology which this text cannot properly invoke. The 
exercises provide a small amount of intuition for the curious. 

 

THE GHOSTS OF CHAOS 
Both this Volume and the next are explicitly postponing the careful examination 
of chaotic dynamics that Volume 1 suggested. In 2-D continuous-time systems, 
the Poincaré-Bendixson Theorem guarantees that chaotic dynamics (whatever 
that might entail) are forbidden. Such guarantees are impossible in discrete-time 
systems. Even slightly nonlinear 2-D discrete-time systems on the plane, such 
as the well-known Hénon system,  

�
𝑥𝑥𝑛𝑛+1
𝑦𝑦𝑛𝑛+1

� = � 0 1
0.3 0� �

𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛

� + �−1.4 𝑥𝑥𝑛𝑛
2

0
� ,  

can possess dynamics which are complex to a degree that makes analysis 
bewildering: chaos. This and other chaotic systems in 2-D discrete time will be a 
major focus in Volume 4. 

 

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ 
 

EXERCISES : CHAPTER 22 
 
Give an example of a discrete time system on a 2-torus that has no equilibria. 
Repeat for a 2-sphere. Orientation preserving? Ahha… Lefschetz. 
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