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Abstract

Following the strategy outlined in [DP09, DP22] for bundles of rank 2 on a smooth

projective curve of genus 2, we construct flat connections over the moduli of stable

bundles, with singularities along the wobbly locus. We verify that the associated D-

modules are Hecke eigensheaves. The local systems are constructed by the nonabelian

Hodge correspondence from Higgs bundles. The spectral varieties of the Higgs bundles

are the Hitchin fibers corresponding to the Hecke eigenvalues.
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1 Introduction

1.1 Geometric Langlands

Suppose C is a smooth projective curve over the complex numbers. Let X be a moduli

stack of vector bundles or principal G-bundles for a reductive group G. The open substack

of semistable bundles has a good coarse moduli space X. The geometric Langlands program

predicts the existence of certain perverse sheaves on X . These are characterized by a

property called the Hecke eigensheaf property with respect to a local system Λ on C, and it

is predicted that to a given Λ there is a unique Hecke eigensheaf. In turn, a perverse sheaf

on X leads to a local system on an open subset of X. So, we have a construction going

from a local system Λ on the curve C to a local system on an open subset of X.
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Our purpose in this paper, pursuing the program of the first two authors, is to look

at this construction from the viewpoint of the Hitchin equations. These equations lead

to what is variously known as the nonabelian Hodge correspondence or Kobayashi-Hitchin

correspondence relating local systems to Hitchin pairs or Higgs bundles. These geometric

objects showing up on the other side of the correspondence are in many respects more

tangible than local systems, in particular they are associated to spectral data including a

spectral cover which is typically a ramified covering of the base. We would like to understand

the relationship between the spectral data of the Higgs bundle corresponding to the input

local system Λ, and the spectral data corresponding to the resulting output local system

over an open subset of X.

Before getting to a more detailed look at what we do, let’s recall that the geometric Lang-

lands program originated as a geometrization of the Langlands program, where automorphic

functions are categorified to data of perverse or constructible sheaves. In positive character-

istic for ℓ-adic sheaves, this categorification is based on the function-sheaf correspondence,

where a constructible sheaf defines a function on the set of finite field-valued points by asso-

ciating to each point the trace of its Frobenius action on the stalk of the sheaf. Due to several

authors [Dri80, Dri83, Dri84, Lau87, Lau95, BD97, Gai15, Gai17], the geometric Langlands

program was then carried from positive characteristic to characteristic zero, where we no

longer have a function-sheaf correspondence, but the resulting statement at the sheaf level

still makes sense. Somewhat surprisingly, over C, or more generally over local fields of charac-

teristic zero, there is an analytic function-theoretic version of the Langlands correspondence

originally envisioned in [Lan71, Fre14] and further developed in [EFK21]. The recent works

[EFDK22, EFK23, EFK22, BK22] have made exciting advances in understanding and prov-

ing instances of this analytic statement. The same works also make connections with the

categorified geometric version of the Langlands conjecture and we expect them to ultimately

have a direct relation with our Hodge theoretic approach. Exploring this analytic picture

and the expected relation is a very interesting question which, unfortunately, is beyond the

scope of the present paper.

A main player in both the function-theoretic and the categorified Langlands conjecture

over C is the algebra of Hecke correspondences. These act on the moduli stack of principal

G-bundles over a Riemann surface C. This is most easily understood for G = GL2. Viewed

as a multivalued function, the Hecke correspondence at a point t ∈ C takes a rank 2 bundle

E to the sum of its Hecke transforms at t: these are the elementary transforms E ′ fitting

5



into exact sequences

0→ E ′ → E → Ct → 0

where Ct is the skyscraper sheaf of length 1 at t. The set of Hecke transforms of E is

parametrized by the set of rank 1 quotients Et → Ct, which is a P1. Thus, a bundle E is

sent to a formal sum of a P1’s-worth of new bundles E ′. In the function world, one just takes

the sum over the discrete set of points of P1. In the sheaf-theoretical viewpoint, the formal

sum is replaced by the cohomology of a sheaf over P1.

The correspondence depends on the choice of point1 t ∈ C. Thus, letting X denote the

moduli space of bundles, we obtain the Hecke correspondence

H
p

~~

q

##

X X × C.

If FB is a perverse sheaf on X, its Hecke transform is the perverse sheaf Rq∗(p
∗FB) on

X × C. The value of the Hecke transform H(t) at a point t is the restriction of this on

X × {t}.
In a formal viewpoint, the Hecke operations at different points t, t′ ∈ C commute. The

classical theory therefore views the whole algebra of Hecke operations as an algebra of com-

muting operators, and it becomes natural to look for a common diagonalization of these

operators.

In the sheaf-theoretical viewpoint, it means that we are looking for Hecke eigensheaves

FB on X, corresponding to Hecke eigenvalues ΛB that are perverse sheaves on C. The

eigenvalue equation, saying in naive terms that the Hecke operation H(t) multiplies FB by

the eigenvalue that depends on t, is written as

Rq∗(p
∗FB) ∼= FB ⊠ ΛB.

One of the main tasks of the geometric Langlands program is to construct, for a given eigen-

value ΛB (that’s really the sheaf-theoretical version of the notion of “collection of eigenvalues

one for each Hecke operation H(t)”), a Hecke eigensheaf FB corresponding to this eigen-

value. The “de Rham” version of the geometric Langlands conjecture a Hecke eigenvalue is

1This needs to be modified in case we look at bundles of fixed determinant as we do in the present

paper—the parametrizing data is then a point in a covering C of C.
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a flat bundle ΛdR on C while a corresponding Hecke eigensheaf is a D-module FdR on X

and these fit better with parametrizations for the next paragraph.

The translation of Langlands’ conjecture from the automorphic world to the geometric

context predicts that there will be a unique such eigensheaf for each eigenvalue ΛdR. Further-

more, it states that as a function of ΛdR, the eigensheaf varies in a coherent way. Namely,

rather than starting with an individual flat bundle ΛdR on C, we could start with a combina-

tion of these in the form of a coherent sheaf on the moduli space Flat of ΛdR’s. The (naive)

geometric Langlands conjecture predicts that to such a coherent sheaf should be associated

a unique D-module FdR on the moduli Bun bundles on C, and that this correspondence

should set up a duality between complexes of coherent sheaves on Flat and complexes of

D-modules on Bun.

The notion of Langlands dual group enters here: if we use a reductive group G to speak of

the moduli stack Bun(G) of principal G-bundles on C, then we need to take the Langlands

dual group LG and look at coherent sheaves on the moduli Flat(LG) of flat LG bundles on

C.

Much important progress has been made on establishing the geometric Langlands corre-

spondence. Drinfeld was the first to make a construction of Hecke eigensheaves for the

group GL2. His article [Dri83] changed over from the sheaf viewpoint to the function

viewpoint somewhere in the middle, so it really constructs Hecke eigenfunctions. Laumon

[Lau95, Lau87] formalized and generalized this construction, yielding a solution of the geo-

metric Langlands problem for GL2, and a conjectural framework for GLn. Gaitsgory gave

an alternative proof in his thesis [Gai97]. Then Lafforgue [Laf02] proved it for GLn in the

number-theoretical context, and Frenkel-Gaitsgory-Vilonen proved the geometric version for

GLn [FGV02]. In a first noncompact case, Arinkin [Ari01] treated the case of parabolic

bundles on P1 with 4 singular points.

We will be looking in detail at the non-abelian Hodge theory approach to Drinfeld’s origi-

nal construction in Section 13, and will show how its Dolbeault version can be understandood

via abelianization and the spectral cover construction. The constructions for higher rank

can probably also be recast in terms that would be more familiar to geometers, although

this is bound to contain a certain level of complication and we don’t attempt it here.

It has remained, at least until fairly recently, elusive how one would attack the problem for

general groups G. One may take note of recent progress such as [BC22, Ber21, Ber20, Ber19,

Roz21, FR22, Fæ22] in the de Rham setting and [BZN18, AGK+22c, AGK+22b, AGK+22a]

in the Betti setting.
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It has also been understood, in the preceding period, that the simple description we

have tried to approximate above is not adequate to describe a duality between the two

sides of the geometric Langlands correspondence, and indeed that the two categories have

different properties making it so that they couldn’t be equivalent. Therefore, the categories

need to be modified. The work of Gaitsgory and Rozenblyum on Ind-coherent sheaves

[Gai11, GR14] and of Arinkin, Gaitsgory, and collaborators on nilpotent singular supports

[AG15, AGK+22b, AGK+22a] aims to solve these problems. They mostly have to do with

parts of the categories that are supported on or close to locations in the moduli spaces where

various kinds of singularities occur. Therefore, in looking for a global understanding of at

least some part of the correspondence, we will ignore these subtleties.

Recently, Gaitsgory and a group of co-authors have announced a full proof of the geo-

metric Langlands conjecture for all groups, with first drafts available [GAB+24].

Something that has not, in our view, been sufficiently emphasized in previous works in

this area is the fact that the geometric Langlands program predicts something very specific

about the topology and geometry of moduli spaces of vector bundles on curves. This question

was however raised in Sawin’s MathOverFlow post [Saw16]. For one thing, the moduli stack

is a pretty wild beast, being only locally of finite type. However, it contains an open substack

that is the moduli of semistable bundles. This substack is in turn close to being a projective

variety, in that its coarse moduli space is the projective moduli space X of S-equivalence

classes of semistable bundles, whose points are in 1 : 1 correspondence with the polystable

bundles.

Therefore, for a perverse sheaf on Bun(G) we will have an open subset Xvs on which the

perverse sheaf is a locally constant sheaf, i.e. a representation of π1(X
vs). It was known early

on by Laumon that if the perverse sheaf in question is a Hecke eigensheaf, the corresponding

open subset Xvs has an explicit description as the moduli space of very stable bundles: a

very stable bundle is one that does not admit a nonzero nilpotent Higgs field.

So, and in spite of the oversimplifications in the above presentation, the abstract ge-

ometric Langlands correspondence predicts something concrete and easily understandable:

that to a perverse sheaf Λ, let us say itself a local system on C, there should be naturally

associated a local system over Xvs. It is this construction that we would like to study in the

present paper.

There are several motivations for the viewpoint we adapt here. The first was a small detail

immediately noticed by the first author, in the Manin volume of the Duke Mathematical

Journal. Hitchin’s article on the moduli space of Higgs bundles [Hit87b] and Laumon’s
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article on the geometric Langlands correspondence [Lau87] were both in this volume. In

Remarque 5.5.2, Laumon states that Deligne, in unpublished communication, calculated the

multiplicity of the zero-section in the characteristic cycle of the D-module: this is the same

as the rank of the local system over Xvs. The answer (for SL2-bundles on a curve of genus

g) was 23g−3. This number was the same as the degree of the map from a general fiber of

the Hitchin system to the moduli space of bundles.

The general fiber of the Hitchin system is a subvariety in what is, basically, the cotangent

bundle of X (the necessary modifications to that statement will be the subject of discussion

later).

In light of the nonabelian Hodge correspondence, started in Hitchin’s paper [Hit87a]

and developed in the highest level of generality by the third author [Sim92] and Mochizuki

[Moc06, Moc09] some time later, it would look natural to think of the general fiber of the

Hitchin system, a subvariety of T∨X of degree 23g−3 over the base X, as a good candidate

for being the spectral variety of the geometric Langlands local system of rank 23g−3. This

idea became the conjecture of the first two authors [DP09], and is the essence of what we

will be trying to do here.

Some early ideas in this direction were contained in a letter from Hausel to Hitchin

(unpublished), and in Faltings’ talk at Deligne’s 61th birthday conference.

A next element of motivation explains more precisely how this should be organized. This

is known as electric-magnetic duality in the work of Kapustin and Witten [KW07] or the

classical limit of geometric Langlands [DP12, DP09]. Hausel and Thaddeus [HT03, Hau21]

view it as a form of mirror symmetry.

The Hitchin moduli spaces of principal Higgs bundles for the groups G and LG fit into a

diagram

Higgs(G)

h $$

Higgs(LG)

Lhyy
B

where:

Theorem 1.1. The base affine spaces of the Hitchin fibration B for G and LG are naturally

isomorphic. Furthermore, the two Hitchin maps h and Lh are generically dual SYZ-type

torus fibrations.

We refer to [HT03, KW07, DP12] for the proof.
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The prediction of the de Rham version of the geometric Langlands correspondence may

be stated as in the following several paragraphs. Let XG be the coarse moduli space of

semistable G-bundles on C. Then given an LG-flat bundle ΛdR on C, there should be a

DX-module FdR on XG that is (reasonably approximately2) a Hecke eigensheaf for ΛdR.

Through the non-abelian Hodge theorem the eigenvalue LG-flat bundle ΛdR corresponds

to a point ΛDol of Higgs(LG), in the fiber Lh−1(b) over a point b ∈ B in the Hitchin base

that we will suppose to be general.

The fiber P := h−1(b) ⊂ Higgs is the dual torus of Lh−1(b), so the Fourier-Mukai

transform for the dual torus fibrations says that the point ΛDol (and hence the point ΛdR)

corresponds to a line bundle L over P .

The moduli stack of G-Higgs bundles is isomorphic to the cotangent stack of Bun(G).

For moduli spaces, this is no longer true globally, but it remains true birationally. The set of

very stable points Xvs of the coarse moduli space of G-bundles is smooth, and its cotangent

space T∨(Xvs) is the subspace Higgsvs of G-Higgs bundles whose underlying bundle is very

stable.

The first two authors propose to use P , viewed in a birational sense, after blowing up,

as a subvariety Y of the (logarithmic) cotangent bundle of X, to be a spectral cover of X.

And to use L as input spectral datum to construct a logarithmic parabolic Higgs sheaf FDol

on X that, under the non-abelian Hodge correspondenc [Moc06, Moc09], should correspond

to the Hecke eigensheaf DX-module FdR.

The divisor of singularities, complement of Laumon’s open set Xvs of very stable points,

was termed the wobbly divisor Wob ⊂ X in [DP09]. Points of Wob are semistable bundles

such that H0(ad(E)⊗ ωC) has a nonzero nilpotent element.3

Under this birational transformation thhe degree 0 line bundle L is modified to a line

bundle L on Y , and parabolic structure is supposed to be added, along divisors lying over

the wobbly divisor.

Here is a first, albeit incomplete, formulation of the conjecture of the first two authors.

Conjecture 1.2 ([DP09, DP22]). Suppose ΛdR is an LG local system on C corresponding to

2The statement for the coarse moduli space XG is not exactly the same as the stack-theoretical statement,

because the extension from a local system on Xvs
G to a perverse sheaf on XG is a different object than the

extension to a perverse sheaf on BunG; we can expect some modifications to the Hecke eigensheaf property.

Such a distinction does not seem to intervene at the level discussed in the present paper.
3It turns out, looking into the study of the classical quadric line complex which is our moduli space X1,

that the wobbly locus in that case was known as the union of what are called special lines [GH94, page 792].
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a point ΛDol in the Hitchin fiber of Higgs(LG) over a general point b ∈ B in the Hitchin base,

and let L be the dual line bundle on the Hitchin fiber P of Higgs(G) over the same point b.

Then the Hecke eigensheaf FdR for eigenvalue ΛdR corresponds, via Mochizuki’s Kobayashi-

Hitchin correspondence, to a parabolic logarithmic Higgs bundle FDol,• on (XG,Wob). The

spectral data over the open subset Xvs
G = XG −Wob consists of the pullback open subset Pvs

considered as a subvariety of T∨(Xvs
G ), with the restriction of L as spectral line bundle.

The nonabelian Hodge correspondence is fundamentally global, involving the solution of

Hermite-Yang-Mills-Higgs equations minimizing a Yang-Mills functional over the manifold.

In particular, the specification of the Higgs bundle by its spectral data over an open subset

Xvs
G does not uniquely specify how it might be extended to (XG,Wob). Such an extension

involves choosing an extension of the bundle, and possibly a parabolic structure.

On the smooth parts of the wobbly divisor Wob = XG − Xvs
G , one might be able to

formulate a more precise conjecture spelling out how the parabolic structure is supposed to

look. This was done for the case of the root stack of P1 with five singular points in [DP22].

One of the objectives of the study we do in the present paper is to continue the investi-

gation of what type of behavior to expect for this structure.

The wobbly divisor will, in general, have singularities that are more complicated than

normal crossings. Therefore, in order to apply the general theory [Moc06], we need to blow

up to resolve those singularities. Because of the Bogomolov-Gieseker inequality, the way to

extend the parabolic structure—that will have been defined in codimension 1—is unique. It

is determined by the condition of minimizing cpar2 (or equivalently maximizing chpar
2 ) subject

to the constraint cpar1 = 0. However, no recipe is currently known for doing this. In the

present paper, we are faced with two different situations of this type, and we adopt two

different strategies for attaining the minimum, and showing that it is cpar2 = 0 that leads to

a harmonic bundle and hence a local system.

The long-term hope is that we could understand these processes in a uniform way for all

groups G, obtaining a uniform construction of Hecke eigensheaves at least for generic initial

eigenvalue data Λ.

1.2 The case of genus 2 and rank 2

In this paper, we take a much less lofty goal: to understand how this works in the case

where G is PSL2 and the curve C has genus 2. At the end of the paper, we will prove

a comparison with Drinfeld’s construction. This proof in Chapter 13 will actually prove
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Conjecture 1.2 for SL2 on curves of arbitrary genus, but it does not immediately give the

further information about parabolic structures. That seems attainable and could be the

topic of future work.

Let us now look more carefully at what is to be done. The reader may refer to Section

1.3 below for concise statements of the main theorems.

Here are a few introductory notations. The curve C is a smooth projective curve of genus

g = 2. It is hyperelliptic, with degree 2 map h : C → P1 and hyperelliptic involution ιC .

Out of the 6 ramification or Weierstrass points, fix one of them denoted p to be used as

a basepoint (e.g. for Abel-Jacobi maps) throughout the paper.

One of the first main inputs is the beautiful classical theory of moduli spaces of semistable

bundles of rank 2 and fixed determinant.

These were investigated extensively by Tyurin [Tyu64], Narasimhan and Ramanan [NR69],

Desale and Ramanan [DR76], Newstead [New68], and then further by Previato-van Geemen

[vGP96], Beauville [Bea06], Heu-Loray [Heu09, HL19, HL17], Pal-Pauly [PP21a], etc.

Let X be a moduli space of polystable vector bundles of rank 2 on C with a fixed

determinant line bundle. Up to isomorphism given by tensoring with a line bundle, there are

two possibilities depending on the parity of the degree. The following explicit descriptions

are provided by Narasimhan and Ramanan [NR69]:

• X0 is the moduli space of bundles of degree 0 with determinant OC , and X0
∼= P3;

• X1 is the moduli space of bundles of degree 1 with determinant OC(p), and X1 =

Q1 ∩Q2 ⊂ P5 is the intersection of two quadrics.

The explicit descriptions were generalized to bundles of rank 2 over higher genus hyper-

elliptic curves by Desale-Ramanan [DR76].

In even degree X0 is only a coarse moduli space: it is known that a universal family does

not exist even over any Zariski open set. For bundles of odd degree, a universal family exists,

and heuristically it seems to be significantly easier explicitly to describe points of X1.

Let Higgs0 resp. Higgs1 denote the moduli space of Higgs bundles of the same rank, degree

and determinant. These were studied early on by Previato and van Geemen [vGP96].

For comments that apply to both cases, and to some extent for other curves and other

groups, we will just write X and Higgs for either of the spaces. For example we can say in

that dim(X) = 3 and dim(Higgs) = 6.

The Hitchin fibration is the map Higgs
h−→ B = A3 sending a Higgs bundle to the

moduli point of its associated spectral curve C̃ ⊂ T∨C. The nilpotent cone has X as its
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principal component:

h−1(0) = X ∪ (other components).

The other components usually correspond to the components of the wobbly locus Wob

[PP21b, PN20, HH22], in the sense that the other components of h−1(0) intersect X along

components of Wob. Our case of Higgs0 is an exception: there, Wob0 has an extra component

that does not correpond to an additional component of the nilpotent cone.

Indeed, the wobbly locus of X0 decomposes as

Wob0 = Kum ∪
[
∪κ∈Spin(C)Tropeκ

]
,

where Kum ⊂ P3 is the Kummer surface associated to C, and Tropeκ are the sixteen trope

planes, which are naturally labeled by the set Spin(C) of theta characteristics κ of C. The

trope planes do correspond to the extra components of the nilpotent cone. But the Kummer

surface does not, rather it consists entirely of singular points in Higgs0 that could be viewed

as some kind of infinitesimally nearby components of h−1(0).

The Kummer surface itself has 16 nodes and these form, with the 16 trope planes, the

famous Kummer 166 configuration [GH94, Bea96, Keu97, Dol20]. Each plane passes

through 6 points and each point is contained in 6 planes.

In X1, the wobbly locus is a singular surface whose normalization is

P1 × C →Wob1.

This map comes about in the following way: the curve C, a 16-sheeted etale cover of C,

sits inside Higgs1 as the second fixed point locus of the C× action; the downward direction

of the C× action is forms a projectively trivial bundle over C and the limits of downward

orbits are the points of Wob1. In particular, Wob1 does equal the locus where the single

extra component of the nilpotent cone meets X1.

Several authors have recently investigated more closely the structure of the structure

of the nilpotent cone and the wobbly locus in general situations: Bozec [Boz22], Gothen-

Zúñiga-Rojas [GnR22], Pal-Pauly [PP21b], Peón-Nieto [PN20, FGOPN23], Zelaci [Zel20],

Hellmann [Hel21], Hausel-Hitchin [HH22].

The fiber of the Hitchin fibration over a general point b ∈ A3 of the Hitchin base is a

Prym variety P := h−1(b). The point b corresponds to a spectral curve

π : C̃ → C,
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which is a 2 : 1 covering ramified over 4 points. The abelian variety P is the Prym variety of

line bundles on C̃ whose norm down to C is the line bundle OC(2p) for X0 or OC(3p) for X1.

The shift by OC(2p) ∼= ωC is due to the fact that π∗(OC̃) ∼= OC ⊕ ω−1
C so the determinant

line bundle of the rank 2 vector bundle is ω−1
C times the norm line bundle.

Over the open subset of very stable points,

Higgsvs ∼= T ∗Xvs

f
��

Xvs

The identification between Higgsvs and T∨(Xvs) comes from Serre duality wherein the cotan-

gent space

T∨(Xvs)E = H1(End0(E))∗ ∼= H0(End0(E)⊗ ωC)

identifies with the space of Higgs fields on a given bundle E ∈ Xvs.

On Pvs := P ∩ Higgsvs we obtain a map fvs : Pvs → Xvs which, in our case, is a finite

8 : 1 ramified covering.

In order to go from the given spectral data over the open subset Xvs to completed objects

over X, the first task is to blow up P in order to resolve the rational map P 99K X, given

by fvs on Pvs, into a morphism.

This might be complicated in the general setting. In rough terms, the projection from

our hoped-for spectral variety Pvs → Xvs should extend to a finite map Y
f−→ X where

Y → P is some kind of a blowing-up of P along the locus Q ∩ P for the complement

Q := Higgs − Higgss of the set of Higgs bundles whose underlying bundle is stable (that’s

a little bigger than Higgsvs). The subvariety Q is the union of the collection of incoming

directions to the higher level fixed point sets of the C× action.

In general, we don’t know how to describe the appropriate blow-up. It will probably

contain a sequence of blow-ups along various subvarieties within Q. Luckily, in the case

of rank 2 bundles on a genus 2 curve, it suffices to blow up once and there are explicit

descriptions:

• In P3 = {L ∈ Jac3(C̃) |Nmπ(L) = OC(3p)} we have a smooth curve Ĉ := C̃ ×C C and

Y1 is the blow-up of P3 along this curve. Let E 1 ⊂ Y1 denote the exceptional divisor,

mapping to Wob1. We will denote the blow-up maps by ε with indices if necessary.
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• In P2 = {L ∈ Jac3(C̃) |Nmπ(L) = OC(2p)} we should blow up 16 points; the ex-

ceptional locus E 0 = ⊔κ∈Spin(C)E 0,κ is a union of 16 planes in Y0 labeled by theta

characteristics of C and mapping to the corresponding trope planes in X0.

The inclusion Pvs ↪→ T∨Xvs extends to an inclusion

Y ↪→ T∨X(log Wob)

well-defined at least up to and including codimension 1. The essential reason for this is that

the birational map from Y to T∨X is given by a global 1-form α on Y , termed the spectral

1-form that is in fact pulled back from a 1-form on P associated to the tautological 1-form

of the original spectral covering C̃/C. The section over Y of the pullback of T∨X can have

poles at points where Y/X is ramified and α does not vanish on the vertical directions of

the ramification, but in this case the poles are logarithmic.

The spectral correspondence [BNR89, Don95, DM96] says that from a spectral cover-

ing contained in the cotangent bundle, together with a line bundle, we obtain a Higgs sheaf

on the base. For parabolic Higgs sheaves, the spectral covering should be inside the logarith-

mic cotangent bundle with logarithmic poles along Wob. In our situation, the inclusion of

Y into the logarithmic cotangent bundle insures that the logarithmic property holds along

the smooth points of Wob. Understanding what happens at singular points of Wob is one of

the main technical difficulties.

The image of Y ↪→ T∨X(log Wob) is the spectral covering predicted by the program of

the first two authors [DP09, DP12, DP22], as stated in Conjecture 1.2 above. The proposal

for realizing this subvariety as a spectral covering associated to a local system, is to apply

the nonabelian Hodge correspondence initiated by Hitchin [Hit87a], and taken to the case of

open varieties of higher dimension by Mochizuki [Moc07a, Moc07a, Moc06, Moc09], in order

to get a harmonic bundle and therefore a corresponding local system on Xvs.

This requires resolving the singularities of Wob to get a normal crossings divisor, choosing

a line bundle over Y and then over the resolution of singularities, and putting an appropriate

parabolic structure on the resolution in order to get a logarithmic Higgs field with respect

to a normal crossings divisor.

Once these are done, one needs vanishing of the parabolic Chern classes cpar1 and cpar2 .

The first two authors conjecture that placing a well-adjusted parabolic structure over the

wobbly locus should insure this vanishing. This was done for the case of P1 with 5 marked
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points in [DP22]. That paper involves a nontrivial interaction between parabolic structures

on the curve C and these parabolic structures over (X,Wob).

In the present paper devoted to the same the program for bundles of rank 2 on smooth

projective curves of genus 2, the parabolic weight structure is much simpler. Indeed, we

find that a parabolic structure, with weight α = 1/2, is needed for X1; and that for X0 no

parabolic structure is needed over the trope planes or the Kummer surface.

The Chern class calculations will prescribe the numerical equivalence class of the line

bundle L necessary to obtain a parabolic Higgs sheaf F := f∗L on X with logarithmic

structure along the smooth locus of Wob such that the appropriately calculated cpar1 and cpar2

vanish.

Over X1, the parabolic structure is localized upstairs near the exceptional divisor E 1.

The map f has ramification index of 2 at a general point of E 1, and that gives us the

sub-bundle of the direct image that we will use to put the parabolic structure.

The standard restriction theorems for the Kobayashi-Hitchin correspondence [Moc06]

say that it suffices to work down to codimension 2 in X. This convention will be adopted

throughout the paper. An understanding of the codimension 2 pieces, namely the singular

locus in codimension 1 of Wob, is needed in order to verify the vanishing of the second Chern

class. In our case, up to codimension two in X, Wob1 has normal crossings and curves along

which it is cuspidal, whereas Wob0 has normal crossings and curves along which there is a

tacnode (the trope planes meet the Kummer surface in double conics).

Some special strategies are employed in Chapters 4 and 5 to obtain the calculation of

parabolic Chern classes at these singularities, helped by the fact that the parabolic weights

were limited to 0, 1/2. This promises to be a stumbling block in the general situation.

The conclusion of the Chern class calculations is that the line bundle over Y0 should be

of the form

L0 = ε∗0(L0)⊗ f ∗
0OX0(2)⊗OY0(E 0)

where L0 is a degree 0 line bundle on the Prym variety P2, and ε0 : Y0 → P2 is the blow-up

map.

Similarly, over Y1 it should have the form

L1 = ε∗1(L1)⊗ f ∗
1OX1(1)

where L1 is a degree 0 line bundle on the Prym variety P3 and again ε1 is the blow-up map.

These degree 0 line bundles correspond to the line bundle N over C̃ that is input in

the geometric Langlands picture, i.e. the spectral line bundle defining the eigenvalue Higgs
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bundle ΛDol on C. Showing that these are the appropriate adjustments in view of the Hecke

eigensheaf condition is a significant part of our work.

The modular spectral coverings Y0 and Y1 are irreducible so the constructed Higgs bun-

dles FDol,0 and FDol,1 are automatically stable. Applying Mochizuki’s Kobayashi-Hitchin

correspondence [Moc06] yields a corresponding flat bundles FdR,0 and FdR,1 on Xvs
0 and

Xvs
1 .

From this construction we derive immediately some basic properties of these flat bundles:

• For (X1,Wob1) the monodromy transformation in FdR,1 around a general point of

Wob1 is of order 2 with two eigenvalues of −1 and six eigenvalues of 1.

• For (X0,Wob0) the monodromy transformations in FdR,0 around general points of the

trope planes are transvections, whereas the monodromy around a general point of Kum

is a direct sum of four transvections.

These flat bundles are supposed to be the ones given by the geometric Langlands cor-

respondence. In particular, we would like to show that they satisfy the Hecke eigensheaf

property. We do not address the general problem of uniqueness of Hecke eigensheaves di-

rectly, however it will be shown that the ones produced by our construction agree with the

ones constructed by Drinfeld-Laumon.

The Hecke property requires computing the higher direct image of a harmonic bundle in

the Dolbeault framework. For this we use the formalism and results from [DPS16]. Some

further work is needed here to generalize and adapt the computational machinery of [DPS16]

to the specific setup given by the Hecke correspondences. This is done in Chapter 12, and

for the reader’s convenience we provide a summary of the end results that will be applied to

the Hecke computations, in Section 3.11.

The general setting for the pushforward calculation is a map H → S from a surface to

a curve, but let us look at how it comes about in our application. As we are dealing with

bundles having a fixed determinant, the Hecke correspondence is parametrized by the 16 : 1

etale covering C → C parametrizing points t ∈ C plus a square-root of OC(t − p). Going

from Xi (i = 0, 1) to the other space Xj (j = 1, 0) this is

H
p

��

q

##

Xi Xj × C.

17



Choosing a point a ∈ C and restricting to a line S := ℓ ⊂ Xj × {a}, let H = Hℓ be the

pullback of ℓ in the Hecke correspondence H. There is a parabolic Higgs bundle (E , φ) on H

coming by pullback from our constructed Higgs bundle FDol,i on Xi. One defines [DPS16]

the H/S relative Dolbeault complex of (E , φ) by setting

DOLpar
L2 (H/S,E , φ) :=

[
W0E

φH/S−→ W−2E ⊗ Ω1
H/S

]
over H. Here, WkE is the subsheaf of sections of E whose restriction to the horizontal part

of the parabolic divisor in H lies in the k-th piece of the monodromy weight filtration of

res(φ) on the parabolic weight 0 part.

To avoid cluttering the notation we will continue to write q : H → S for the restriction

of the map q : H → Xj × C. The Dolbeault higher direct image vector bundle on S is

(E , φ) 7→ F := R1q∗DOLpar
L2 (H/S,E , φ),

and the global Higgs field upstairs leads to a Higgs field ϕ on this F
For sufficiently general Higgs bundles, as will be the case in this instance, the Dolbeault

higher direct image takes a particularly nice form, with the cohomology along each fiber

being localized at a finite set of points corresponding to the zeros of the relative Higgs field.

This family of finite sets gives the spectral variety for the higher direct image.

There is a natural subscheme Crit of the projectivization P(E /H), the relative critical

locus consisting of the zeros of the relative Higgs field.

A point of Crit corresponds to a point z ∈ H and a vector e ∈ E such that φ(e) projects

to zero in the E -valued relative differentials E ⊗ Ω1
H/S.

In the case where Crit/S is finite (i.e. the zeros of the relative Higgs field are isolated in

each fiber), then Crit → S will be the spectral cover of the Dolbeault higher direct image

R1q∗(E , φ). Over each point in the base, this statement says that the cohomology of the fiber

localizes at the zeros of the Higgs field and decomposes naturally as a direct sum indexed

by these zeros. It is a form of Witten’s Morse theory [Wit82]. The proof is that the relative

Dolbeault complex becomes quasiisomorphic to the cokernel sheaf that is supported on Crit.

The critical locus description matches up with the abelianized Hecke variety defined

in general by the first two authors:

Ĥab := {(L,L′, α, A), L
α→ L′}

where L and L′ are line bundles over the spectral curve C̃ such that U = π∗(L) has deter-

minant OC and U ′ = π∗(L
′) has determinant OC(t), and A is a square-root of OC(t − p).
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Thus U ′ ⊗ A−1 has determinant OC(p). An alternate formulation is

Ĥab := {(L, t̃, A), t̃ ∈ C̃}

where we put L′ := L(t̃) and require A⊗2 = OC(t− p) for t := π(t̃). The abelianized Hecke

variety played a main role in the paper [DP12] on the classical limit.

The abelianized Hecke correspondence maps to the usual Hecke correspondence:

Ĥab → H. Indeed, an abelianized Hecke transform between line bundles induces a usual

Hecke transform between the rank 2 bundles they induce by pushforward from C̃ → C.

In the situation of our application, H ↪→ H. The Higgs bundle E on H is the pullback

of the constructed Higgs bundle Fi that has spectral variety Yi/Xi.

The relative critical locus then identifies with the abelianized Hecke: Crit = Ĥab|H . The

basic idea is to see a point of the full Hecke correspondence is a pair consisting of a rank

two bundle and a rank 1 subspace over a point of C. When the bundle comes from a point

of Pvs, that point is a line bundle L on C̃ and the bundle over C is the pushforward. At a

general point this pushforward has two distinguished directions coming from the two sheets

of C̃. One shows that our point in H is in the zero set of the Higgs field exactly when the

rank 1 quotient of the bundle goes in one of the distinguished directions. Hence, the Hecke

point comes from (L, t̃, A), that is to say a point of Ĥab.

The pushforward computations applied in our case show that the higher direct image

from H to S = ℓ is a Higgs bundle having Ĥab|H as its spectral variety.

If we move back from the restriction to a line in X to looking at the direct image from

H to Xj × C, we see that the higher direct image Higgs bundle has spectral variety Ĥab.

Birationally,

Ĥab ∼= Yj × C̃ −→ Xj × C.

This is the statement needed on the level of spectral varieties to get the Hecke eigensheaf

property saying that the higher direct image has the form F⊠Λ. To prove the full eigensheaf

property, one needs to identify the spectral line bundle, and to deal with parabolic structures

and various singularities.

This gives the basic idea of the proof of the Hecke property, although more technical

discussion is needed in order to get the statement precisely.
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1.3 Main theorems

This section contains consolidated statements of the main theorems. Recall that C is

a smooth projective curve of genus 2. Suppose given a rank 2 flat bundle ΛdR over C,

corresponding to a Higgs bundle ΛDol = (E, θ) with spectral curve C̃ ↪→ T∨C. Suppose that

the spectral curve is corresponds to a general point in the Hitchin base.More precisely we

will assume that C̃ is smooth and unramified over any of the Weierstrass points of C

Use indices i = 0, 1 to indicate the moduli spaces X0, X1. Let X◦
i := Xi −Wobsing

i and

Wob◦
i := Wobi −Wobsing

i . Let Y ◦
i be the preimage of X◦

i in Yi.

Theorem 1.3. There is a tame purely imaginary harmonic bundle over Xi −Wobi, corre-

sponding to a pure twistor D-module whose Dolbeault fiber is a parabolic logarithmic Higgs

bundle Fi,Dol,• on (X◦
i ,Wob◦

i ), such that the parabolic weights along Wob◦
i are trivial for

i = 0 and 0, 1/2 for i = 1. The spectral data for Fi,Dol,• consist of the spectral covering Y ◦
i

together with a spectral line bundle Li defined on Yi as follows:

• L0 = ε∗0(L0)⊗ f ∗
0OX0(2)⊗OY0(E 0)

• L1 = ε∗1(L1)⊗ f ∗
1OX1(1),

where L0 and L1 are line bundles on the Prym variety associated to the spectral line bundle

of ΛDol = (E, θ), and the spectral 1-form is given by the tautological form from the inclusion

Y vs
i
∼= Pvs

i ↪→ Higgsvsi
∼= T ∗(Xvs).

The parabolic structure is given from the spectral data by setting Fi,Dol,0 = fi∗Li for i = 0, 1

and, in addition, in case i = 1, setting F1,Dol,1/2 = f1∗Li(E 1).

In the twistor P1 we can consider the de Rham point λ = 1; let Fi,dR be the D-module

associated to the fiber over λ = 1. Let Fi,B be the perverse sheaf corresponding to this

D-module. Similarly, we will write ΛdR and ΛB for the flat bundle and local system on C

corresponding to ΛDol.

We recall that the Hecke operations are defined for points in the curve C that maps to

C by a 16 : 1 etale covering sq : C → C, so the big Hecke operation goes from sheaves on

X0 to sheaves on X1 × C and vice-versa.
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Theorem 1.4. The pair of perverse sheaves over X0 ⊔X1 is a Hecke eigensheaf with Hecke

eigenvalue Λ in the sense that the big Hecke operation applied to F0,B is F1,B ⊠ sq∗ΛB and

the big Hecke operation applied to F1,B is F0,B ⊠ sq∗ΛB.

Drinfeld [Dri83] used a Radon transform to construct Hecke eigensheaves for rank 2 local

systems ΛB on smooth compact curves of any genus. His construction was put into a more

geometric form by Laumon [Lau95].

Theorem 1.5. The purely imaginary tame harmonic bundles associated to the Hecke eigen-

sheaves constructed by Drinfeld in rank 2 have Dolbeault fiber, i.e. parabolic logarithmic

Higgs bundles, that satisfies Conjecture 1.2 for compact curves of any genus.

Theorem 1.6. For a curve C of genus 2, Drinfeld’s Hecke eigensheaves on X0 and X1

coincide with the F0,B and F1,B that come from the Higgs bundles constructed in Theorem

1.3.

1.4 Structure of the paper

The case we consider in this paper, moduli of rank 2 bundles on a curve of genus 2,

has very classical roots. The basic geometry involved may be viewed as coming from the

expression of X1 as the intersection of a pencil of quadrics in P5. This viewpoint is recalled

and developed in Chapter 2, and we prove some of the properties needed, notably concerning

the lines in X1. Hecke correspondences make their appearance here from a synthetic point

of view.

In Chapter 3 we introduce the basic notations of the modular approach in a more com-

plete way than was done in the introduction, and discuss several different types of general

considerations that will be used later in the discussion. These range from Chern class cal-

culations (3.12) to the geometry of the C× flow on the Hitchin moduli space (3.6, 3.7), and

include a discussion of the nonabelian Hodge correspondence (3.9) and parabolic structures

(3.10) to be used in the basic construction. We state in (3.11) the results on Dolbeault higher
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direct images in a form that will be most useful for calculating the Hecke correspondences;

their proofs are deferred to Chapter 12.

In Chapter 4 we construct the parabolic logarithmic Higgs bundle for our candidate Hecke

eigensheaf over the moduli spaceX1 of bundles of degree 1. This involves a precise description

of the wobbly locus Wob1 paired with a description of the blown-up Prym that forms the

spectral covering of X1, with exceptional divisor E 1 above Wob1. The main technical work

is to arrive at a calculation of the parabolic Chern class, given that Wob1 has cuspidal (as

well as normal-crossings) singularities in codimension 2 in X1. The technique used here is

to pass to a finite covering of Kawamata type [Kaw88], with smooth total space and having

ramification of order two along Wob1. This works because the parabolic structure to be used

here has weights 0, 1/2 so it goes away upon pullback to the finite cover. It therefore does

not matter that the inverse image of Wob1 has a triple point where the cusp used to be: the

Higgs bundle extends smoothly across the divisor and we can just compute its Chern class.

In Chapter 5 we construct the parabolic logarithmic Higgs bundle for our candidate Hecke

eigensheaf over the moduli space X0 of bundles of degree 0. This again involves a precise

description of the wobbly locus Wob0, which turns out to be Kummer’s 166 configuration

combining the Kummer surface with 16 nodes in X0
∼= P3, with the 16 trope planes meeting

the surface along trope conics that transversally make tacnodes. Once again, the main

problem is how to compute the parabolic Chern class contributions from the singularities.

In this case, at smooth points of Wob0 there is no parabolic structure, but rather the Higgs

field has nonzero nilpotent residues. The corresponding monodromies of the local system

are unipotent. However, a naive extension of the bundle across the tacnodes has Higgs field

that isn’t logarithmic on a resolution. Our technique in this case, different from the case of

degree 1, is to resolve the singularities of the tacnodes by two blow-ups, and then put an

appropriate parabolic structure over the exceptional divisors. In other words, even if the

Higgs bundle does not have parabolic structure along the smooth points of Wob0, it does

have a ‘hidden’ parabolic structure inside the tacnodes, and indeed the resulting local system

will have nontrivial monodromy eigenvalues around components of the exceptional divisors.

The good parabolic structure was found by trial and error using some computer calculations.

Those were really bad so we don’t reproduce them here, rather we just state what is the

good parabolic structure, verify that it makes the Higgs field logarithmic, and verify that it

yields vanishing of the parabolic Chern classes.

From Chapters 4 and 5 we thus obtain the constructions of local systems, and their

associated purely imaginary tame harmonic bundles, on Xvs
1 and Xvs

0 , completing the proof

22



of Theorem 1.3. The remainder of the paper is devoted to verifying the Hecke eigensheaf

property plus a few other things.

In Chapter 6 we introduce the general setup of the Hecke correspondence in the modular

viewpoint.

In Chapter 7 we introduce the abelianized Hecke variety, which is the main player in

the proof of the Hecke property. In this chapter, we give a first approach by showing that

the Hecke property holds at the level of spectral data using the abelianized Hecke. This

part involves consideration of the “big Hecke correspondence” which is the total space of the

family parametrized by points of the curve C. Consideration of the Hecke correspondences

at a single point is done in the next two chapters.

In Chapter 8 we fix a point a ∈ C and show that the Hecke correspondence at the

point a takes the constructed Higgs bundle on X0 to the constructed Higgs bundle on X1.

This is done by restricting to a general line, and applying the pushforward statements given

in Subsection 3.11 and to be proven in Chapter 12. This section contains a subtle point

about apparent singularities: the Hecke pushforward morphism seems to be singular along

an additional subvariety of X1, namely a Kummer K3 surface, known classically, and that

depends on the point a. We need to show that the higher direct image harmonic bundle

does not really have singularities there. This requires the discussion of Subsection 12.7.

In Chapter 9 for the fixed point a ∈ C we show that the Hecke correspondence at a

takes the constructed Higgs bundle on X1 to the constructed Higgs bundle on X0. Again

the pushforward statements are applied after restricting to a general line. In this direction,

the difficulty with apparent singularities does not occur.

In Chapter 10 we go back to the big Hecke correspondence, and use the results of the

previous chapters to prove the Hecke eigensheaf property. This completes the proof of

Theorem 1.4.

In Chapter 11 we propose a third construction of a parabolic logarithmic Higgs bundle

on X0, having trivial parabolic structure and nilpotent residues over the trope planes, but

with parabolic structure of weights 0, 1/2 over the Kummer subvariety. We posit that this

should be associated to a PGL2 local system of odd degree, but that is not treated here.

In Chapter 12 we proceed in several stages to apply the L2 Dolbeault direct image

formulas of [DPS16] to obtain the pushforward statements required for computation of the

Hecke transforms in our cases. The first step is to extend the general theory to the case

when the parabolic divisors can have multiplicity. Then we consider the case where the

horizontal divisor has a simple ramification point, by blowing up. Then we treat the case of
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“points of type 3.11.1(e)” that is needed to show that the higher direct image does not have

singularities at the apparent singularities that show up in the (X0 → X1) direction of the

Hecke operation. This chapter completes the proof of the pushforward statements made in

Subsection 3.11.

In Chapter 13 we change gears and consider Drinfeld’s Radon transform construction.

We show how the Dolbeault direct image technology can apply to gain information about

the Higgs bundles associated to the perverse sheaves constructed by Drinfeld. In particular,

we obtain the spectral coverings of these HIggs bundles, and prove Conjecture 1.2 for them,

i.e. Theorem 1.5. We also show that the Hecke eigensheaves that we construct coincide with

those constructed by Drinfeld, which is Theorem 1.6. At the end of this chapter, we show

that one can get an explicit description of the Hecke eigensheaf over X1.
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2 Synthetic approach

A special advantage in studying the Geometric Langlands Conjecture for curves of genus

2 is that we can utilize two independent geometric approaches to the problem. We can study

our various objects modularly, in term of their interpretation as moduli spaces of bundles
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with various decorations, or synthetically, in terms of the geometry of the intersection of two

quadrics. In this section we follow the synthetic approach. In the rest of this work we follow

the modular approach. The modular techniques we develop are considerably more difficult,

but they are less dependent on specifics of our particular situation, so it is more likely that

they can be extended to more general cases of GLC.

In this section we will describe synthetically the geometric correspondences between most

fundamental objects of interest in this paper - the base locus X1 of a general pencil of quadrics

in P5 and a ruling X0 of a general quadric in the pencil. We will also see synthetically how

this geometry ties up with the genus two curve C parametrizing the rulings of the quadrics

in the pencil and with the geometry of the Jacobian of C.

The significance of the synthetic considerations stems from the fact that, through the

works of Narasimhan-Ramanan [NR69] and Newstead [New68], the objects X1 and X0 are

identified with the moduli of semistable rank 2 bundles of fixed determinant of degree 1 and

0 on the curve C. Later on we will refine these identifications and will in particular show

that synthetic constructions of this section reproduce the Hecke correspondences and their

discriminant (wobbly) loci in moduli. This will give us easy geometric proofs of most of the

important geometric properties needed for the analysis of the Hecke eigensheaf condition.

2.1 Pencils of quadrics in P5

We will study the geometry of a general pencil of quadrics in P5 by analyzing the families

of linear subspaces contained in these quadrics.

2.1.1. Notation Our notation in this section is:

X = X1 = ∩x∈P1Qx ⊂ P5 is the smooth intersection of a generic pencil of quadrics in

P5.

ℓ ⊂ X is a line in X.

v ∈ X is a point in X .

Grass(3, 6) is the Grassmannian of projective planes Π ⊂ P5.
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The universal ruling is R := {(x,Π) ∈ P1 × Grass(3, 6) |Π ⊂ Qx}. The fiber of pr1 : R → P1

over a general x ∈ P1 has 2 components, the rulings of the quadric Qx. We can thus consider

the Stein factorization of pr1 : R → P1:

R rul //

pr1

55C
hC // P1.

Then C is a hyperelliptic curve of genus 2, with 6 Weierstrass points pi, which are the

ramification points of the hyperelliptic map hC . They correspond to the rulings on the 6

singular quadrics in the pencil. We fix one of them, labelled p ∈ C.

The fibers of rul, parametrizing planes in a given ruling t ∈ C, are spinor varieties,

isomorphic to P3. The subvariety parametrizing planes in ruling t that pass through a

specified point v ∈ X is a line in this P3. Through a specified line ℓ ⊂ X there is a unique

plane in each ruling.

We choose coordinates on P5 that are adapted to our pencil, meaning that the 6 coordinate

points are the vertices of the 6 quadric cones in our pencil. All the quadrics Qx become

simultaneously diagonalized. If we take the matrix of one of the quadrics to be the identity

and that of another quadric in the pencil to be diag(x1, . . . , x6), the equation of C becomes

y2 = Π6
i=1(x− xi), and hC(pi) = xi.

The modular approach studies bundles on this genus 2 hyperelliptic curve C. When we

wish to compare the synthetic and modular approaches, the line ℓ will correspond to a line

bundle L ∈ Pic0(C), and the point v will correspond to a rank 2 vector bundle V on C with

determinant det(V ) ∼= OC(p).

2.2 Basic geometry of the lines

Let A denote the variety of lines ℓ ⊂ X in X.

Lemma 2.1. Through any point v ∈ X there are four lines ℓ ∈ A (counting multiplicities).

Proof. For a point v ∈ X let TvX ∼= P3 ⊂ P5 denote the projective tangent space to X at

v. A line ℓ ∈ P5 passing through v is in X iff it is in X ∩ TvX. But X ∩ TvX is a curve in

TvX ∼= P3 that has degree 4 and is a cone with vertex v, so it consists of 4 lines.
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In any ruling of a quadric Qx there is a unique plane Π containing any ℓ ⊂ Qx, and in

particular any ℓ ⊂ X. In the latter case, the intersection Π ∩ X consists of two lines, the

given ℓ and another line ℓ′ ⊂ X. We get a natural map

i : C ×A→ A

sending (t, ℓ) 7→ ℓ′, where t ∈ C labels a ruling Rt of the quadric QhC(t), ℓ ⊂ X is a line, Π

is the plane in Rt containing ℓ, and ℓ′ is the other line in Π ∩ X. Fixing ℓ ∈ A we get a

map iℓ : C → A. Fixing t ∈ C we get an involution it : A → A. We will be particularly

interested in ip, where p ∈ C is our chosen Weierstrass point. The action of C × C on A

sending ℓ → it1 ◦ it2(ℓ) is easily seen [Don80] to descend to Sym2(C) and further to the

Jacobian J = Jac(C) = Pic0(C) ∼= Pic2(C), where the last identification sends 0 to the

canonical bundle ωC = OC(2p). The resulting map

J×A→ A

turns A into a J-torsor. The choice of ℓ ∈ A thus gives an isomorphism

jℓ : J
∼=→ A

sending the origin to ℓ and restricting to iℓ on C, embedded in J via Abel-Jacobi with p

mapped to the origin. Note that if ℓ,m ∈ A are two lines in X, then m = jℓ(M) for a unique

M ∈ J, and

jm = jℓ ◦ tM ,

where tM : J→ J is translation by M : tM(N) := M ⊗N .

As above, given a smooth point z of a subvariety Z ⊂ PN in a projective space, we let

TzZ ∼= PdimZ ⊂ PN denote the projective tangent space at z, i.e. the linear subspace of PN

containing z and pointing in the direction of the usual tangent space TzZ.

Lemma 2.2. There are 16 lines O ∈ A that are fixed by the involution ip:

O = ipO.

Proof. We start with an initial ℓ ∈ A and will see how to modify it to be a fixed point.

Conjugating ip by jℓ we get an involution

j−1
ℓ ◦ ip ◦ jℓ : J→ J.
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This sends L ∈ J to Uℓ ⊗ L−1, where Uℓ := j−1
ℓ (ipℓ) ∈ J. This involution of J has 16 fixed

points, namely the square roots M of Uℓ. Replacing our initial ℓ by O := jℓ(M) gives a new

line O such that jO = jℓ ◦ tM , so

j−1
O ◦ ip ◦ jO = t−1

M ◦ j
−1
ℓ ◦ ip ◦ jℓ ◦ tM

is just inversion, so O = ipO as desired. (The existence of 16 O’s with this property was

shown in [Don80] via a Schubert cycle calculation.)

If we choose one of these fixed points O ∈ A as origin, then the composition

(jO)−1 ◦ i ◦ (id×jO) : C × J→ J

becomes the Abel-Jacobi map

(t, L) 7→ L(t− p),

so its restriction:

j−1
O ◦ iO : C → A→ J

becomes the Abel-Jacobi map

t 7→ OC(t− p),

and the involutions

j−1
O ◦ ir ◦ jO : J→ J

L 7→ L−1(t− p).

so as we have seen, j−1
O ◦ ip ◦ become : jO : J→ J is just inversion.

For the modular/synthetic dictionary, we set

ℓ = jO(L), L = j−1
O (ℓ).

Note that while A depends only on X, the isomorphism jO depends on the auxiliary choices

of the Weierstrass point p and the origin O.

2.2.1. Line incidence and special lines Given ℓ ∈ A, consider the family

Iℓ ⊂ A
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of lines m ∈ A that intersect ℓ. By definition, this is the closure (in A) of:

I◦ℓ := {m ∈ A |m ̸= ℓ,m ∩ ℓ ̸= ∅} .

For general ℓ, I◦ℓ = Iℓ is closed, so we do not need the closure. We say that the line ℓ is

special if it “intersects itself”, in the sense that ℓ ∈ Iℓ, so I◦ℓ ̸= Iℓ (Compare with [GH94,

page 792]).

Our isomorphism jO : J
∼=→ A identifies Iℓ with the theta divisor

Θℓ = ΘL =
{
M ∈ J

∣∣h0(L⊗M(p) > 0
}

=
{
OC(t− p)⊗ L−1) |t ∈ C

}
⊂ J,

where ℓ = jO(L).

Iℓ is the image of our map iℓ : C → A, and in fact iℓ induces an isomorphism

iℓ : C
∼=→ Iℓ. The composed map (jO)−1 ◦ iℓ : C → ΘL is just the Abel-Jacobi map:

t 7→ (L(p))−1(t).

Consider the curve

C :=
{

(L, t)
∣∣ L2 ∼= O(t− p)

}
⊂ J× C.

The second projection realizes C as the 16-sheeted cover sq : C → C induced from the

doubling map J→ J, L 7→ L2 and the Abel-Jacobi map C → J, t 7→ OC(t− p). The first

projection identifies C with its image in J. Composing with the isomorphism jO, we identify

C as a subvariety of A. In summary, this gives the following

Corollary 2.3. The line ℓ is special iff L = j−1
O (ℓ) ∈ C ⊂ J, iff L2(p) is effective.

From now on we will think of C as the subvariety of A parametrizing special lines. It is

intrinsic to X, independent of choices of p and O.

A central object in our study is the Wobbly locus in X. We define it to be:

Wob :=
⋃
ℓ∈C

ℓ ⊂ X,

i.e. the union of all the special lines.

2.2.2. Trigonal bundles Via the map iℓ : C → Iℓ, we have identified C with the family Iℓ of

lines m meeting a given line ℓ, while jO identifies Iℓ with Θℓ. The composition jO◦iℓ : C → Θℓ

sends t 7→ OC(t− p)⊗ L−1, where again L = j−1
O (ℓ).
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Lemma 2.4. Let L = j−1
O (ℓ). The map a◦ = a◦ℓ : I◦ℓ → ℓ sending m → m ∩ ℓ extends to

a = aℓ : C ∼= Iℓ → ℓ, where it is given by the linear system of sections of the degree 3 line

bundle L2(3p).

Proof. We have a morphism X → Pic0(C) sending v to ⊗4
i=1Li, where the Li are the line

bundles corresponding to the 4 lines ℓi through v, i.e. Li = j−1
O (ℓi). Since X is unirational (in

fact, rational), this map must be constant. Our choice of origin assures us that this constant

value of this map is the origin in Pic0(C). So for each point v of ℓ, the sum of the three lines

other than ℓ through v (i.e. the product of the corresponding line bundles) must be L−1 ∈ J.

The identification of Θℓ with C involves a translation by L(p). Suppose that the four lines

{ℓi}4i=1 through v ∈ ℓ are labeled so that ℓ4 = ℓ. So when we convert the three Li to points

ti ∈ C, we see that their sum, in Pic3(C), is:

OC(Σ3
i=1ti) = L−1 ⊗ (L(p)⊗3) = L2(3p)

as claimed.

There are two possibilities: L(3p) could be base-point free and therefore give a genuine

trigonal map, or it could have a base point. This happens iff L(3p) = ωC(t) for some t ∈ C,

or equivalently iff L2 ∼= OC(t− p). We immediately get

Corollary 2.5. The trigonal bundle L2(3p) has a base point iff ℓ is special, or equivalently

(L, t) belongs to C.

In the case of a special ℓ, the map aℓ : C 99K ℓ sending m→ m∩ ℓ is still given by the linear

system of sections of L2(3p), but now this linear system has the base point t, so it is only a

rational map. That means that the trigonal curve is now reducible, C ∪P1 with t ∈ C glued

to hC(t) ∈ P1, where hC : C → P1 is the hyperelliptic double cover. The rational map aℓ

lifts to a morphism ãℓ : C ∪ P1 → ℓ. When restricted to P1 this gives a natural isomorphism

a◦ℓ : P1 → ℓ, and its restriction to C agrees with hC : C → P1 followed by this isomorphism

a◦ℓ : P1 → ℓ. In this case the 3 lines meeting ℓ at any v ∈ ℓ consist of the fixed line ℓ, plus

the moving hyperelliptic pair h−1
C (v), or more precisely, their images under iℓ. So the 4 lines

through any such v consist of twice ℓ, plus the pair h−1
C (v).
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Going back to a general ℓ, the trigonal map a : C → ℓ has 8 branch points bi ∈ ℓ,

with a−1(bi) = 2ri + si consisting of the ramification point ri and one other point si. The

corresponding 4 lines through such a bi are then ℓ,mi, and ℓi occurring with multiplicity 2.

Here ℓi corresponds to the degree 0 line bundle L−1(ri− p), and similarly mi corresponds to

the degree 0 line bundle L−1(si − p). Here ℓ is arbitrary, but the ℓi are in C. In fact, the 8

ramification points are the intersection of C with an appropriate translate of the Θ divisor.

2.2.3. Patterns of lines We have now proved everything we need in order to describe all

possible patterns of the 4 lines through some v ∈ X. These are summarized in the follwoing:

Theorem 2.6. For a point v in a line ℓ ∈ A, the possible patterns of lines through v are:

• 2ℓ + ℓ1 + ℓ2: ℓ counts twice among the 4 lines through v iff ℓ ∈ Iℓ, iff ℓ is special, iff

the trigonal line bundle L2(3p) has a base point.

• ℓ + 2ℓ1 + ℓ2: One of the lines in (aℓ)
−1(v) counts twice iff v is a branch point of

aℓ : C → ℓ.

• 2ℓ+ 2ℓ1: The fiber (aℓ)
−1(v) consists of two lines ℓ, ℓ1, each counted twice, iff the lines

ℓ, ℓ1 ⊂ X intersect at the point v, which is then a singular point of Wob. This occurs

iff ℓ1 = jℓ(pi) = i(pi, ℓ) where pi := (jℓ)
−1(ℓ1) is one of the 6 Weierstrass points of the

hyperelliptic C, and v = hC(pi) is its image.

• 3ℓ + ℓ1: The line ℓ counts 3 times among the 4 lines through v iff ℓ is special, corre-

sponding to (L, t) ∈ C, and v = hC(t).

• ℓ + 3ℓ1: (aℓ)
−1(v) consists of a single line ℓ1 counted 3 times iff (jℓ)

−1(ℓ1) is a total

ramification point of aℓ : C → ℓ, and v = hC((jℓ)
−1(ℓ1)) is the corresponding total

branch point.

• 4ℓ: The lines that count 4 times in a fiber are the 16 origin-candidates O from

Lemma 2.2.

31



Note in particular that pattern 2ℓ + ℓ1 + ℓ2 is independent of v ∈ ℓ. We can prove this

directly:

Lemma 2.7. If ℓ counts twice through some v ∈ ℓ, it does so for every v ∈ ℓ.

Proof. Given ℓ ⊂ X = ∩x∈P1Qx, let P = P3
ℓ be the quotient projective space P5/ℓ, parametriz-

ing planes in P5 through ℓ, and let P∨ denote its dual, parametrizing hyperplanes in P5

through ℓ. Let the line lv denote the projection of TvX to P, and l∨v the dual line in P∨.

Consider the morphism ℓ × P1 → P∨ sending (v, x) 7→ TvQx. It is well-defined (each v

is a non-singular point of each Qx) and linear in each of its arguments v, x, i.e. it is given

by a base-point free sublinear system of OP1×P∨(1, 1). There are only two possibilities: the

map can be an embedding, identifying ℓ× P1 with a smooth quadric quad∨ ⊂ P∨, or it can

be 2-to-1 onto a plane Π ⊂ P∨, with branch locus a conic Conic ⊂ P∨. In the first case,

the lines l∨v form a ruling of quad∨, and dually the lines lv form a ruling of the dual quadric

quad ⊂ P. In the second case, the lines l∨v are the tangents in Π to Conic , and dually the

lines lv form the ruling of a quadratic cone quad ⊂ P.

Now the line ℓ counts more than once among the 4 lines in X through v ∈ ℓ if and only

if the intersection TX ∩X is singular at every v′ ∈ ℓ. This happens if and only if TvX is not

transversal to Tv′X, if and only if the lines lv, lv′ intersect in P. This happens if and only if

our quadric quad ⊂ P is singular, i.e. the second case above. But that means that all the

lines lv′ intersect each other (at the vertex of quad).

2.3 The wobbly divisor

We defined Wob as the union in X of the special lines. For a general line ℓ ⊂ X,

the family Iℓ of lines intersecting ℓ is given by Iℓ ∼= C, which comes with a trigonal map

aℓ : Iℓ → ℓ. According to the first pattern in Theorem 2.6, the 8 branch points of aℓ are the

intersection ℓ∩Wob. In particular, the class of Wob is 8H, where H is the positive generator

of Pic(X) ∼= Z.

Consider the surface

D := C × P1 =
{

(ℓ, x)
∣∣ ℓ special, x ∈ P1

} ∼= { (ℓ, v) | ℓ special, v ∈ ℓ} ,
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where v = a◦ℓ(x), using the canonical identification a◦ℓ : P1 → ℓ of each special ℓ with the

hyperelliptic P1.

Let Γ ⊂ D be the graph of the map C → P1 sending (A, t) → hC(t). For each of the 6

Weierstrass points pi, let Γi := C × {xi} ⊂ D = C × P1, where xi := hC(pi). The involution

ipi : A → A acts on Γi. In terms of the p-dependent identification of C with its image in

J, this involution sends A→ A−1(pi − p). So it has 16 fixed points, and the quotient Γi/ipi
has genus 5.

Theorem 2.8. The map ν : D → X sending (ℓ, v) → v is a finite morphism and maps D

birationally onto Wob, so it gives its normalization. It is an isomorphism away from Γ and

the Γi. The map ν is 2-to-1 on Γi, with 16 fixed points. D has normal crossings along the

genus 5 curve Γi/ipi, except at the 16 fixed points. The fixed points correspond to pattern 4ℓ,

and the other points of Γi/ipi correspond to pattern 2ℓ+ 2ℓ1. The restriction of ν to Γ is an

embedding, and the image parametrizes pattern 3ℓ + ℓ1. But ν is not immersive along Γ -

the image Wob = ν(D) has a curve of cusps along it.

Proof. The two distinct points (ℓ, v), (m, v) ∈ D map to the same v ∈ X iff the special lines

ℓ,m intersect at v ∈ X. This means that m = ir(ℓ) for some r ∈ C, According to pattern

2ℓ + 2m in Theorem 2.6, this occurs iff m = ipi(ℓ) for one of the Weierstrass points pi ∈ C.

This means that we are on one of the Γi, and ℓ,m are related by the involution ipi .

Pattern 3ℓ + m in Theorem 2.6 shows that Γ is the inverse image under ν of the locus

of (ℓ, v) such that (ℓ, v) counts 3 times among the lines through v. Finally we claim that

special line ℓ ⊂ X is tangent to ν(Γ) ⊂ X at the point v ∈ ℓ at which the patern of lines in

X is 3ℓ+ m. We will leave it to the reader to verify this tangency in the synthetic language

but we will give a modular proof of this statement in section 4.4.

2.4 Synthetic correspondences and rigidification

2.4.1. The connection The universal ruling R is a P3 bundle rul : R → C over our

hyperelliptic curve C.

Lemma 2.9. The pullback R := R ×C C is a product, R ∼= P3 × C.
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Proof. We work with a coordinate system adapted to our pencil, so the Qx become diagonal

matrices. For x, x0 ∈ P1 \ {x1, . . . , x6}, let S := Sx0,x be a diagonal matrix such that

S2 = Q−1
x0
Qx. Then S acts on P5, taking Qx0 to Qx. The set of these square roots Sx0,x has

cardinality 26, and forms a torsor under the action of the group G := (Z/2)6. If t, t0 ∈ C lie

above x, x0, i.e. hC(t) = x, hC(t0) = x0, then half of these S’s take the ruling Rt0 of Qx0 to

the ruling Rt of Qx, while the other half take Rt0 to the other ruling of Qx. The set of square

roots Sx0,x taking t0 to t is a torsor under the subgroup G0
∼= (Z/2)5 ⊂ G which is the kernel

of the sum map (Z/2)6 → Z/2. Further, we have the diagonal embedding Z/2 → G0. Its

non-zero element exchanges S with −S, so it does not affect the transformation of P5. The

quotient G0/(Z/2) is canonically identified with J[2], the 2-torsion subgroup of the Jacobian

of C. We see that the family of quadrics {QhC(t) | t ∈ C \{p1, . . . ,p6} } has a flat connection

with monodromy J [2], and it becomes a product when pulled back to C minus the inverse

image of the Weierstrass points. The same holds therefore for R. But since ρ : R → C

is a P3 bundle (with no degenerations) over C, including the Weierstrass points, the flat

connection extends to all of R ,with the same monodromy J[2], and therefore the pullback

to C is a product as claimed.

A fancier way to understand this is by identifying the P3 fiber of rul : R → C over

t ∈ C with a translated “2Θ” linear system on J. The right translation is seen to be by a

square root of O(t − p), which gives rise to the J[2]-monodromy and to the cover C → C.

The projective connection we described here explicitly becomes a special case of the general

theory of theta groups and their actions, due to Kummer, Heisenberg, Mumford etc. This

approach is discussed in section 6.5.

2.4.2. The Hecke correspondence We will encounter several versions of the Hecke cor-

respondence. The basic one is the incidence correspondence:

H := {(v,Π) | v ∈ Π} ⊂ X ×R

between points of X and planes contained in some quadric through X. Fixing t ∈ C, i.e.

fixing the quadric and one of its rulings, we have

H(t) := H ∩ (X × rul−1(t)) = {(v,Π) | v ∈ Π, rul(Π) = t} ⊂ X × rul−1(t) ∼= X × P3.

The fiber of H over Π ∈ R (or the fiber of H(t) over Π ∈ rul−1(t)) is the conic X ∩Π, which

could be smooth, a pair of intersecting lines, or a double line. The fiber of H(t) over v ∈ X
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is a line in rul−1(t) ∼= P3. The fiber of H over v ∈ X is therefore a P1-bundle PEv over C.

(In the modular approach, points v ∈ X will correspond to rank-2 vector bundles Ev on C

whose determinant is OC(p), and our PEv will be the projectivization of Ev.)

Recall from Lemma 2.9 that the cover R = R ×C C is a product, R ∼= P3 × C. A

rigidified Hecke correspondence is obtained by pulling back to R via R → R:

H := (X ×R)×X×R H ⊂ X ×R ∼= X × P3 × C.

From the modular point of view, we will be interested in two moduli spaces of bundles: X1 =

X parametrizes rank 2 bundles on C with determinant OC(p), while X0
∼= P3 parametrizes

rank 2 bundles on C with determinant OC . The big Hecke correspondence can then be

understood as a subvariety:

H ⊂ X1 ×X0 × C.

The group J[2] acts on all three factors. The action of J[2] = G0/(Z/2) on X1 = X was

described in the proof of lemma 2.9. Let M1 := [X1/J[2]] denote the quotient. Since X0
∼= P3

was defined as the family of flat sections of R → C, we get an action of J[2] on X0 induced

from its action on R. Let M0 denote the quotient [X0/J[2]]. The action of J[2] on C is the

familiar one, with quotient C. The Hecke correspondence is compatible with these actions,

so we get another version of the Hecke correspondence

Hecke ⊂ M1 ×M0 × C.

This is the Hecke correspondence for the group PGL(2).

2.5 The quadric line complex

Starting with the intersection of quadrics X we retrieve the curve C, its cover C, the

universal ruling R, and its cover R → C. We can therefore recover ‘the’ P3 as the family of

flat sections of R → C. We can also go in the opposite direction.

The Grassmannian Grass(2, 4) of lines in P3 = P(V ) can be identified, via the Plücker

embedding, as a smooth quadric in P5 = P(∧2V ). All smooth quadrics in P5 are isomorphic

by a projective transformation, and the automorphisms of P3 correspond to automorphisms of

P5 preserving the quadric, via the exceptional group isomorphism PGL(4) ∼= PSO(6). Thus,
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any smooth quadric may be viewed as being the Grassmanian Grass(2, 4) up to adjustment

of the identification P5 = P(∧2V ), in a way that is unique up to projective transformations

of P3.

The Grassmanian has two rulings: a point p ∈ P3 determines the plane Π = Πp ⊂
Grass(2, 4) of all lines in P3 through p, while a plane P ⊂ P3 determines the plane Π = ΠP ⊂
Grass(2, 4) of all lines in P . Each of these rulings may be viewed as being specified, once

chosen the identification of a certain quadric as the Grassmanian.

If we choose another quadric meeting Grass(2, 4) transversally, then these two quadrics

span a pencil giving the situation at the start of this chapter. The intersection of Grass(2, 4)

with the other quadric is known as the quadric line complex. In the classical terminology

cf [GH94], the “line complex” means the family of lines in P3 parametrized by this quadric

section of Grass(2, 4), the “lines of the quadric line complex”.

Thus the quadric line complex is the intersection X of a general pencil of quadrics in P5.

It carries a bit more information though: specifying our X is equivalent to specifying the

hyperelliptic curve C, while specifying a quadric line complex is equivalent to specifying the

hyperelliptic curve C together with one non-Weierstrass point t ∈ C: the point hC(t) ∈ P1

corresponds to the quadric we identify as the Grassmannian, the point t ∈ C corresponds to

its ruling by planes Πp for points p ∈ P3.

In the other direction, saying that X is the quadric line complex depends on the choice

of t ∈ C or indeed on its lifting to (A, t) ∈ C, because the correspondence between points of

X and lines in P3 is exactly the Hecke correspondence depending on t, with furthermore the

identification between the ruling and a fixed P3 being dependent upon the lifting to C.

2.6 Hecke curves and Kummer surfaces

Consider the incidence:

J = { (ℓ,Π) | ℓ ⊂ Π } ⊂ A×R.

We have an isomorphism

C ×A
∼=→ J

sending (t, ℓ) 7→ (ℓ,Π), where Π ⊂ QhC(t) is the plane spanned by ℓ and i(t, ℓ). The involution

ℓ 7→ i(t, ℓ) acts on J , with quotient:

Kum := {Π ∈ R | Π ∩X contains a line } .

36



We have maps

C ×A ∼= J 2:1 // Kum � � // R,

or, if we fix t ∈ C:

A
2:1→ Kum ↪→ P3.

Here Kum is the Kummer surface, image of A ∼= J by the 2Θ linear system, which embeds

Kum = A/it ∼= J/±1 into P3 as a singular hypersurface of degree 4. Note that the Kummer

surface Kum ⊂ P3 has 16 nodes, images of the 16 fixed points of the involution it : A→ A.

These are the points where the fiber ℓ ∪ it(ℓ) becomes a double line.

A basic fact is that Kum is isomorphic to its dual [GH94, Keu97].

Given a point p ∈ P3 = rul−1(t), the fiber of the Hecke correspondence over p is a subset

of X that was denoted by Xp in [GH94]. In the terminology of the quadric line complex it

is the set of lines in the line complex that pass through p.

Corollary 2.10. Fix t ∈ C and denote P3 := rul−1(t).

• If p is a point of P3 \ Kum, then Xp is a smooth conic Π ∩X.

• If p is a smooth point of Kum, then Xp is a union of two lines ℓ ∪ i(t, ℓ) that touch.

• If p is one of the 16 nodes of Kum, then Xp is a double line 2ℓ.

This was stated in [GH94, pp 762-763].

The locus of points in X that are intersection points of the two lines, for the second

case of Xp, has closure that is a surface denoted Σ ⊂ X in [GH94]. This is seen to be the

Kummer K3 surface obtained by resolving the 16 nodes of Kum ⊂ P3 (indeed, over the

nodes we get not a single point but a line of points in Σ corresponding to the full double

line).

The K3 surface will show up in our situation as a locus of apparent singularities for the

Hecke transform from X0 = P3 to X1 = X. For the main local systems constructed here,

it turns out that the singularities along Σ are removable. On the other hand for the third

construction in Chapter 11, the Hecke transform will have singularities along Σ. We refer

the reader to that chapter for more discussion.

In the synthetic picture, the trope planes may be characterized as planes in P3 that

contain 6 of the 16 nodes. There are 16 of these. They are also the planes that correspond

to the 16 nodes of the dual Kummer surface. The trope planes meet the Kummer surface
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in plane conics counted with multiplicity two; these conics are characterized also by passing

through the 6 nodes that define the plane.

The 166 property, saying that each plane contains 6 nodes (by definition) and each node

has 6 planes, was originally proven in the synthetic situation [GH94, Bea96, Keu97, Dol20].

3 General considerations

Throughout this paper, we consider a smooth projective curve C of genus 2. It is therefore

hyperelliptic, with hyperelliptic involution denoted ιC : C → C, and the quotient projection

denoted by hC : C → P1. Let p1, . . . ,p6 ∈ C denote the Weierstrass points, i.e. the

ramification points for the map hC , and let x1, . . . , x6 ∈ P1 denote the corresponding branch

points. For brevity we will choose one of the Weierstrass points and drop the index, writing

p := p1. Thus the canonical line bundle of C is given by ωC = OC(2p).

If x ∈ C we will usually denote by x′ := ιC(x) its image by the hyperelliptic involution;

then OC(x+ x′) ∼= OC(2p) = ωC .

Fix a line bundle d to be either OC or OC(p). We will look at the moduli space X of

polystable rank 2 vector bundles E provided with an isomorphism det(E) ∼= d. The choice

of d, that is to say degree 0 or 1, will be made according to section in the paper—we prefer

not to overload the notations by indexing on this choice. When it becomes necessary to

distinguish them, we will denote the two moduli spaces by X0 and X1 and similarly for their

associated constructions (e.g. Y0, Y1).

By Narasimhan-Ramanan [NR69], for degree 0 we have X = P3 and for degree 1 we

have X ⊂ P5 is a smooth complete intersection of two quadrics. These descriptions will be

developed in more detail below.

Let Higgs denote the coarse moduli space of semistable Higgs bundles (E, θ) of rank 2

with isomorphism det(E) ∼= d and satisfying tr θ = 0. In particular, X ⊂ Higgs is the subset

of Higgs bundles with Higgs field equal to zero. The Hitchin map on rank 2 Higgs bundles

was defined by Hitchin [Hit87a, Hit87b] and is hiven by

h : Higgs→ B := H0(ω⊗2
C ), (E, θ) 7→ det(θ)

The space of quadratic differentials B := H0(ω⊗2
C ) is called the Hitchin base and in our

case is a complex vector space of dimension 3.
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We will write T∨C for the total space of ωC . π : T∨C → C for the natural projection,

and λ ∈ H0(T∨C,π∗ωC) for the tautological section. For any quadratic differential b ∈ B,

the associated spectral curve is defined as the curve C̃b ⊂ T∨C given by the equation

C̃b : λ2 − π∗b = 0.

In other words, the spectal curve correcsponding to b is the zero divisor of the holomorphic

section λ2 − π∗b ∈ H0(T∨C,π∗ωC). By definition, the spectral curve associated to a Higgs

bundle (E, θ) is the spectral curve corresponding to h(E, θ). It is given explicitly the equation

det(λ · id−π∗θ) = λ2 − det(θ) = 0,

where λ · id−π∗θ is viewed as a map

λ · id−π∗θ : π∗E −→ π∗E ⊗ π∗ωC .

For future reference we record the following

Proposition 3.1. Let Higgs be the moduli space of rank 2 Higgs bundles with fixed determi-

nant d. Then

(a) The Hitchin map h : Higgs→ B is proper and surjective.

(b) For any (E, θ) ∈ Higgs the spectral curve C̃ ⊂ T∨C of θ is a curve of arithmetic genus

5 and the projection

π = π|C̃ : C̃ → C

is the degree 2 covering branched over the bicanonical divisor det(θ) = 0. For a general

(E, θ) the spectral curve C̃ is smooth and connected.

(c) For any b ∈ B, the branch divisor of the associated spectral curve π : C̃b → C is the

hC- pullback of a degree 2 effective divisor y + z on P1. For a general b the branch

divisor zero(b) = h−1
C (y + z) = ỹ + ỹ′ + z̃ + z̃′ consists of two ιC-conjugate pairs of

points in C.

(d) For general b ∈ B the Hitchin fiber h−1(b) is identified with the 3-dimensional abelian

variety P of line bundles L on C̃ such that det(π∗(L)) ∼= d, or equivalently Nmπ(L) =

ωC ⊗ d. The Higgs bundle corresponding to L is (E, θ) = (π∗L, π∗(λ⊗ (−))).
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Proof. Parts (a), (b), and (d) are standard and are proven in many classical sources, e.g.

[Hit87a, Hit87b, BNR89]. For part (c) we only need to note that ωC = h∗CO(1), and that

h∗C : H0(P1,O(2))→ H0(C, ω⊗2
C ) is injective, Since both spaces are 3-dimensional this shows

that the pullback map is an isomorphism, and so any quadratic differential on C is a pullback

from an effective degree 2 divisor on P1. This proves (c) and completes the proof of the

proposition.

Throughout the paper, we will fix a point b and the corresponding spectral curve C̃b.

Since b will be fixed we will drop the subscript from the notation and will simply write C̃

finstead of C̃b. We will also fix Λ the rank 2 local system corresponding to a rank 2 Higgs

bundle with trivial determinant (E, θ).

3.1 Curves

Let us make the following notations and definitions.

C is a curve of genus g(C) = 2 with hyperelliptic map hC : C → P1.

p ∈ C is a fixed Weierstrass point.

C :=
{

(A, t)
∣∣A ∈ Jac0(C), t ∈ C, A⊗2 = OC(t− p)

}
.

Note that the map

sq : C → C, sq(A, t) = t

is a 16-sheeted étale cover of C, while the map

ıC : C ↪→ Jac0(C), ıC(A, t) = A

is a closed embedding. In particular C is a smooth connected curve of genus g(C) = 17.

π : C̃ → C is a fixed spectral curve, assumed to be smooth. We also assume that the spectral

curve has two branches over p.

Ĉ := C̃ ×C C is a smooth connected curve of genus g(Ĉ) = 65 which fits in the fiber square

Ĉ π̂ //

ŝq
��

C

sq

��
C̃ π

// C
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Suppose (E, θ) is a Higgs bundle with trivial determinant on C, i.e. det(E) ∼= OC and

tr(θ) = 0. Our main condition is that C̃ is the spectral cover of (E, θ), this means that there

is a line bundle L on C̃ such that E = π∗L and θ = π∗(λ⊗ (−)).

The choice of (E, θ) will determine (via the construction we are going to do, using its

spectral data (C̃, L)) two tame parabolic Higgs bundles of rank 8,

(F0,•,Φ0)/X0, (F1,•,Φ1)/X1. (1)

Our goal is to give a detailed construction of these Higgs bundles and to show that they

satisfy the Hecke eigensheaf property on X0 ⊔X1.

3.2 Moduli spaces

The coarse moduli spaces of semistable bundles will be denoted by X with, if necessary,

a subscript depending on the degree. These have coverings destined to become the modular

spectral covers of the parabolic Higgs bundles we are going to construct. The notations are

as follows.

X0 is the moduli space of rank 2 bundles F with det(F ) = OC . We have X0
∼= P3 [NR69].

X1 is the moduli space of rank 2 bundles E with det(E) = OC(p). We have [NR69, New68]

X1 ⊂ P5, X1 =
⋂
x∈P1

Qx,

where {Qx}x∈P! is a pencil of quadrics in P5 parametrized by the hyperelliptic P1 of C,

with a discriminant divisor being exactly the ramification divisor of the hyperelliptic map

hC : C → P1.

P2 is the degree two Prym for C̃, that is to say

P2 :=
{
L ∈ Jac2(C̃)

∣∣∣ Nmπ(L) ∼= ωC

}
.

This is identified with the Hitchin fiber over [λ : C̃ ↪→ T∨C] ∈ B (corresponding point in the

Hitchin base) for the SL(2) Hitchin fibration h : Higgs0 → B.

P3 is the degree three Prym:

P3 :=
{
L ∈ Jac3(C̃)

∣∣∣ Nmπ(L) ∼= ωC(p)
}
.

It is the Hitchin fiber over [λ : C̃ ↪→ T∨C] ∈ B for the odd degree Hitchin fibration h :

Higgs1 → B (Higgs bundles whose determinant Higgs bundle is (OC(p), 0)).
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Y0 is the blow-up of P2 at the pullbacks of the theta characteristics on C. More precisely,

consider the un(semi)stable locus in P2,

Punss
2 = {L ∈ P2 | π∗L is un(semi)stable }

=
{
π∗κ ∈ P2

∣∣ κ ∈ Jac1(C), s.t. κ⊗2 = ωC
}

= π∗Spin(C)

which has 16 points, and ε0 : Y0 → P2 is the blow-up of Punss
2
∼= Spin(C).

E 0 ⊂ Y0 denotes the exceptional divisor, it has 16 connected components

E 0 = ⊔κE 0,κ.

f0 is a morphism f0 : Y0 → X0 such that if L ∈ P2 is a point not on Punss
2 we have

f0(L) = π∗(L). In Theoroem 3.6 the morphism f0 is constructed as the minimal resolution

of the rational map π∗(−) : P2 99K X0. From the construction it follows that for a general

spectral curve f0 : Y0 → X0 is finite and by Lemma 4.9 and Remark 4.10 has degree 8.

Y1 is the blow-up of P3 in the un(semi)stable (=unstable) locus

Punss
3 = {L ∈ P3 | π∗L is un(semi)stable (= is unstable)} ∼= Ĉ.

To see that the unstable locus is related to Ĉ, suppose we have a line bundle L ∈ P3 such

that π∗L is unstable. Then π∗L will have a destabilizing line subbundle M ⊂ π∗L of degree

one. By adjunction we get an injective map of locally free rank one sheaves π∗M ↪→ L and

for degree reasons we must have a short exact sequence

0→ π∗M → L→ Ot̃ → 0

for some point t̃ ∈ C̃. Writing M = A−1(p) for some line bundle of degree zero, we see

that Nmπ(L)⊗OC(−π(t̃)) = Nmπ(π∗A−1(p)) = A−2(2p). Since Nmπ(L) = OC(3p) we have

that A⊗2(p) = OC(π(t̃)). Thus (A, t̃) ∈ Ĉ and L = π∗(A−1(p))(t̃). In Lemma 3.2 below we

show that the map Ĉ → P3, (A, t̃) 7→ π∗(A−1(p))(t̃) is a closed embedding which gives the

identification Punss
3 = Ĉ.

Again we will write ε1 : Y1 → P3 for the blow-up map.

f1 is a morphism f1 : Y1 → X1 such that if L ∈ P3 is a point not on Punss
3 we have

f1(L) = π∗L. In Theoroem 3.6 the morphism f1 is constructed as the minimal resolution of

the rational map π∗(−) : P3 99K X1 and by construction is finite for a general spectral cover.

By Lemma 4.9 f1 has degree 8.
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E 1 ⊂ Y1 denotes the exceptional divisor, it is a P1-bundle

E 1 = P(NĈ/P3
)→ Ĉ.

In Theoroem 3.6 we will see that in fact

E 1
∼= Ĉ × P1,

where the second factor is naturally idenitified with the hyperelliptic P1 of C, that is it is

identified with the projective line P(H0(C, ωC)∨). We have a diagram

E 1

��

� � // Y1

��
C × P1 // X1

and in section 4 we will see that the map on the bottom factors as

C × P1 →Wob1 ↪→ X1

where the surface Wob1 is the wobbly divisor discussed in the next section, and the map

C × P1 →Wob1 is the normalization.

To understand the map

C × P1 = C × P(H0(C, ωC)∨)→ X1. (2)

in more concrete terms fix points (A, t) ∈ C and x ∈ P(H0(C, ωC)∨). Any non-split extension

of A−1(p) by A will be a stable rank two bundle with determinant OC(p), i.e. will give us a

point in X1. However the space of extensions of A−1(p) by A is canonically identified with

the space H0(C, ωC)∨. Indeed we have

Ext1(A−1(p), A) = H1(C,A⊗2(−p)) = H1(C,OC(t− 2p))

= H1(C,OC(−t′)) = H1(C,OC)

= H0(C, ωC)∨,

(3)

where t′ is the hyperelliptic conjugate of t, and the identificationH1(C,OC(−t′)) = H1(C,OC)

is induced by the natural inclusion of sheaves OC(−t′) ⊂ OC .

With this picture in mind we can now describe the map (2). It sends a point ((A, t), x) ∈
C × P(H0(C, ωC)∨) to the vector bundle E ∈ X1, where E is defined as the unique up to

isomorphism extension

0→ A→ E → A−1(p)→ 0
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which corresponds to the extension class x ∈ P(H0(C, ωC)∨) ∼= P(Ext1(A−1(p), A)) under

the identification (3).

Finally, note that the curve C embeds in C × P1 as the graph of the composition

C
sq // C

hC // P1,

with hC denoting the hyperelliptic map. It is easy to check that restricting the map (2) to

this embedded copy of C yields a closed embedding

ql : C � � // X1 ⊂ P5

of C in the intersection of two quadrics X1.

We conclude this subsection with the promised check that the curve Ĉ = C̃ ×C C embeds

in P3.

Lemma 3.2. The map

ıĈ : Ĉ → P3, (A, t̃) 7→ π∗(A−1(p))⊗OC̃(t̃). (4)

embeds the curve Ĉ inside P3. In particular E 1 = P(NĈ/P3
).

Proof. Suppose (A1, t̃1), (A2, t̃2) ∈ Ĉ. If these two points map to the same point in P3, then

we will have

(π∗A−1
1 )(t̃1) = (π∗A−1

2 )(t̃2). (5)

Squaring this identity and using the fact that A−2
i (π(t̃i)) = OC(p) for i = 1, 2 we get

OC̃ = (π∗A2
2)(−2t̃2)⊗ (π∗A−2

1 )(2t̃1)

=
(
π∗(A2

2(−π(t̃2))
) (
π∗(π(t̃2)− 2t̃2

)
⊗
(
π∗A−2

1 (π(t̃1)
) (
−π∗(π(t̃1) + 2t̃1

)
= OC̃(t̃1 + τ(t̃2)− τ(t̃1)− t̃2),

where, as usual, τ : C̃ → C̃ denotes the covering involution for the map π : C̃ → C.
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Thus either t̃1 + τ(t̃2) and τ(t̃1) + t̃2 are equal as divisors or t̃1 + τ(t̃2) and τ(t̃1) + t̃2

span a g12 linear system on C̃, that is t̃1 + τ(t̃2) and τ(t̃1) + t̃2 are disjoint divisors in the

hyperelliptic linear system on C̃. This gives the following possibilities

Case 1. We have t̃1 = t̃2. In this case the equality (5) implies π∗A1 = π∗A2. Since π is

ramified, the pullback π∗ : Jac0(C)→ Jac0(C̃) is injective, and so A1 = A2.

Case 2. We have t̃1 = τ(t̃1) and t̃2 = τ(t̃2), and t̃1 ̸= t̃2, i.e. t̃1 and t̃2 are two distinct

ramification points of π : C̃ → C. This violates the identity (5) which implies that

OC̃(t̃1 − t̃2) = π∗ (A1 ⊗ A−1
2

)
.

However the line bundle OC̃(t̃1 − t̃2) can not be a pullback of a line bundle from C. Indeed,

every line bundle L on C̃ which is a pullback from a line bundle on C admits a τ -equivariant

structure which acts trivially on the fibers of L at all ramification points of π : C̃ → C. On

the other hand, if r̃ is a fixed point of τ , then τ preserves the ideal subsheaf OC̃(−r̃) and so

the locally free sheaf OC̃(−r̃) is equipped with a canonical τ -equivariant structure in which

τ acts as multiplication by (−1) on the fiber of OC̃(−r̃) at r̃ and acts as multiplication by 1

on the of OC̃(−r̃) at any fixed point different from r̃. By duality OC̃(r̃) has an equivariant

structure with the same exact property and so by tensoring we see that for two distinct

ramification points t̃1 and t̃2 we see that OC̃(t̃1 − t̃2) has a τ -equivariant structure in which

τ acts by multiplication by (−1) on the fibers at t̃1 and t̃2 and by multiplication by 1 on the

fibers at the other two ramification points. But the only other τ -equivariant structure on

this line bundle will be obtained by multiplying the given equivariant structure by the sign

charater ⟨τ⟩ → C×, τ 7→ −1. In either of these structures τ acts non-trivially on the fibers

of OC̃(t̃1 − t̃2) at two of the ramification points, and so this line bundle is not a pullback of

a line bundle on C. This shows that in this case equation (5) does not have a solution.

Case 3. We have that t̃1 + τ(t̃2) and t̃2 + τ(t̃1) are disjoint divisors in the hyperelliptic

linear system on C̃. To analyze this case better we first recall the basic diagram governing

the geometry of the curve C̃. To construct the spectral curve C̃ we start with a quadratic

differential β ∈ H0(C, ω⊗2
C ) having simple zeroes and we take C̃ ⊂ tot(ωC) to be the unique

double cover of C branched at the zeroes of β. Let hC : C → P1 be the hyperelliptic map.

Since ωC = h∗COP1(1) and it is easy to see that every section of ω⊗2
C is a pullback of a unique

section in OP1(2). Thus the divisor of β is the pullback of a degree two divisor y + z in
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P1, where y, z ∈ P1 are two distinct points, neither of which is a branch point of hC . In

particular, the degree 4 cover hC ◦ π : C̃ → P1 factors as C̃ → P1 → P1, where P1 → P1 is

the double cover branched at y + z, and C̃ → P1 is the hyperelliptic map on C̃ which we

will denote by hC̃ . This also implies that the covering involution τ : C̃ → C̃ for π : C̃ → C

commutes with the hyperelliptic involution σ : C̃ → C̃ and that the composition ρ = σ ◦ τ is

a fixed point free involution with quotient D = C̃/⟨ρ⟩ which is a smooth hyperelliptic curve

of genus 3. All these data can be organized in the commutative diagram

C̃

h
C̃

��

π

��
a

��

P1

hP1   

D

hD
��

C

hC��

P1

(6)

where the maps hC̃ , a, and π have covering involutions σ, ρ, and τ respectively.

Therefore the divisor t̃1+τ(t̃2) is a fiber of the map hC̃ if and only if t̃1 = σ◦τ(t̃2) = ρ(t̃2).

So in this case the identity (5) becomes

OC̃(t̃1 − ρ(t̃1)) = π∗(A1 ⊗ A−1
2 ). (7)

Note that the line bundle OC̃(t̃1−ρ(t̃1)) is a ρ-antiinvariant line bundle on C̃, i.e. as a point

in Jac0(C̃) it belongs to the subgroup

ker
[

Jac0(C̃)
1+σ //Jac0(C̃)

]
= ker

[
Jac0(C̃)

Nma // Jac0(C)

]
⊂ Jac0(C̃).

From the classical theory of Prym varieties [Mum74] of étale double covers, it is known that

ker(1 + ρ) = kerNma is a disconnected abelian subgroup with two connected components,

and a connected component of the identity equal to the (degree zero) Prym variety for the

pair (C̃,D):

Prym(C̃,D) = im
[

Jac0(C̃)
1−σ //Jac0(C̃)

]
.

Next consider the Abel-Prym map

apk
(C̃,D)

: Symk C̃ −→ kerNma ⊂ Jac0(C̃), d 7→ OC̃(d− ρ(d)).
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As explained in [Mum74] the image of this map lands in the identity component

Prym(C̃,D) = (kerNma)o ⊂ kerNma

if and only if k is even. Thus the image of Abel-Prym map

ap1
(C̃,D)

: C̃ −→ kerNma ⊂ Jac0(C̃), t̃ 7→ OC̃(t̃− ρ(t̃)),

is contained in the non-neutral component of kerNma and so the curve ap1
(C̃,D)

(C̃) ⊂ Jac0(C̃)

is disjoint4 from the two dimensional abelian subvariety Prym(C̃,D) ⊂ Jac0(C̃) inside

Jac0(C̃). But the configuration (6) of double covers implies that

Prym(C̃,D) = π∗ Jac0(C) ⊂ Jac0(C̃),

and hence the equation (7) has no solution.

This completes the analysis of the third case and shows that the map (4) is injective. To

check that the map (4) also separates tangent directions, consider the degree six version of

the Prym for (C̃, C):

P6 =
{
M ∈ Jac6(C̃)

∣∣∣ Nmπ(M) = ω⊗3
C

}
.

We have a natural multiplication-by-2 map

mult2 : P3 → P6, M 7→M⊗2,

which fits in a commutative diagram

Ĉ //

ŝq

��

P3

mult2

��
C̃ // P6

(8)

4In our setting we can see this fact directly without appealing to Mumford’s parity analysis [Mum74].

Indeed, by definition the curve D is the double cover of P1 branched at the 8 points which are the union

of the 6 branch points of hC : C → P1 and the two points y, z ∈ P1. Let Y denote the ramification point

of hD : D → P1, sitting over y ∈ P1. Then a−1(Y) consists of two distinct points ỹ, ρ(ỹ), which are both

ramification points of π : C̃ → C. But in Case 2. above we argued that the line bundle

OC̃(ỹ − ρ(ỹ))

cannot be a pullback from Jac0(C). Thus the point ap1
(C̃,D)

(t̃) must belong to the non-neutral component of

kerNma. Since ap
1
(C̃,D)

(C̃) is connected, this implies that ap1
(C̃,D)

(C̃) is entirely contained in the non-neutral

component.
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where the top horizontal map is the map (4), while the bottim horizontal map C̃ → P6 is

given by t̃ 7→ π∗(ωC(p))⊗OC̃(t̃− τ(t̃)).

Now observe that for any t̃ ∈ C̃ the divisor t̃ + σ(t̃) is in the hyperelliptic linear system

on C̃. By the same token ρ(t̃) + σ ◦ ρ(t̃) = ρ(t̃) + τ(t̃) is in the hyperelliptic linear system on

C̃. Thus we have a linear equivalence

t̃+ σ(t̃) ∼ ρ(t̃) + τ(t̃)

and so

OC̃(t̃− τ(t̃)) ∼= OC̃(ρ(t̃)− σ(t̃)) = OC̃(ρ(t̃)− τ(ρ(t̃))).

Hence the map C̃ → P6 factors through D. The induced map D → Jac0(C̃) is given by

s 7→ a∗OD(s)⊗ hC̃OP1(−1) for all s ∈ D. This shows that the map C̃ → P6 factors as

C̃ a // D aj // Jac1(D)
a∗(−)⊗h

C̃
OP1 (−1)⊗π∗(ωC(p))

// P6.

The map Jac1(D) → P6 is an étale double cover which is isomorphic to the quotient of

Jac1(D) by the the translation action of the 2-torsion line bundle defining the cover C̃ → D

[Mum74]. From the diagram (6) we see that this 2-torsion line bundle is given explicitly as

OD(Y−Z), where Y and Z are the two Weierstrass points in D that sit over y, z ∈ P1. Since

the Abel-Jacobi map aj : D → Jac1(D) is a closed embedding, this shows that the map

D → P6 embeds D − {Y,Z} and glues Y and Z into a node. If we write D for the iimage

of this nodal curve in P6 we get that the map C̃ → D ⊂ P6 is injective on tangent spaces.

But the map ŝq : Ĉ → C̃ is étale, and so the composition Ĉ → C̃ → D ⊂ P6 is injective on

tangent spaces. From the diagram (8) we see that this map also factors as Ĉ → P3 → P6 and

so the Ĉ → P3 is injective on tangent spaces. This completes the proof of the lemma.

3.3 The wobbly locus

We recall that Laumon defines the notion of very stable vector bundle as one that

does not admit a non-zero nilpotent Higgs field. Such bundles are automatically stable

[Lau88]. The first two authors therefore introduced the complementary notion of wobbly as

a semistable vector bundle that isn’t very stable. The wobbly locus Wob ⊂ X thus consists

of those polystable vector bundles that admit a nonzero nilpotent Higgs field.
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With indexation on the degree our notations for the wobbly loci are:

Wob0 ⊂ X0, Wob1 ⊂ X1.

These will be the supports for the parabolic structures and logarithmic poles of the Higgs

fields for the Higgs bundles (1).

In section 5 we show that the wobbly locus Wob0 is a divisor in the 2-theta space of

C comprising several familiar players in the classical geometry of the quadric line complex.

Specifically the divisor Wob0 in X0
∼= P3 has 17 irreducible components: the quartic Kummer

surface Kum ⊂ P3 and its 16 trope planes Tropeκ, labeled by the theta characteristics of C.

Thus

Wob0 = Kum ∪
[
∪κ∈Spin(C)Tropeκ

]
.

From the classical 166 configuration in the quadratic line complex [GH94] we know that each

trope plane Tropeκ is tangent to the Kummer surface Kum along a trope conic Cκ. Hence

Wob0 fails to be normal crossing along the trope conics {Cκ}κ∈Spin(C).

It is also easy to characterize the components of the wobbly divisor from the moduli

point of view. The Kummer surface Kum parametrizes S-equivalence classes of semistable

bundles with polystable representatives of the form a⊕a−1 for a ∈ Jac0(C). The trope plane

Tropeκ can be canonically identified with P(H1(C, κ−⊗2)) = P(H1(C, ω−1
C )) and parametrizes

all bundles that can be realized as non-split extensions 0→ κ−1 → F → κ→ 0.

Similarly, in section 4 we show that Wob1 ⊂ X1 is an irreducible divisor. Specifically, as

mentioned in the previous section, Wob1 parametrizes all vector bundles E ∈ X1 which arise

as non-split extensions 0 → A → E → A−1(p) → 0 for some point (A, t) ∈ C. In fact we

will see that Wob1 is the tangent developable of the map ql : C → X1 ⊂ P5, i.e. the union

of all projective tangent lines to points in the curve ql(C). This shows that Wob1 is also a

non normal crossings divisor in X1. It has the curve ql(C) as its curve of cusps.

3.4 Hecke correspondences

The big Hecke correspondence H → X1 × X0 × C is the moduli of quadruples

(E,F, (A, t), β) such that (E,F, (A, t)) ∈ X1 ×X0 × C and β : F ⊗ A−1 → E is a map that

fits in a short exact sequence

0 // F ⊗ A−1 β // E // Ct
// 0.
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We will view H either as a correspondence from X1 to X0 × C or as a correspondence from

X0 to X1 × C. We will label the respective projections as

H
p

��

q

""

X1 X0 × C

H
d

��

b

""

X0 X1 × C

(9)

where p = prX1
, d = prX0

, q =
(
prX0

, prC
)
, and b =

(
prX0

, prC
)
. In fact the moduli H is

a subvariety in the triple product X0 ×X1 × C. To see this, note that when β exists for a

given point (E,F, (A, t)) ∈ X0 ×X1 × C, then it is unique up to scale: OC(t), and hence t,

is determined as the ratio of determinants, and then for this given t, the Hecke fiber is a line

in one direction, a conic in the other which excludes any self-intersections.

In some parts of the discussion we will look at Hecke transformations supported at a single

point. In those situations we will write H(a) = pr−1

C
({a}) for the preimage of a = (A, t) ∈ C

in H and will view H(a) as a correspondence between X0 and X1.

The (big) Hecke correspondences appeared in Chapter 2, Sections 2.4 and 2.6, from the

synthetic viewpoint. We will review the comparison between the synthetic and modular

viewpoints in Section 6.3.

The big abelianized Hecke correspondence Ĥab is the blow-up of Y0 × Ĉ along a

copy of Ĉ × Ĉ. As we will see in section 7.2 the map

ıĈ×Ĉ : Ĉ × Ĉ � � // P2 × Ĉ

((A1, t̃1), (A2, t̃2)) //
(
π∗ (A2 ⊗ A∨

1 (p)) (t̃1 − t̃2), (A2, t̃2)
)
,

is a closed embedding. This embedding clearly preserves the second projections to Ĉ and

the strict transform of Ĉ×Ĉ in Y0×Ĉ is isomorphic copy of Ĉ×Ĉ embedded as a subvariety

of Y0 × Ĉ. The blow-up of Y0 × Ĉ along this copy of Ĉ × Ĉ is the big abelianized Hecke

correspondence Ĥab.
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The variety Ĥab maps to Y0 × Y1 × Ĉ and thus gives correspondences

Ĥab

pab

~~

qab

##

Y1 Y0 × Ĉ

Ĥab

dab

~~

bab

##

Y0 Y1 × Ĉ

There is also map

g : Ĥab → H,

such that altogether we get a map of abelianized and usual Hecke correspondences. The

formulas for the maps pab, qab, dab, bab, and g are given in section 7.2.

Again, most of the time, we will work with a single fiber of the abelianized Hecke corre-

spondence. If ã = (A, t̃) ∈ Ĉ is a fixed point we will focus on the fiber Ĥab(ã) = pr−1

Ĉ
(ã).

3.5 Spectral line bundles

In the abelianization strategy to the Hecke eigensheaf problem we use spectral data on C

to describe the eigenvalue Higgs bundle (E, θ) and spectral data on X0 and X1 to describe

the eigensheaf parabolic Higgs bundles (F0,•,Φ0) and (F1,•,Φ1). The spectral covers for

these spectral data are π : C̃ → C and f0 : Y0 → X0 and f1 : Y1 → X1 respectively.

Suppose (C̃ ⊂ T∨C,N ) is the spectral data for (E, θ), i.e. (E, θ) = (π∗N , π∗ (λ⊗ (−))),

where λ : C̃ → T∨C is the embedding, and N ∈ P2 is the spectral line bundle. We will use

N to construct the spectral line bundles L0 on Y0, and L1 on Y1 which will define our

parabolic eigensheaf Higgs bundles.

An appropriately normalized Fourier-Mukai transform on the Jacobian of C̃ (see sec-

tion 7.2 for the precise details of the normalization) sends the skyscraper sheaf ON ∈
Db

coh(Jac2(C̃)) to a line bundle on Jac2(C̃) with a vanishing first Chern class. We denote the

restriction of this line bundle to P2 ⊂ Jac2(C̃) by L0 and define a spectral line bundle L0

on the modular spectral cover f0 : Y0 → X0 by setting

L0 = (ε∗0L0) (E 0)⊗ f ∗
0OX0(2) in Pic(Y0).

Using the modular spectral data (Y0,L0) we can now define a meromorphic Higgs bundle

on X0 by

(F0,0,Φ0) := (f0∗L0, f0∗(α0 ⊗ (−))) ,
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where α0 : Y0 → T∨
X0

(log Wob0) is the tautological map, defined away from the tacnodes

of Wob0. We will later provide this with a parabolic structure to build a parabolic rank

8 bundle F0,•. Away from the non normal crossing codimension two strata of Wob0, the

parabolic structures are trivial; the bundle needs to have a parabolic structure on a blown-up

version of X0 at the tacnodes. The geometry of the blow-up and the construction of the

parabolic structure will be explained in section 5 and section 9.

In this analysis we will also see that the Higgs field of Φ0 : F0,• → F0,•⊗Ω1
X0

(log Wob0)

has logarithmic poles on both the trope planes and the Kummer surface. The residues are

nilpotent and have Jordan blocks as follows: two Jordan blocks of size 2 and four of size 1

over the tropes, and four Jordan blocks of size 2 over the Kummer.

To describe the spectral line bundle L1 on Y1 it is convenient to fix a point p̃ ∈ C̃ lying

over p. Recall the assumption that the spectral curve has two branches over p.

The choice of p̃ gives an isomorphism t−p̃ : P3

∼=→ P2 sending L to L(−p̃) and we can

pullback L0 by this isomorphism to define a line bundle L1 = t∗−p̃L0 on P3 with vanishing

first Chern class. With this notation we now set

L1 := ε∗1L1 ⊗OX1(1),

and

(F1,0,Φ1) := (f1∗L1, f1∗ (α1 ⊗ (−))) .

In section 4 this is going to be given a parabolic structure over Wob1, with parabolic weights

0 and 1/2, such that the associated graded bundle of grading 1/2 has rank 2. This means

that

F1,s = F1 for s ∈ [0, 1/2).

3.6 Orbits of the C×-action

An important aspect of the geometry of the Hitchin moduli space is the C×-action. In

this section, Higgs will denote a moduli space of Higgs bundles of some degree and fixed

determinant. In our situation, it means Higgs = Higgs0 or Higgs1. Some of this discussion

takes place in more general settings so the notation is left non-specific when possible.

An element z ∈ C× sends (E, θ) ∈ Higgs to (E, zθ). The fixed-point locus HiggsC
×

decomposes

HiggsC
×

= HiggsC
×,u ⊔ HiggsC

×,nu
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into the “unitary piece” that is just the moduli of bundles (= moduli of bundles equipped

with zero Higgs fields), i.e. HiggsC
×,u ∼= X, and the disjoint union of remaining pieces that

are moduli spaces of polystable Hodge bundles with nonzero Higgs field.

We recall (see [Sim92]) that a Higgs bundle is called a Hodge bundle if E =
⊕

Ep

and θ : Ep → Ep−1 ⊗ ωC . These correspond under the nonabelian Hodge correspondence

to complex variations of Hodge structure. In our case, we consider bundles of rank 2, so a

non-unitary Hodge bundle is a direct sum of two line bundles

E ∼= L1 ⊕ L0, θ : L1 → L0 ⊗ ωC .

We remark that a Hodge bundle with a nonzero Higgs field that is semistable but not stable

could be S-equivalent to a polystable unitary Hodge bundle, that is a to a Hodge bundle

with a zero Higgs field. This will happen in our case if Lp are both line bundles of degree 0.

Those don’t count as points in HiggsC
×,nu since the moduli space parametrizes S-equivalence

classes and the polystable representative would be the same bundle with trivial Higgs field.

Proposition 3.3. For the case of rank 2 Higgs bundles on a curve of genus 2 considered in

this paper, the non-unitary fixed point loci in Higgs0 and Higgs1 are described as follows:

(a) HiggsC
×,nu

0 is a disjoint union of 16 points parametrizing the uniformizing Higgs bundles

{(Eκ, θκ)}κ∈Spin(C), where Eκ = κ⊕κ−1, and θκ : κ→ κ−1⊗ωC = κ is an isomorphism;

(b) HiggsC
×,nu

1 is connected, isomorphic to the curve C that is a 16-sheeted étale covering

of C.

Proof. Suppose E ∼= L1 ⊕ L0 is a Hodge bundle. Polystability with nontrivial Higgs field

implies (since we are in the rank 2 case) that the Higgs bundle is in fact stable, and (L0, 0)

is a sub-Higgs bundle, so deg(L0) < (degE)/2. If E has degree 0 with determinant OC
then L0 = (L1)∨, degL0 < 0, and the only possibility is that deg(L0) = −1, the Higgs field

θ : L1 → L0 ⊗ ωC is an isomorphism, and hence L1 = κ is one of the 16 square-roots of

the canonical bundle. If E has degree 1 with determinant OC(p) then E ∼= L ⊕ L−1(p),

degL ≤ 0, and θ : L−1(p)→ L⊗ ωC is a non-zero map. Therefore we must have degL = 0

and so the Higgs field θ ∈ H0(C,L⊗2(p)) has a single zero at some point t ∈ C, and we get

L⊗−2 ∼= OC(p− t). This corresponds to a point of the connected curve C.
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The Hitchin fibration h : Higgs → B = AN is equivariant for the C×-action, where

the weights of the action on the base are strictly positive, determined by the degrees of

the invariant polynomials on the Lie algebra or, equivalently, by the expression in terms of

sections of powers of ωC . In the present case, the Hitchin base is simply H0(C, ω⊗2
C ) so there

is a single weight 2.

Properness of the Hitchin fibration implies that if y ∈ Higgs is any point, then the limit

limz→0(zy) exists and is a C×-fixed point. This fixed point is a unitary Higgs bundle, i.e.

a semistable vector bundle with zero Higgs field, if and only if y = (E, θ) with semistable

underlying vector bundle E, and in this case limz→0(zy) = (E, 0). Let Higgssu ⊂ Higgsseu ⊂
Higgs denote the open subsets of Higgs bundles whose underlying vector bundle is stable or

semistable respectively. The limiting construction provides a regular map Higgsseu → X to

the moduli space of semistable bundles.

Over the open subset of stable bundles, the map that we will write as Higgssu → Xs may

be identified with the cotangent bundle

Higgssu ∼= T∨(Xs),

compatibly with C× actions, the one on the right being the scaling action on the total space

of the cotangent bundle. This identification preserves the symplectic structure [Hit87b], in

particular the fiber over any point of Xs is a Lagrangian subspace.

Let Xvs ⊂ X be the open subset of very stable bundles, and let Higgsvs be the open

subset of Higgs bundles whose underlying bundle is very stable. We have Higgsvs ⊂ Higgssu

and also Higgsvs ∼= T∨(Xvs).

The limiting map over the open subset Higgsseu provides a rational map

Higgs 99K X.

One may think of this in terms of broken orbits. Those are defined as maximal C×-invariant

subsets of the form

Z0 ∪ Z1 ∪ · · · ∪ Zk ⊂ Higgs

such that Z0
∼= A1 and Zi ∼= P1 for i = 1, . . . , k, provided with points Ii, Oi ∈ Zi (except I0)

such that Oi = Ii+1, where Oi corresponds to the origin and Ii to ∞ in Zi ∼= P1 (or just the

origin for Z0
∼= A1), such that everything is compatible with the C× action. The input point

y corresponding to 1 ∈ A1 = Z0 is mapped by the correspondence of the rational map, to

the output point Ok ∈ HiggsC
×,u. The intermediate points Oi = Ii+1 are non-unitary fixed
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points. The data needed to determine such a broken orbit consists of fixing the downward

or outgoing direction (see below) of the next orbit Zi+1 whenever the limiting point Oi is a

non-unitary fixed point. The process stops when we get to a unitary fixed point.

If we start at a general point yε nearby to y, the orbit of yε limiting to a unitary fixed

point, will be near to a broken orbit starting at y.

Let Q ⊂ Higgs be the complement of Higgsseu. It is the set of points y such that

limz→0(zy) ∈ HiggsC
×,nu. The limiting map provides a constructible map from Q to the

non-unitary fixed point set. In general, this will not be a regular map. However, in our case

there are not very many non-unitary fixed points so broken orbits have at most one break.

Points of Q are those having one break which is a single well-defined point of HiggsC
×,nu.

Lemma 3.4. In our case, the map y 7→ limz→0(zy) is a regular map from Q to the fixed-point

set HiggsC
×,nu.

Proof. In the general situation the map can be non-regular if there is a broken orbit with

two non-unitary fixed points joined by an orbit. However, in view of the description of

Proposition 3.3, this does not happen in our case.

In order to understand how broken orbits can work, or equivalently what their nearby

orbits could look like, we need to consider the local picture of Higgs at a fixed point. Assume

we are at a fixed point y that is a stable Higgs bundle, so it is a smooth point of Higgs. The

general theory of Bialynicki-Birula [BB73] tells us that the fixed point set is smooth at y.

The C×-action on Higgs determines an action of C× on its tangent space at the fixed point

y.

Lemma 3.5. The tangent space decomposes into pieces according to weights of the C×-

action:

Ty(Higgs) =
⊕

Ty(Higgs)
p

such that Ty(Higgs)
p is Serre-dual to Ty(Higgs)

1−p and in particular they have the same

dimension. The tangent space of the fixed point set is Ty(Higgs)
0. In our case, at a non-

unitary fixed point, the weights that occur are −1 and 2 in the case of Higgs0, and −1, 0, 1, 2

in the case of Higgs1.

Proof. The weights can be understood by thinking of the Hodge bundle associated to y as

being associated to a complex variation of Hodge structure V . The hermitian structure of V

(given by a flat but indefinite hermitian form) leads to a real structure on the VHS End0(V )
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of trace-free endomorphisms. Thus [Zuc79] the first cohomology group has a real Hodge

structure of weight 1:

Ty(Higgs) ∼= H1(C,End0(V )) =
⊕
p+q=1

T p,q

with T p,q = T q,p). This complex conjugation may be identified, using the real structure, with

Serre duality at the level of Dolbeault cohomology. The C×-action acts by weight p on the

piece T p,1−p.

More concretely if we write E =
⊕

Ep for the general case, then

Ty(Higgs)
p = T p,1−p = H1

[⊕
q

Hom(Eq, Ep+q)
[−,θ]−→

⊕
q

Hom(Eq, Ep+q−1)⊗ ωC

]

(where one should also include the trace-free condition but we didn’t put that in so as not

to complicate the notation). The complex is Serre-dual to itself with a shift by 1. The

tangent space of the fixed point set is the set of fixed points in the tangent space, as may

be seen by the linearization result to be mentioned shortly below. In our particular case,

the VHS at a fixed point has only two adjacent Hodge weights, so the VHS of trace-free

endomorphisms has Hodge weights (−1, 1), (0, 0) and (1,−1). Thus, the Hodge structure

on H1 has weights obtained by adding (1, 0) and (0, 1), namely (−1, 2), (0, 1), (1, 0) and

(2,−1). The C×-weights are therefore −1, 0, 1, 2. The piece of weight 1 is complex conjugate

or Serre-dual to the piece of weight 0, and this is the tangent space of the fixed point set.

Thus, in our case of Higgs0 this vanishes whereas for Higgs1 it has dimension 1. We see that

the piece of weight −1 has dimension 3 for Higgs0 and dimension 2 for Higgs1.

Define the incoming or upward directions to be the directions on which the weight is

> 0, and the outgoing or downward directions to be those on which the weight is < 0. The

general theory [BB73] of C× actions on complex manifolds tells us that there is an analytic

open neighborhood around a fixed point z that is isomorphic, as a complex manifold with

C×-action, to a neighborhood of the origin in the tangent space Ty(Higgs). In particular,

the fixed points, and incoming and outgoing manifolds are smooth and identified with the

corresponding subspaces of the tangent space. The incoming manifold is the local subset of

points whose limit as z → 0 is equal to the fixed point, whereas the outgoing manifold is the

local subset of points whose z →∞ is equal to the fixed point.
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The terminologies “upward” and “downward” come from Hitchin’s picture [Hit87a] of

the energy, or L2-norm of the Higgs field, as a Morse function on Higgs. We note that the

orbit structure of the C×-action has been identified, by work of Collier, Wentworth, Wilkin

and others, as being the same as the structure of flow lines for the gradient of the Morse

function [CW19, Wil20]. It is because of this picture that we call the incoming directions

“upward” (they are the directions where one goes upwards by following the gradient of the

energy function) and the outgoing directions “downward” (they go downwards following the

gradient of the energy function). The flow stops at the “bottom” which is the unitary fixed

point set, the moduli space of bundles with zero Higgs field which is obviously the minimum

for the L2 norm.

From Lemma 3.5 we see that the space of incoming directions (weights p > 0) is Serre

dual to the tangent of the fixed points plus the space of outgoing directions (weights p ≤ 0).

Thus, the space of incoming directions has 1/2 the dimension. In fact, each of the fibers of

the projection over a fixed point, is a Lagrangian subspace of the symplectic moduli space.

The space of outgoing directions, plus the fixed point directions, together form the tangent

space of the manifold of points that flow out of somewhere in that fixed point set. This is

locally (at a general point of the fixed point set) one of the components of the nilpotent cone

in Higgs, also a Lagrangian subspace.

In general, the space of directions that are outgoing from a given fixed point will have

dimension smaller than half, although it is also half the dimension if the fixed point set is

0-dimensional as is our case in Higgs0. Similarly, the total space Q of directions incoming

to the local piece of the fixed point set, will generally have dimension greater than half, but

again it is half if the fixed point set is 0-dimensional.

In general one will be considering a Prym variety P ⊂ Higgs that is a general fiber of the

Hitchin map. The rational map Higgs 99K X therefore provides a rational map P 99K X,

and to resolve it one should blow up Q∩P to get Y → P . The dimension of Q∩P is equal

to the dimension of the fixed point locus.

In our cases, for Higgs0 the dimension of Q is 3 and it is Lagrangian, while for Higgs1 the

dimension of Q is 4 and it fibers over C with fibers that are Lagrangian. The locus Q ∩ P
to be blown up has dimension 0 for P ⊂ Higgs0 and dimension 1 for P ⊂ Higgs1.

One can understand from the local description at the fixed point that a single blowing-up

will be sufficient in our case, yielding a morphism Y → X. We will denote the exceptional

divisor by E ⊂ Y . In principle, one can use the description of the C× action to understand

the resulting ramification of the map Y → X along E . We have chosen instead to give
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more direct proofs (Lemma 5.6, Proposition 5.12) that the map is simply ramified along the

exceptional locus.

In the general case when the C×-action can have a wider range of weights, and when

there can be multiply broken flow lines, understanding the birational transformation needed

to resolve the rational map, and understanding the resulting ramification, seem to be difficult

questions.

3.7 The logarithmic property

As before we will write X for the coarse moduli space of semistable rank two bundles on

C with fixed determinant d and Higgs for the moduli space of semistable Higgs bundles with

fixed determinant d. Recall that Higgs is equipped with an algebraic C×-action, scaling the

Higgs fields, i.e. z ∈ C× acts by (E, θ) 7→ (E, zθ). Note that with this definition the Hitchin

map h : Higgs → B becomes C×-equivariant once we equip B = H0(ω⊗2
C ) with a scaling

action of degree 2.

We will also keep using the notation HiggsC
×,nu ⊂ Higgs for the union of components

of the fixed point locus that are disjoint from X, and let Q ⊂ Higgs denote the incoming

variety to HiggsC
×,nu, that is

Q =
{

(E, θ) ∈ Higgs
∣∣∣ lim
z→0

(E, zθ) ∈ HiggsC
×,nu

}
.

In the degree 1 case, HiggsC
×,nu = C is an irreducible curve that is a 16-sheeted etale covering

of C, whereas in the degree 0 case HiggsC
×,nu consists of 16 distinct points.

In our situation, the fixed point locus has only one higher level, that is to say that the

limit for z → 0 along any outgoing direction at HiggsC
×,nu lies in X. This will no longer be

the case for higher genus or higher rank. It allows for some simplification.

Theorem 3.6. The subvariety Q is smooth and contained in the smooth locus of Higgs.

It coincides with the locus of polystable Higgs bundles whose underlying vector bundle is

un(semi)stable.

(a) Let H̃iggs denote the blow-up of Higgs along Q. Then this resolves the projection map

to X, in other words the rationally defined map Higgs 99K X extends to a morphism

f : H̃iggs→ X.
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(b) h̃ : H̃iggs → B denote the composition of the blow-up morphism H̃iggs → Higgs with

the Hitchin map. Let b ∈ B be a point corresponding to a smooth spectral curve C̃

and let Y = h̃
−1

(b) ⊂ H̃iggs be the fiber of h̃. Then Y is a smooth compact threefold

which is a blow-up of of the Hitchin fiber P = h−1(b) in a smooth center. The induced

map f := f|Y : Y → X is finite and maps each connected component of the exceptional

divisor of the blow-up Y → P onto some irreducible component of the wobly divisor

Wob ⊂ X.

Proof. Note that Higgs is smooth in the degree 1 case. In the degree 0 case, the singular

locus consists of the reducible Higgs bundles. A point of HiggsC
×,nu is a Hodge bundle, for

which the underlying bundle is of the form κ⊕ κ−1 with κ⊗2 = ωC and for which the Higgs

field sends κ−1 to zero, and maps κ isomorphically to κ−1 ⊗ ωC . Such Higgs bundles are

stable. The stable locus in Higgs is C×-invariant and contains a neighborhood of HiggsC
×,nu

so it contains Q. In the previous section we checked that Q itself is smooth as it is a rank

three affine bundle over C in the degree one case and is the disjoint union of 16 copies of a

three dimensional affine space in the case of degree zero. This proves the first statement.

For the second statement we will first deal with the degree zero case. For this discussion

we will write Higgs0, Q0, X0, etc. By definition and by the stability comment in the previous

paragraph we have that a Higgs bundle (E, θ) belongs to Qo if and only if limz→0(E, zθ)

exists as a stable Higgs bundle and is isomoprphic to(
κ⊕ κ−1,

(
0 0

γ 0

))
, with γ : κ

∼= // κ−1 ⊗ ωC .

But if (E, θ) is a semistable Higgs bundle for which E is not semistable as bundle, then we

can find a saturated line sub bundle κ ⊂ E, such that deg κ > degE/2, and θ(κ) ̸⊂ κ⊗ ωC .

Since E has trivial determinant, this means that E fits in a short exact sequence

0→ κ→ E → κ−1 → 0, (10)

deg κ > 0, and the composite map

κ �
� // E

θ // E ⊗ ωC // κ−1 ⊗ ωC (11)

is non-zero. Thus we must have 0 < deg κ ≤ g(C) − 1 = 1, Since (11) is a non-zero map

between two line bundles of degree 1, it must be an isomorphism and κ must be a theta

characteristic on C. In particular this implies that θ(κ)⊗ω−1
C ⊂ E is a line sub bundle which
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projects isomorphically onto κ−1. Thus the short exact sequence (10) is split and we have

an isomorphism

(E, θ) ∼=

(
κ⊕ κ−1,

(
α β

γ −α

))
, (12)

where α ∈ H0(C, ωC), β ∈ H0(C, ω⊗2
C ), and γ : κ

∼= // κ−1 ⊗ ωC . The shape of the Higgs field

in (12) can be rigidified somewhat by choosing the identification E ∼= κ⊕κ−1 more carefully.

Indeed, the automorphisms of the bundle κ⊕ κ−1 that act trivially on the determinant line

bundle are given by matrices of the form(
a b

0 a−1

)
, a ∈ C×, b ∈ H0(C, ωC).

Conjugating by the authomorphism

(
u −u−1α

0 u−1

)
with u2 = γ, we get an isomorphism

(E, θ) ∼=

(
κ⊕ κ−1,

(
0 −b
1 0

))
where b = −α2−γβ = h(E, θ) ∈ B is the quadratic differential defining the spectral cover of

(E, θ). This shows that the locus Higgsunss0 ⊂ Higgs0 of all trivial determinant Higgs bundles

whose underlying vector bundle is not semi-stable is the disjoint union Higgsunss0 = ⊔κHiggsunss0,κ

of the 16 Hitchin sections

Higgsunss0,κ =

{ (
κ⊕ κ−1,

(
0 −b
1 0

)) ∣∣∣∣∣ b ∈ H0(C, ω⊗2
C

}
of h : Higgs0 → B = A3 labeled by the theta characteristics κ ∈ Spin(C). Also, for any

(E, θ) ∼=

(
κ⊕ κ−1,

(
0 −b
1 0

))
∈ Higgsunss0

we have that whenever z ̸= 0 the Higgs bundle (E, zθ) is isomorphic to(
κ⊕ κ−1,

(
0 −z2b
1 0

))

where the isomorphism is given by conjugation by

(
u 0

0 u−1

)
, with u2 = z. Thus

lim
z→0

(E, zθ) =

(
κ⊕ κ−1,

(
0 0

1 0

))
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and so Higgsunss0 ⊂ Q0. Since both the un(semi)stable locus and the incoming variety are

conical Lagrangian submanifolds which intersect at the 16 non-unitary C×-fixed points, we

get that Higgsunss0 = Q0. To shorten the notation we will write Q0,κ = Higgsunss0,κ for the

connected components of this locus.

Note that each of the Hitchin sections Higgsunss0,κ has a trivial normal bundle inside Higgs0.

Indeed, the Hitchin sections intersect each Hitchin fiber at smooth points, and by the La-

grangian property we have that the normal bundle of Higgsunss0,κ inside Higgs0 is isomorphic

to the cotangent bundle of Higgsunss0,κ . Since Higgsunss0,κ
∼= B = H0(C, ω⊗2

C ) we conclude that

NHiggsunss0,κ /Higgs0
∼= OHiggsunss0,κ

⊗ H0(C, ω⊗2
C )∨. This implies that when we form the blow-up

H̃iggs0 = BlQ0Higgs0 the exceptional divisor Q̃0 is a product

Q̃0 = Q0 × P
(
H0(C, ω⊗2

C )∨
) ∼= ⊔

κ∈Spin(C)

Q0,κ × P2.

The question of whether the rational map Higgs0 99K X0 extends to a morphism

H̃iggs0 → X0 is local near Q0 ⊂ Higgs0. Therefore to check that this happens it suffices

to check that if S is a scheme and (SE, Sθ) is a relative semistable Higgs bundle on S × C
that gives an étale map S → Higgs0, then the composite rational map S → Higgs0 99K X0

extends to a morphism S̃ = S ×Higgs0 H̃iggs0 → X0. This is equivalent to checking that the

vector bundle SE|(S−Q0)×C has a canonical (unique up to unique isomorphism) extension to a

vector bundle S̃E on S̃×C which is semistable of trivial determinant on all geometric fibers

over S̃.

As a first approximmation to S̃E one can take the pullback

S̃Enaive := (S̃ × C → S × C)∗
(
SE
)
.

This is a rank two vector bundle on S̃ × C which has trivial determinant on all geometric

fibers over S̃ and is semistable on all geometric fibers over points in S̃−Q̃0 = S−Q0. However

by construction the restriction of S̃Enaive to {ỹ}×C for any closed point ỹ ∈ Q0,κ× P2 ⊂ Q̃

is isomorphic to κ⊕ κ−1 which is unstable.

To construct the actual bundle S̃E let SQ0 = S ×Higgs0 Q0 and let S̃Q0 be the Cartier

divisor S̃ ×S (SQ0), i.e. the exceptional divisor of the blow-up S̃ → S. We will also write
SQ0,κ = ×Higgs0Q0,κ and S̃Q0,κ = S̃ ×S (SQ0,κ) for the connected components of these loci.

Shrinking S if necessary we get that the restriction of the bundle S̃Enaive to (S̃Q0,κ)×C
has a natural surjective homomorphism to pr∗C κ

−1 which is unique up to multiplication by

an invertible function on SQ0,κ. Define S̃E to be the Hecke transform of S̃Enaive centered at
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this homomorphism, i.e.

0 // S̃E // S̃Enaive //
⊕

κ∈Spin(C)

(
S̃Q0,κ × C → S̃ × C

)
∗

pr∗C κ
−1 // 0.

Note that scaling the last map in the sequence by an invertible function on SQ0 does not

change the kernel sheaf S̃E and so it is canonically defined as a subsheaf in S̃Enaive.

The fact that S̃E is a relative semistable bundle on S̃ ×C now comes from the following

Lemma 3.7. Suppose ỹ = (y, e) ∈ S̃Q0,κ = (SQ0,κ)× P(H0(ω⊗2
C )∨). Then the vector bundle

S̃E|{ỹ}×C is isomorphic to the semi-stable rank two bundle Ee which is the extension

0→ κ−1 → Ee → κ→ 0

corresponding to the extension class e ∈ P(H0(ω⊗2
C )∨) = P(H1(ω−1

C )) = P(H1(κ⊗−2)).

Proof. Since e ∈ P(H1(κ⊗−2)) the extension Ee is non-split. But if L ⊂ Ee is a destibilazing

line sub bundle, then degL > 0 and hence as subsheaves in Ee we must have L ∩ κ−1 = 0

this shows that L maps injectively into κ, and hence we will have degL = 1 and L ∼= κ.

This will split the extension which is contradiction. This proves that Ee is semi-stable.

The identification of S̃E|{ỹ}×C and Ee is a general fact in deformation theory which we

explain next. Suppose S is the spectrum of a DVR with uniformizer x and closed point

o ∈ S. Let E → S × C be an algebraic vector bundle and let E = E|{o}×C . Assume that E

fits in a short exact sequence

0 // A ı // E
ȷ // B // 0 (13)

of vector bundles on C. Consider the Hecke transform

0→ E ′ → E → ({o} × C → S × C)∗ B→ 0.

Then the restriction E ′ = E ′|{o}×C is a vector bundle that fits in a short exact sequence

0 // B⊗OS×C(−{o} × C)|{o}×C //

∼= ��

E ′ // A // 0

B

(14)

Write

ksE : H0(S, TS)→ H1(C,End0(E)) ⊂ Hom(E,E[1])
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for the Kodaira-Spencer map of E . A direct calculation with either square zero extenions or

Čech cocycles gives now that the extension class of the short exact sequence (14) is

ȷ ◦ ksE(∂x) ◦ ı ∈ Hom(A,B[1]) = Ext1(A,B).

If in addition the sequence (13) is split, i.e. E = A⊕B, then we can write the Kodaira-Spencer

class ksE(∂x) as a block matrix

ksE(∂x) =

(
ηAA ηAB

ηBA ηBB

)
where ηAA : A → A[1], ηAB : B → A[1], ηBA : A → B[1], and ηBB : B → B[1]. In particular,

the extension class of (14) will be ηBA : A→ B[1].

Suppose next that S is the spectrum of a DVR which maps to Higgs0 so that the closed

point o ∈ S maps to a closed point y ∈ Q0,κ and the differential of the map S → Higgs0

maps ∂x to a tangent vector in TyHiggs0 which projects to the normal line e ⊂ H1(κ⊗−2). In

particular the map S → Higgs0 is given by a relative Higgs bundle (SE, Sθ) on S×C and the

component ηκ,κ−1 of ks(
SE)(∂x) is just equal to e. This concludes the proof of the lemma.

These considerations prove assertion (a) in the statement of Theorem 3.6 for moduli of

Higgs bundles of determinant d = OC . In fact, the above discussion also proves assertion (b)

in the trivial determinant case. Indeed, when d = OC the discussion above shows that the

connected component Q0,κ of the center of teh blow-up H̃iggs→ Higgs intesects the Hitchin

fiber h−1(b) = P2 = {L ∈ Jac2(C̃) | Nmπ(L) ∼= ωC} at a single point, namely the point

π∗κ ∈ P2. By the universal property of the blow-up it follows that Y is the blow-up of P2

at the 16 distinct points π∗κ, κ ∈ Spin(C). But the morphism P2 − {π∗κ}κ∈Spin(C) → X is

quasi-finite, and also by the construction in Lemma 3.7 the map f = f|Y : Y → X maps

the exceptional divisor E 0,κ ⊂ Y corresponding to the point π∗κ ∈ P2 isomorphically to

the plane in X = X0 parametrizing all semistable bundles which are non-trivial extensions

of κ by κ−1. Thus f : Y → X is everywhere quasi-finite and since it is proper, it is finite.

Furthermore note that the plane parametrizing non-trivial extensions of κ by κ−1 is precisely

the trope component Tropeκ of Wob0 which completes the proof of assertion (b) in this case

Finally we analyze the degree one case. Again we will write Higgs1, Q1, X1, etc.
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Lemma 3.8. Suppose (E, θ) ∈ Higgs1 is a semistable Higgs bundle, such that E is not

semistable as a bundle. Then

(E, θ) ∼=

(
A−1(p)⊕ A,

(
α β

γ −α

))

where A ∈ Jac0(C) satisfying A⊗2(p) = OC(t) for some t ∈ C, α ∈ H0(C, ωC), β ∈
H0(C, ωC(t′)), γ ̸= 0 ∈ H0(C,OC(t)), and t′ is the image of t under the hyperelliptic involu-

tion on C.

Proof. Let L ⊂ E be a saturated destabilizing line bundle, i.e. a saturated line subbundle

s.t. degL ≥ degE/2 = 1/2. Since (E, θ) is semistable as a Higgs bundle, L can not be

θ-invariant. In other words, we must have θ(L) ̸= 0 ⊂ E ⊗ ωC which is equivalent to

the composite map θ : L → E ⊗ ωC → (E/L) ⊗ ωC being non-zero. Thus we must have

1 ≤ degL ≤ 1 − degL + degωC = 3 − degL, i.e. degL = 1. Writing L = A−1(p) with

degA = 0 we get a non-zero (hence injective) map of locally free sheaves A−1(p) → A(2p)

and so we must have A⊗2(p) = OC(t) for some point t ∈ C, i.e. we must have that (A, t) ∈ C.

Also E fits in a short exact sequence

0→ A−1(p)→ E → A→ 0, (15)

and viewing θ as a map E ⊗ ω−1
C → we get a subsheaf θ

(
A−1(p)⊗ ω−1

C

)
⊂ E which maps

injectively into A via the map E → A. This implies that the extension (15) splits over the

subsheaf θ : A−1(p)⊗ ω−1
C ↪→ A. Since (A, t) ∈ C we have that A−1(p)⊗ ω−1

C
∼= A(−t) and

under this isomorphism the map θ gets identified with the natural inclusion A(−t) ⊂ A.

By the same token we have

Ext1(A,A−1(p)) = H1(C,A⊗−2)(p)) = H1(C,OC(2p− t)) = H1(C,OC(t′)),

while

Ext1(A(−t), A−1(p)) = H1(C,A⊗−2(t+ p)) = H1(C,OC(2p)) = H1(C,OC(t′ + t)),

and under these identifications the map

Ext1(A,A−1(p))→ Ext1(A(−t), A−1(p))

gets identified with the map on cohomology

H1(C,OC(t′))→ H1(C,OC(t′ + t)) (16)
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induced from the natural inclusion OC(t′) ⊂ OC(t′ + t).

From the long exact sequence in cohomology associated to the short exact sequence of

sheaves

0→ OC(t′)→ OC(t′ + t)→ Ot → 0

we see that the map (16) is surjective. on the other hand both H1(C,OC(t′)) and

H1(C,OC(t′ + t)) are one dimensional and so the map (16) is an isomorphism. This im-

plies that if an extension class in Ext1(A,A−1(p)) maps to zero in Ext1(A(−t), A−1(p)),

then this class is zero to begin with. Hence the extension (15) is split as claimed. The state-

ment about the matrix entries of θ under the decomposition E ∼= A−1(p) ⊕ A now follows

tautologically. Note that the entry γ is precisely the composite map

A−1(p) �
� // E θ // E ⊗ ωC // A⊗ ωC = A(2p)

and hence is non-zero. This finishes the proof of the lemmma.

Again, the shape of the Higgs field in the pair (E, θ) can be simplified by choosing the

isomorphism E ∼= A−1(p) ⊕ A more carefully. The global automorphisms of the bundle

A−1(p)⊕ A are all of the form (
a b

0 a−1

)

where a ∈ C×, and b ∈ H0(C,OC(t′)). Conjugating z ·

(
α β

γ −α

)
by

(
u 0

0 u−1

)
with u2 = z

we get (
zα z2β

γ −zα

)
.

Hence

lim
z→0

(E, zθ) =

(
A−1(p)⊕ A,

(
0 0

γ 0

))
,

and so the locus Higgsunss1 parametrizing stable Higgs bundles with unstable underlying vector

bundles is contained in the incoming variety Q1. By the explicit description both of these

are four dimensional irreducible subvarieties in Higgs1 and therefore Higgsunss1 = Q1.

Similarly to the degree zero case the identifictaion Higgsunss1 = Q1 is compatible both with

the Hitchin map h : Higgs1 → B and with the flow limit map Q1 → HiggsC
×,nu

1 . Indeed,if(
A−1(p)⊕ A,

(
α β

γ −α

))
∈ Higgsunss1 ,
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then the determinant of the Higgs field is b = −α2 − γβ. This shows that Higgsunss1 = Q1

surjects onto the Hitchin base B. In Section 3.2 we also checked that the fiber of Higgsunss1

over a general point b ∈ B of the Hitchin base is a copy of Ĉb = C ×C C̃b embedded in the

corresponding Hitchin fiber P3,b = h−1(b). Thus we can view the smooth variety Q1 as a

family of curves over B.

At the same time, the above caluclation of limz→0 zy for y ∈ Q1 identifies the limiting

flow map fl1 : Q1 → C with the natural projection of “forgetting the Higgs field”, i.e. for

every

y =

(
A−1(p)⊕ A,

(
α β

γ −α

))
∈ Q1

we have fl1(y) = A ∈ C.

With this observation at hand we can now compute the normal bundle of smooth subva-

riety Q1 ⊂ Higgs1 and the exceptional divisor of the blow up H̃iggs1 = BlQ1 Higgs1 → Higgs1.

Specifically we have

Lemma 3.9. (a) The normal bundle of Q1 ⊂ Higgs1 is given by

NQ1/Higgs1 = H0(C, ωC)∨ ⊗ fl∗
1sq

∗ωC .

Thus the exceptional divisor Q̃1 of the blow up H̃iggs1 → Higgs1 is

Q̃1 = P(NQ1/Higgs1) = Q1 × P(H0(C, ωC)∨) = Q1 × P1.

(b) Suppose π : C̃ → C is a smooth spectral curve. Let P3 denote the corresponding Hitchin

fiber, and let Ĉ ⊂ P3 be the correponding fiber of the map h|Q1 : Q1 → B. Then

NĈ/P3
= H0(C, ωC)∨ ⊗ ŝq∗π∗ωC ,

and the exceptional divisor E 1 ⊂ Y1 of the blow up ε1 : Y1 → P3 is given by

E 1 = Ĉ × P(H0(C, ωC)∨) = Ĉ × P1.

Proof. To prove (a) note that since Q1 is C×-stable, we have that the normal bundle

NQ1/Higgs1 is C×-equivariant. Furthermore, as we explained in the previous section, in our

situation there are no broken orbits in Q1 and therefore the normal bundle will be the pull-

back of the bundle of outgoing directions to the non-unitary fix point set HiggsC
×,nu

1 = C,

i.e.

NQ1/Higgs1 = fl∗
1

(
THiggs1

)(−1)

|C
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is the piece in the tangent bundle to Higgs1 of C×-weight −1 along the fixed point curve C.

Note that here C is embedded in Higgs1 by the map sending A ∈ C to the isomorphism class

of the Higgs bundle

(EA, θA) :=

(
A−1(p)⊕ A,

(
0 0

γ 0

))
with γ : A−1(p)→ A⊗ ωC being the unique (up to scale) non-zero map.

From the cohomological description of the tangent space of Higgs1 at a point we see that

the piece of C×-weight −1 of the tangent space at a point A ∈ C ⊂ Higgs1 is precisely the

image of the composition map

THiggs1,(EA,θA) → H1
(
C,End0(EA)

[θA,−]−→ End0(EA)⊗ ωC
)
→ H1(C,End0(EA)).

This image is precisely the matrix coefficient piece H1(C,A⊗2(−p)) ⊂ H1(C,End0(EA))

which gives a canonical identification

T
(−1)
Higgs1,(EA,θA) = H1(C,A⊗2(−p)).

Next recall, that A is a point in C precisely when A⊗2 ∼= OC(t − p) for some point t ∈ C.

Thus A⊗2(−p) is isomorphic to OC(−t′) where t′ is the hyperelliptic conjugate of t. But the

inclusion OC(−t′) ⊂ OC induces an isomorphism on H1’s and so we conclude that we get a

natural, unique up to scale, isomorphism

T
(−1)
Higgs1,(EA,θA)

∼= H1(C,OC). (17)

More precisely, the isomorphism (17) is the map induced on H1’s from the map of locally

free rank one sheaves A⊗2(−p) ∼= OC(−t′) ↪→ OC . Since both the isomorphism A⊗2(−p) ∼=
OC(−t′) and the inclusion OC(−t′) ↪→ OC are uniquely defined up to scale it follows that

isomorphism (17) is also unique up to scale.

This implies that we have a line bundle L on C so that

(T
(−1)
Higgs1

)|C
∼= H1(C,OC)⊗ L = H0(C, ωC)∨ ⊗ L.

To finish the proof of (a) we need to compute the line bundle L. But note that the restriction

of the normal bundle of Q1 ⊂ Higgs1 to a general fiber Ĉ of h|Q1 is the normal bundle of

Ĉ ⊂ P3. Since the map π̂ : Ĉ → C induces an injective map on Picard varieties, we only

need to compute π̂∗L. Thus (a) will follow immediately once we prove (b).
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To prove (b) fix a smooth spectral cover π : C̃ → C whose branch locus does not include

any Weirstrass point on C. Let P3 = Prym3(C̃, C) ⊂ Higgs1 denote the corresponding

Hitchin fiber and let Ĉ = Q1 ∩ P3 be the unstable locus in P3. Recall that Ĉ = C ×C C̃
and the embedding Ĉ ↪→ P3 is given by (A, t̃) 7→ π∗(A−1(p))(t̃). The tangent bundle to

P3 is trivial with fiber identified with the anti-invariants H1(C̃,OC̃)− ⊂ H1(C̃,OC̃) for the

covering involution of π : C̃ → C. By Serre duality we can identify H1(C̃,OC̃)− with the

anti-invariants in H0(C̃, ωC̃)∨. As C̃ → C is a spectral cover we have

H0(C̃, ωC̃) = H0(C̃, π∗ω⊗2
C )

= H0(C, π∗π
∗ω⊗2

C )

= H0(C, ω⊗2
C ⊕ ωC)

= H0(C, ω⊗2
C )⊕H0(C, ωC),

and so the anti-invariants in H0(C̃, ωC̃)∨ are identified intirinsically with

H0(C, ω⊗2
C ).

With this identification the normal sequence for the embedding Ĉ ⊂ P3 can be written as

0→ TĈ → H0(C, ω⊗2
C )∨ ⊗OĈ → NĈ/P3

→ 0,

where the first map is the Kodaira-Spencer map for the varying family of line bundles

π∗(A−1(p))(t̃) on C̃. Dually, the conormal sequence reads

0→ N∨
Ĉ/P3

→ H0(C, ω⊗2
C )⊗OĈ → ωC̃ → 0, (18)

where the last map is the composition

H0(C, ω⊗2
C )⊗OĈ

� � π∗
// H0(C̃, ωC̃))⊗OC̃

ev // ωC̃ .

But ωC̃ = π∗ω⊗2
C is a pull-back of O(2) from the hyperelliptic P1 and H0(C, ω⊗2

C ) is the

pullback of H0(P1,O(2)). Thus the conormal sequence (18) is a pullback of the canonical

evaluation sequence of vector bundles on the hyperelliptic P1

0 // K // H0(P1,O(2))⊗OP1 // O(2) // 0.

But this is a standard Koszul sequence and so we have a canonical identification

K = H0(P1,O(1))⊗O(−1).
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Equivalently we can note that by definition the bundle K has no cohomology and so is

isomorphic to a two dimensional vector space tensored with O(−1). Since the whole se-

quence is SL(2,C) equivariant, this two dimensional vector space has to be the fundamental

representation as claimed.

Altogether we get that

N∨
Ĉ/P3

= H0(P1,O(1))⊗ ŝq∗π∗h∗CO(−1) = H0(C, ωC)⊗ ŝq∗π∗ω−1
C

which finishes the proof of part (b) and the lemma.

Again, the question of whether the rational map Higgs1 99K X1 is resolved by blowing up

Q1 ⊂ Higgs1 is local near Q1. Similarly to the degree zero case it suffices to check that if S

is a scheme and (SE, Sθ) is a relative semistable Higgs bundle on S ×C, which corresponds

to an étale map S → Higgs1, then the composite rational map S → Higgs1 99K X1 extends

to a morphism S̃ = S ×Higgs1 H̃iggs1 −→ X1. Thus we must show that the vector bundle
SE|(S−Q1)×C has a canonical extension to a vector bundle S̃E on S̃ × C which is semistable

and of determinant OC(p) on all geometric fibers over S̃.

Let SQ1 = S×Higgs1 Q1 and let S̃Q1 = S̃×
H̃iggs1

Q1 denote the exceptional divisor for the

blow-up S̃ → S. Shrinking S if necessary we can assume without loss of generality that the

restriction of SE to SQ1 × C is a direct sum

SE =
(
SA
)−1

(pr∗C p)⊕
(
SA
)

where SA denotes the pullback

SA =

(
SQ1 × C // Q1 × C

fl1×id // C × C
)∗

A

of the normalized Poincaré line bundle A → C × C, which is uniquely characterized by the

conditions A{A}×C ∼= A for all A ∈ C, and AC×{p}
∼= OC .

Writing S̃A for the pullback line bundle

S̃A =
(
S̃Q1 × C → SQ1 × C

)∗
SA

we can repeat the reasoning we used in the degree zero case we define S̃E to be the Hecke

transform

0 // S̃E //
(
S̃ × C → S × C

)∗ (
SE
)

//
(
S̃Q1 × C → S̃ × C

)
∗

(
S̃A
)

// 0.
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By the calculation in the previous lemma we see that the fiber of the normal bundle to Q1

at a point (E, θ) with E = A−1(p)⊕ A are precisely the parametrizing the extension space

Ext1(A−1(p), A) = H1(C,A⊗2(−p)) = H1(C,OC(−t′)) = H1(C,OC).

Suppose now that S is the spectrum of a DVR which maps to Higgs1 so that the closed

point o ∈ S maps to y = (E, θ) ∈ Q1 with E = A−1(p) ⊕ A, and such that the differential

of S → Higgs1 maps the tangent vector ∂x to a normal vector e ̸= 0 ∈ H1(C,OC(−t′)) =

H1(C,OC). Again the map S → Higgs1 is given by a relative Higgs bundle (SE, Sθ) on

S × S for which the lower left corner of the matrix representing the Kodairra-Spencer class

ks(
SE)(∂x) is equal to e. The deformation theory calculation in Lemma 3.7 now implies that

the bundle S̃E|{[e]}×C is the extension of A−1(p) by A given by the class e. This showas that

for every e the bundle S̃E|{[e]}×C is stable and completes the proof of the Theorem 3.6(a) in

the case of Higgs bundles with determinant d = OC(p). We have also proven Theorem 3.6(b)

in this case. Indeed, in Lemma 3.9(b) we saw that Y = Y1 is the blow-up of P3 centered at

a copy of Ĉ ⊂ P3. Thus Y is a smooth projective threefold. Furthermore, Lemma 3.9(b)

and the discussion that follows immediately the proof of Lemma 3.9 we see that the map

f = f|X : Y → X sends the exceptional divisor E 1 onto the wobbly divisor Wob1 ⊂ X1 and

the map f1 : E 1 →Wob1 factors as a composition E 1 = Ĉ × P1 → C × P1 →Wob1, where

Ĉ × P1 → C × P1 is the natural double cover, and C × P1 → Wob1 is the normalization

map. In other words, in this case E 1 and Wob1 are irreducible and f|E1 : E 1 → Wob1 is a

double cover. Similarly to the degree zero case this implies that f : Y → X is quasi-finite

everywhere and hence is finite since it is a proper map. The theorem is proven.

3.8 The main construction

The description of the resolution in Theorem 3.6 shows in particular that the exceptional

divisor of the blowup maps onto the wobbly locus in the moduli of bundles. This allows us to

understand the relationship between the moduli of Higgs bundles and the cotangent bundle

of the moduli of vector bundles not only over the very stable locus but also in codimension

one in the stable locus, i.e. over the generic point of the wobbly divisor.
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Let Q̃ ⊂ H̃iggs denote the exceptional divisor, that is - the inverse image of Q. Recall

that we have a natural morphism

ψ : T∨X → Higgs

inducing an isomorphism on dense open subsets.

Let Wobsing denote the singular locus of the wobbly divisor Wob, and set

X◦ := X −Wobsing, Wob◦ := Wob ∩X◦ = Wob−Wobsing.

We note that Wob◦ ⊂ X◦ is now a smooth divisor.

Let H̃iggs◦ := f−1(X◦) ⊂ H̃iggs and let Q̃◦ be the intersection of Q̃ with H̃iggs◦. With

this notation we now have

Proposition 3.10. Let T∨X◦(log Wob◦) denote the total space of the locally free sheaf

Ω1
X◦(log Wob◦). There is a commutative diagram

T∨X◦(log Wob◦)
ψlog

//

&&

H̃iggs◦

f||
X◦

such that the map ψlog coincides with ψ over a dense open subset, and such that ψlog maps

the zero-section of T∨X◦(log Wob◦) isomorphically to Q̃◦.

Proof. This follows tautologically from the Hecke description of the families of Higgs bundles

describing the map f over the exceptional Q̃ that we gave in the proof of Theorem 3.6.

The construction: Again we write Higgs for the moduli space od Higgs bundles of de-

terminant d = OC(k · p) where k isfixed to be either 0 or 1. Let h : Higgs → B denote

the corresponding Hitchin map and let b ∈ B be a general point in the Hitchin base. Con-

cretely, choose b so that the correspondng spectral cover π : C̃ = C̃b → C is smooth and

unramified above the Weierstrass points of C. Write P = h−1(b) for the corresponding fiber

of the Hitchin map. Then P is smooth, and isomorphic to the Prym variety of the cover

C̃ → C. Let Y denote the pullback of P in the blown up moduli space H̃iggs. Then Y is
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a smooth projective threefold, which by Theorem 3.6 is obtained by blowing up P in the

smooth subvariety P ∩Q which in the case of degree zero consists of 16 points - the 16 line

bundles {π∗κ}κ∈Spin(C) and in the case of degree one is a copy of the curve Ĉ. Furthermore

from the proof of Theorem 3.6(b) we see that the restriction f := f|Y : Y → X is a finite

morphism which maps the exceptional divisor in Y onto a union of components of the wobbly

divisor in X. In the degree zero case the exceptional divisor obtained by blowing up the

point π∗κ ∈ P maps birationally onto the trope plane Tropeκ ⊂ Wob0 ⊂ X0 labeled by the

theta characteristic κ. In the degree one case the exceptional divisor obtained by blowing up

Ĉ ⊂ P maps two-to-one onto the wobbly divisor Wob1 ⊂ X1. Recall also that as explained

in the introduction, the finite morphism f : Y → X has degree 23g(C)−3 = 8.

Definition 3.11. Let Ω1
X(log Wob)+ denote the unique reflexive sheaf on X whose restriction

to X◦ is the vector bundle Ω1
X◦(log Wob◦).

If we let j◦ : X◦ ↪→ X, then we can set more precisely

Ω1
X(log Wob)+ :=

(
j◦∗Ω1

X◦(log Wob◦)
)∨∨

.

Note that Ω1
X(log Wob)+ is locally free over X◦ and there it is equal to Ω1

X◦(log Wob◦).

Let L be a line bundle on Y . Then set V := f∗(L). It is a rank 8 vector bundle on X. It

has a meromorphic Higgs field coming from the fact that a dense open subset of Y may be

identified with a subvariety of T∨X via the inverse to ψ.

Corollary 3.12. Under the main construction V = f∗(L) comes equipped with a meromor-

phic Higgs field which comes from a morphism

Φ : V → V ⊗ Ω1
X(log Wob)+.

Viewed as a sheaf with operators, V has no nontrivial Φ-invariant subsheaves.

Proof. Since Ω1
X(log Wob)+ is defined as a reflexive hull, it suffices to see this over X◦, and

there it comes from the commutative diagram of Proposition 3.10.

The spectral variety of Φ is birational to the covering f : Y → X, and this is irreducible,

so there can be no Φ-invariant subsheaves of V , indeed such a subsheaf would correspond to

a nontrivial decomposition of Y as a union of closed subsets.
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3.9 Nonabelian Hodge outside codimension 2

In Corollary 3.12, we are not able to say that we construct a “logarithmic Higgs field”

because the divisor Wob does not have normal crossings. The objective of this section is

to investigate how the data of a logarithmic Higgs bundle defined outside of codimension 2

determines a local system by the nonabelian Hodge correspondence. We will also include

parabolic structures.

In this section we consider a general variety X, a divisor W , and an open subset X◦ ⊂ X

complement of a closed subset of codimension ≥ 2, such that W ◦ := W ∩X◦ is smooth.

Suppose we are given a reflexive sheaf V over X that is locally free over X◦, and a

parabolic structure for V along W ◦, denoted V•. Suppose Φ : V → V ⊗ Ω1
X(logW )+ is an

operator with values in the sheaf of differentials that is the reflexive extension of Ω1
X◦(logW ◦)

as defined previously. We suppose that the residues of Φ along components of W ◦, acting

on the parabolic associated graded pieces, are nilpotent.

Consider a projective morphism g : Z → X and let Z◦ := g−1(X◦). Suppose D ⊂ Z is

a simple normal crossings divisor such that D◦ := D ∩ Z◦ contains g−1(W ◦). The following

statement is a recasting of Mochizuki’s extension theorem [Moc07b] to our setting.

Theorem 3.13. Suppose that g : (Z,D) → (X,W ) exists as above, and suppose that there

exists a semistable logarithmic parabolic Higgs sheaf F on (Z,D) whose restriction to Z◦ is

isomorphic to g∗((V•,Φ)|X◦). Suppose furthermore that cpar1 (F) = 0 and cpar2 (F) = 0. Then

there is a mixed twistor D-module E over X, with singularities along W , such that the re-

striction of E to X◦ corresponds to (V•,Φ)|X◦. Furthermore, E is unique up to isomorphism,

and the pullback g∗(E) corresponds to F .
If S ⊂ X◦ is any projective curve then the restriction of E to S is the mixed twistor

D-module that corresponds to the logarithmic parabolic Higgs bundle on a curve (V•,Φ)|S.

The mixed twistor D-module E has Betti realization that restricts to a local system onX−W ,

and this local system has quasi-unitary monodromy transformations around the components

of W ◦ such that the arguments of eigenvalues of the monodromy are the parabolic weights

and the unipotent part of the monodromy for each eigenvalue has the same Jordan form

as the residue of Φ on the corresponding graded piece. This comes from the restriction to

curves S ⊂ X◦.

Stated more compactly, the conclusion of the above theorem is that in order to construct

such a local system on X −W it suffices to know the parabolic structure and logarithmic
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Higgs field over an open subset X◦ ⊂ X whose complement has codimension two, provided

we can find some covering Z/X where the divisor has normal crossings and where there

exists an extension with vanishing parabolic Chern classes.

This is what we will be doing in our concrete situations.

3.10 Parabolic structures

In this subsection we discuss some aspects of parabolic structures. We refer to the

numerous available references for the general theory of parabolic bundles and their Chern

classes, including for example [Bis97b, Bis97a, Bod91, BH95, Bor07, BV12, Kon93, MY92,

IS08, IS07, Tah10, Tah13]. The present discussion will be tailored to our specific needs.

Suppose (X,D) is a pair consisting of a smooth variety and a reduced divisor. Let X◦ ⊂ X

be the complement of a subset of codimension ≥ 2, and let D◦ := D∩X◦ (with this notation

extended in a similar way to other objects). We assume that D◦ is smooth. That is notably

attained by taking X◦ to be the complement of the non-smooth locus of D, but one might

want to throw out other subsets of codimension ≥ 2 as well.

Define the notion of quasi-parabolic bundle on (X,D) to consist of a reflexive sheaf

V on X together with a filtration by strict subsheaves 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = V|D◦ of

the restriction of V to D◦. A parabolic bundle is a quasi-parabolic bundle together with

an assignment of real parabolic weights to the subquotients of the filtration over connected

components of D◦.

If D has simple normal crossings, we obtain by extension filtrations over each smooth

irreducible component of D. Assuming D has simple normal crossings, a locally abelian

parabolic bundle on (X,D) is a parabolic bundle such that V is locally free, the filtrations

on divisor components have locally free subquotients, and locally at any point there exists a

frame adapted to the filtrations of all divisor components passing through that point. If, in

addition, the parabolic weights are rational, then these objects correspond to vector bundles

on a root stack of (X,D) [Bis97b, Bod91, Bor07, BV12].

For the purposes of Theorem 3.13, we are interested in parabolic Chern numbers of the

form cpar1 · [ω]n−1 and cpar2 · [ω]n−2, and for those it suffices to know the parabolic structure

outside of a subset of codimension 3 in X. If D has normal crossings outside of codimension

3, any parabolic structure satisfies the locally abelian condition outside of codimension 3.

Our particular application is to the case where D = Wob is the wobbly divisor in X = X1,

and furthermore the parabolic weights are −1/2 and 0. We will be using a technique of
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pullback to a ramified covering to compensate for the fact that Wob has non-normal crossings

singularities, namely cuspidal singularities as well as nodes up to X-codimension 2. The fact

that there are only two distinct parabolic weights means that the filtration involves a single

subsheaf.

In this setting, the notion of parabolic structure can be simplified further. Given (X,D)

a crude quasi-parabolic structure consists of a reflexive sheaf V and a subsheaf V ′ ⊂ V
such that V is locally free on X◦, V ′ is also reflexive, and U := V/V ′ is a locally free sheaf

over W ◦. We let rU := rank(U) be the rank of this quotient.

A crude parabolic structure consists of a crude quasi-parabolic structure plus a

parabolic weight which is a single number α ∈ (0, 1]. To these data we associate a

parabolic vector bundle on (X◦,W ◦) whose weights are α for the associated-graded piece U ,

and 0 for other the associated-graded piece U ′ := V ′/V(−W ).

The filtered sheaf E◦· on X◦ is given by

E◦a = V ′, 0 ≤ a < α, E◦a = V , α ≤ a < 1.

Let Ω1
X(logD)+ be the reflexive extension to X of Ω1

X◦(logD◦) which is well-defined since

we are assuming that D◦ is smooth. This isn’t really the correct “sheaf of logarithmic

differentials” as we will confront when dealing with the tacnodes of the wobbly locus in the

degree 0 moduli space, but let us leave that discussion for later.

Say that a map Φ : V → V ⊗ Ω1
X(logD)+ is a pre-logarithmic Higgs field if it

satisfies Φ ∧ Φ = 0 generically. It is called nil-compatible with the parabolic structure if

Φ(V ′) ⊂ V ′ ⊗ Ω1
X(logW )+ and if the residue of Φ along D◦ is nilpotent. This nilpotence is

equivalent to demanding that the two associated-graded pieces of the residue, operating on

U and U ′, are nilpotent.

Given such a logarithmic Higgs field, then on the parabolic structure associated to

(V ,V ′, α) we obtain a parabolic logarithmic Higgs field with nilpotent residues.

The following construction shows how to get a crude logarithmic parabolic structure from

a spectral covering.

Theorem 3.14. Suppose f : Y → X is a finite morphism, and suppose we are given a fac-

torization through an inclusion ψ : Y ◦ → T∨X◦(logD◦) over an open subset X◦ complement

of a subset of codimension ≥ 2. Set Y ◦ := f−1(X◦) and so forth. Let B ⊂ Y be a divisor

such that B◦ = B ∩ Y ◦ is smooth and f(B) ⊂ D. Assume that ψ◦ maps the reduced inverse

image f−1(D◦)red to the zero-section of T∨X◦(logD◦). Let L be a line bundle on Y , and let
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L′ := L(−B). Then V := f∗(L) has a subsheaf V ′ := f∗(L). For any choice of parabolic

weight α, and letting Φ be the pre-logarithmic Higgs field determined by ψ, we obtain a crude

parabolic pre-logarithmic Higgs bundle (V ,V ′, α,Φ) on (X,D) with nilpotent residues.

Proof. Indeed, the quotient U := V/V ′ is isomorphic to f∗(L|B) and over D◦ this is a locally

free quotient of V|D. The fact that ψ maps Y ◦ to T∨X◦(logD◦) implies that Φ is logarithmic

over X◦, for both V and its subsheaf V ′. On the reflexive extensions this yields a crude

parabolic pre-logarithmic Higgs bundle. The condition on the zero-section insures that the

residues of Φ are nilpotent.

Terminology: In the situation of the theorem, we will call L′ the spectral line bundle

on Y , because in terms of the filtered sheaf we have

E0 = f∗(L′).

There are two main difficulties in the theoretical situation, both occasioned by the fact

that the wobbly divisor D = Wob generally does not have normal-crossings singularities:

• How to calculate effectively the parabolic c2 or the parabolic Bogomolov ∆-invariant?

• How to recognize if the Higgs field Φ will correspond to a genuinely logarithmic Higgs

field on a normal crossings resolution?

Over the degree 0 moduli space X0, the crude parabolic structure is going to be trivial.

The divisor Wob then represents the location of singularities of the Higgs field. In that

case, the strategy will be to follow the prescription in Theorem 3.13 to make a resolution

of singularities of the divisor Wob into a normal crossings divisor, and look for a parabolic

extension whose parabolic Chern class vanishes. In this case, the parabolic structures will

have more than two jumps so one needs to consider filtrations of bigger length.

For the degree 1 moduli space X1, we will be using a crude parabolic structure with

parabolic weight α = 1/2. This was found partly by computation and partly by guessing.

Our strategy for the degree 1 case consists of passing to a ramified covering in order to

remove the singularities of D = Wob or transform them to normal crossings. Although

the pullback of a parabolic bundle with arbitrary weight under a ramified covering may be

difficult to compute, in the case α = 1/2 we can give a description.

Proposition 3.15. Suppose V = (V ,V ′, α,Φ) is a crude parabolic pre-logarithmic Higgs

bundle on (X,D) with parabolic weight α = 1/2. Suppose g : Z → X is a Galois covering
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from a smooth variety, such that g is ramified of order 2 along B1 = g−1(D◦)red over D◦.

Then the pullback g∗(V) has trivial parabolic structure, so it corresponds to a reflexive sheaf

VZ with logarithmic Higgs field that is described in the following way. Let U := V/V ′, let

UZ := g∗(U), and use a superscript ()◦ to denote the restriction over X◦. Let UB◦ be the

restriction of U◦ to B◦ seen as a coherent sheaf on Z◦, also equal to U◦
Z/IB◦⊂Z◦U◦

Z. We have

an exact sequence

0→ V◦
Z → g∗V◦ → UB◦ → 0

and VZ is the reflexive extension of V◦
Z from Z◦ to Z. The logarithmic Higgs field Φ is

induced from that of g∗(V).

Proof. Follows immediately from the definition of a pullback of parabolic structures.

3.11 Pushforward statement

In order to calculate the Hecke transforms of the local systems that we are going to

construct, we need a Dolbeault method for calculating higher direct images. This is provided

by the theory of [DPS16], which is based in turn on the theory of twistor D-modules of

Sabbah and Mochizuki [Moc07a, Moc07b, Sab05].

We will need to extend the discussion of [DPS16] in order to apply it to the specific

situations encountered for the Hecke transform. Luckily, the fibers of the Hecke correspon-

dence are 1-dimensional, since we are dealing with moduli spaces of rank 2 bundles in this

paper. In order to identify the higher direct image local systems, it suffices to restrict to

curves in the target space, and to make things easy we can even use lines. Thus, the di-

rect image calculations are for maps from a surface to a curve, the main setup of [DPS16].

The present situation differs in that the horizontal divisor typically has simple ramification

points, whereas the hypothesis of [DPS16] was to have an etale horizontal divisor. Thus,

some work needs to be done in the direction of looking at a ramified cover of the base.

The full discussion will be deferred to Chapter 12. In this subsection we summarize the

basic knowledge to come out of that, as needed to treat the Hecke transforms. The setup

we discuss here is therefore closely tailored to the situations that are encountered in the

applications.

Suppose f : X → S is a projective morphism from a smooth surface to a smooth curve.

Suppose D ⊂ X is a reduced divisor, each of whose components dominates S. Classify the

points of (X,D) among the following kinds:
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3.11.1. Types of points of (X,D)

(a) Points in X −D where f is smooth;

(b) Points in X −D where the fiber of f has a simple normal crossing;

(c) Points on D where D is etale over S;

(d) Points on D where f is smooth and D is smooth with simple ramification over S;

(e) Points on D where f is smooth and D has a normal crossing such that both branches

are etale over S;

(f) Other points.

Suppose we are given a normal variety Σ that we will call (under a small abuse of notation)

the spectral variety, with a map ϖ : Σ → X, together with a line bundle L that we will

call the spectral line bundle and a 1-form α on the smooth loculs of Σ that we will call

the tautological form.

Set E0 := ϖ∗(L). We assume that α leads to a map Σ → T∨(X, logD), implying that

tautological form provides E0 with a Higgs field θ : E0 → E0 ⊗ Ω1
X(logD).

Notice here that the image of Σ in the logarithmic cotangent bundle might not be normal,

but we look at the normalization Σ and call that the spectral variety, whence the abuse of

notation mentioned above.

We will consider two cases: the nilpotent case, where the parabolic structure is trivial

and the Higgs field has a nilpotent residue along D coming from the ramification of Σ;

and the parabolic case where the parabolic weights are 0, 1/2. In this case, we suppose

E1/2 = ϖ∗(L(R)) where R ⊂ Σ is the part of the ramification divisor of Σ → X that sits

over D. Note that Σ will in general have other ramification that is not included in R, the

hypothesis is that all the ramification over D contributes to the parabolic structure.

The Higgs field is given by the spectral 1-form α ∈ H0(Σ,Ω1
Σ) We assume that α is

nonzero on normal vectors to R at general points. This implies, in the nilpotent case, that

the nilpotent residues of the Higgs field are nonzero, giving a size 2 Jordan block at each

point of R over a general point of D.
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Define the upper critical locus

C̃rit(X/S,E•, θ) ⊂ Σ

to be the closure of the zero-locus of the projection of α to a section of relative differentials on

X/S, from the open subset where Σ is smooth. The lower critical locus Crit(X/S,E•, θ)

is its image in X.

Let G denote the normalization of C̃rit(X/S,E•, θ), and let g : G → S be the induced

morphism.

Hypothesis 3.16. We make the following hypotheses, in addition to the basic assumptions

above.

• The lower critical locus Crit(X/S,E•, θ) does not contain any points of type (3.11.1(f));

• The spectral variety Σ is smooth, except that each point above a point of type

(3.11.1(e)) is an ordinary double point;

• If there are points of type (3.11.1(e)) then we are in the nilpotent case;

• The upper critical locus is smooth except over points of type (3.11.1(e)), in particular

its normalization G is a smooth curve.

• The restriction of the spectral 1-form α to the vertical direction in Σ over a point of

type (3.11.1(d)) is nonzero.

• At each ordinary double point over a point of type (3.11.1(e)), the curve G has two

smooth branches whose tangent vectors are distinct.

Let Q := (G ∩ R) be the divisor in G that is the intersection with R. The hypothesis

that α is nonzero in the vertical direction at points of type (3.11.1(d)) implies that G is

transverse to R at those points, so Q is reduced at such points (see Lemma 12.9).

In practice, G will only meet R over points of type (3.11.1(d)) or (3.11.1(e)): in the

nilpotent case that comes from constancy of the Jordan form of the residue of the Higgs field

along D, while in the parabolic case it is a property of our setup, see Lemma 9.6. We can

however state the pushforward property without including such an hypothesis.
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Theorem 3.17. Assume the basic hypotheses explained at the start, assume that we are

either in the parabolic or nilpotent cases as described above, and assume the hypotheses 3.16.

Then, the parabolic Higgs bundle (F•,Φ) on S corresponding to the middle direct image of

the perverse sheaf associated to (E•, θ) has the following descriptions depending on the case.

—In the parabolic case, F• has trivial parabolic structure and

F0 = g∗
(
L|G ⊗ j∗ωX/S ⊗OG(Q)

)
.

—In the nilpotent case, F• has a parabolic structure with weights 0, 1/2 and contains a

parabolic subsheaf F ′
• ↪→ F•, that being an isomorphism away from the images of points of

type (3.11.1(e)), with

F ′
0 = g∗

(
L|G ⊗ j∗ωX/S

)
and

F ′
−1/2 = g∗

(
L|G ⊗ j∗ωX/S ⊗OG(−Q)

)
.

In particular, if F ′
• has parabolic degree 0 then F ′

• = F• and these give expressions for F•. In

both cases, the Higgs field on F0 comes from the differential form on G obtained by restricting

the tautological differential α from Σ.

3.12 Chern classes

For reference below, we recall here the required facts about Chern classes. We’ll almost

always be interested in what happens up to codimension two, so by convention—unless

otherwise specified—our formulas will be truncated at codimension two. Thus for example

we write

ch(E) = r(E) + c1(E) + (c1(E)2/2− c2(E).

In the other direction,

c2 = c21/2− ch2.

An important invariant is Bogomolov’s discriminant [Bog78, Bog94]

∆ =
1

2r
c21 − ch2 = c2 −

r − 1

2r
c21,

having the property that ∆(E ⊗ L) = ∆(E) for a line bundle E.

The same hold for parabolic Chern classes.
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Suppose π : Y → X is a map. Then the Grothendieck-Riemann-Roch formula says that

for a coherent sheaf L on Y we have

ch(π∗(L)) = π∗(td(Y/X) · ch(L)),

where the relative Todd class is

td(Y/X) = td(TY )π∗td(TX)−1

with

td(TY ) = 1 +
c1(TY )

2
+
c1(TY )2 + c2(TY )

12

and similarly for td(TX).

We will specialize to the main cases that arise in our study: projective space, the inter-

section of two quadrics in P5, and blow-ups of abelian varieties.

Projective spaces: Let us consider the case of projective space. Let H denote the hyper-

plane class on Pn, and as stated above by convention we truncate to codimension 2. The

Euler exact sequence

0→ OPn → OPn(1)n+1 → TPn → 0

gives

ch(TPn) = n+ (n+ 1)H +
n+ 1

2
H2

so

c1(TPn) = (n+ 1)H, c2(TPn) =
n2 + n

2
H2.

Thus
td(TPn) = 1 + c1/2 + (c21 + c2)/12

= 1 +
n+ 1

2
H +

3n2 + 5n+ 2

24
H2.

For X = P3 this gives

td(TX) = 1 + 2H +
11

6
H2.

Intersection of quadrics: Suppose X ⊂ P5 a complete intersection of two quadrics. Let

H also denote the restriction of the hyperplane class of P5 to X. The normal bundle of X

is NX/P5
∼= OX(2)2 so the exact sequence

0→ TX → TP5|X → NX/P5 → 0
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gives

ch(TX) = ch(TP5)− 2exp(2H)

= 5 + 6H + 3H2 − 2− 4H − 4H2

= 3 + 2H −H2.

We get

c1(TX) = 2H, c2(TX) = 3H2.

Thus,

td(TX) = 1 + c1/2 + (c21 + c2)/12

= 1 +H + 7H2/12.

Blow-ups of Pryms: Suppose P is a 3-dimensional abelian variety, so its tangent sheaf

has trivial Chern classes, and we let ε : Y → P be the blow-up along a smooth subvariety

A ⊂ P . Let E ⊂ Y denote the exceptional divisor. There are two cases of interest.

Suppose first A is a disjoint collection of a points. Then E is a disjoint collection of a

planes P2. A point y ∈ E corresponds to a tangent direction at the corresponding image point

ε(y) ∈ P , and the tangent vectors on Y at y are vectors that are constrained to map into

this tangent direction in Tε(y)P . Over E there is the universal subbundle OE(−1) = OE(E),

fitting into an exact sequence

0→ OE(E)→ ε∗TP|E → R→ 0

where the middle is a trivial bundle. Then, letting RY be R viewed as a coherent sheaf on

Y supported on E, we then have an exact sequence

0→ TY → ε∗TP → RY → 0.

We have

ch(RY ) = ch(ε∗TP)ch(OE)− ch(OY (E))ch(OE).

Now ch(ε∗TP) = 3 since the tangent sheaf of P is trivial of rank 3. The exact sequence

0→ O(−E)→ O → OE → 0

gives

ch(OE) = E − E2/2,
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so we get

ch(RY ) = (3− (1 + E + E2/2))(E − E2/2)

= 2E − 2E2.

Putting this into the other exact sequence we get

ch(TY ) = 3− 2E + 2E2.

We note that the shape of this formula is independent of the number a of points that were

blown up (but of course the full exceptional divisor E contains that information).

Turn now to the other case: when A is a smooth irreducible curve. The normal bundle

NA/P is a rank 2 vector bundle over A. Let δ denote the degree of the normal bundle, i.e.

the degree of its determinant line bundle. A point y ∈ E corresponds to a normal direction

to A at b(y), so as before the tangent vectors to Y at y are constrained to have image in

Tb(y)P that maps into this normal direction under the map TP|A → NA/P . Let OE(−1)

denote the tautological sub-bundle over E. It fits into an exact sequence

0→ OE(−1)→ ε∗NA/P → R→ 0

and as before, if RY denotes the corresponding coherent sheaf on Y supported over E, then

we have the exact sequence

0→ TY → ε∗TP → RY → 0.

The tautological subbundle is also the normal bundle to E in Y , thus OE(−1) = OE(E)

as in the previous case.

The rank 2 bundle NA/P over the curve A is determined, up to rational numerical equiv-

alence, by its degree that we’ll call δ.

Suppose G is an ample divisor class on P , then G · A is the degree of G restricted to A.

Working numerically, we can write

detNA/P ∼
δ

G · A
G|A

so ε∗NA/P , considered as a coherent sheaf on Y , is rationally numerically equivalent to the

expression (with a fractional divisor) (ε∗OY ( δ
G·AG)⊕OY )⊗OE. This gives

ch(ε∗NA/P) =

(
2 +

δ

G · A
G

)
ch(OE).
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Here we can truncate the expression on the left at codimension 1 because it is multiplied by

ch(OE) of rank 0.

Recall as above that ch(OE) = E − E2/2. Similarly ch(OE(E)) = E + E2/2 and from

the exact sequence,

ch(RY ) =

(
2 +

δ

G · A
G

)
· (E − E2/2)− E − E2/2

= E − 3

2
E2 +

δ

G · A
G · E.

From the other exact sequence and recalling that ε∗TP is trivial of rank 3 we get

ch(TY ) = 3− E +
3

2
E2 − δ

G · A
G · E.

The last term could perhaps more easily be understood as a sum of fibers: let fib denote the

numerical class of a fiber of the projection E → A, viewed as a codimension 2 class on Y .

We have (writing also G for its pullback to Y )

fib =
1

G · A
G · E

so we can also write

ch(TY ) = 3− E +
3

2
E2 − δfib.

we get

c1(TY ) = −E,

c2(TY ) = δfib− E2,

and
td(TY ) = 1 + c1/2 + (c21 + c2)/12

= 1− E/2 + δfib/12.

4 The degree one moduli space

For odd degree we have fixed the line bundle OC(p) to be the determinant, for the chosen

Weierstrass point p ∈ C. For purposes of the present section, X := X1 is the moduli space of

stable bundles E with det(E) ∼= OC(p). Similarly, Wob := Wob1 denotes the wobbly locus.

Recall that Higgs1 denotes the moduli space of Higgs bundles with determinant OC(p) and

trace of the Higgs field equal to zero.

Recall from Proposition 3.1 that the 2 : 1 spectral covering π : C̃ → C has four branch

points x, x′, y, y′ ∈ C such that x and x′ are opposite under the hyperelliptic involution, and
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y and y′ are opposite under the hyperelliptic involution. For a general point in the Hitchin

base, the resulting two points of the hyperelliptic P1 are general with respect to the choice

of C.

In this chapter, various notations such as X, Y,Wob etc. are used without the subscript

1 since we are talking about the degree 1 moduli space. For insertion into the rest of the

paper one should read X1, Y1,Wob1 and so on.

4.1 Geometry of the wobbly locus in degree one

We use the notations of subsections 3.1 and 3.7. In particular HiggsC
×,nu

1 denotes the

fixed point locus of the C×-action on Higgs1 and Punss denotes the unstable locus in P which

by Theorem 3.6 coincides with the intersection of Q ∩ P of P with the incoming variety

Q defined in subsection 3.7. The geometric description of these loci was already given in

subsections 3.1 and 3.7 but we record it again in the following Lemma for ease of reference.

Lemma 4.1. • HiggsC
×,nu

1 is equal to the curve C ⊂ Higgs1, the 16-sheeted etale covering

of C defined in subsection 3.1.

• If P is a generic Hitchin fiber corresponding to spectral curve C̃, then Punss = Q∩P ⊂
P is a smooth curve Ĉ that can be expressed as a fiber product

Ĉ = C̃ ×C C.

In particular, Ĉ is a 16-sheeted étale covering of C̃.

These curves have genera respectively

gC = 2, gC̃ = 5, gC = 17, gĈ = 65.

Proof. The spectral curve C̃ has genus 5 and is a smooth double cover C̃ → C ramified

over 4 points in two conjugate pairs. This follows from our running genericity assumption

requiring that C̃ is not ramified over any of the Weierstrass points of C. The Hitchin fiber

P ⊂ Higgs1 corresponding to such C̃ is the Prym variety P = P3 of line bundles on C̃ whose

direct image down to C is a rank 2 bundle of determinant OC(p).

The statement that HiggsC
×,nu

1 = C was already proven in Proposition 3.3 but we recall

the argument here for completeness. A fixed point that is in HiggsC
×,nu

1 (i.e. such that the

underlying vector bundle is not stable) is a Higgs bundle of the form (A⊕ A∨(p), θ), such

that θ : A∨(p)→ A⊗ ωC . Stability of this Higgs bundle means deg(A) ≤ 0 and existence of
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the map implies that deg(A) = 0. As ωC = OC(2p) this means that A⊗2 ∼= OC(t−p) for the

point t ∈ C where θ vanishes. This description provides an isomorphism HiggsC
×,nu

1
∼= C.

The incoming variety Q ⊂ Higgs1 consists of Higgs bundles (E, θ) such that

limt→0(E, tθ) ∈ HiggsC
×,nu

1
∼= C. In subsection 3.6 we saw that the limiting map Q → C is

well defined and has fibers isomorphic to A3. We claim that

Punss = Q ∩ P

has the structure

Ĉ = C̃ ×C C.

In particular, it is seen to be a genus 65 curve.

For a general Hitchin fiber the intersection Punss is smooth of dimension 1. A point of

Punss is by definition a line bundle U of degree 3 on C̃ such that π∗U has determinant OC(p)

but is unstable. Instability means that there is a sub-line bundle of degree 1 that we will

denote A∨(p) ↪→ π∗U . By adjunction we have π∗(A∨(p)) ↪→ U , and π∗(A∨(p)) has degree 2.

Thus, there is a unique point t̃ ∈ C̃ such that U = π∗(A∨(p))(t̃). If t denotes the image of t̃

in C, the determinant condition says that

A⊗−2(2p + t)⊗ ω−1
C
∼= OC(p).

Thus, A solves A⊗2 ∼= OC(t− p) and (A, t) is the corresponding point of C. This identifies

Punss with the image of Ĉ = C̃ ×C C under the map (4). But by Lemma 3.2 this map is a

closed embedding, and so we have Punss = Ĉ.

Remark 4.2. One can notice that the genera of the curves involved here are of the form

4k + 1. We do not know if that is significant or not.

Lemma 4.3. Let D denote the P1-bundle over C projectivization of the bundle of outgoing

directions. Then the map sending a point on C together with an outgoing direction, to the

limit in X of the resulting C×-orbit, provides a map D →Wob that is finite and generically

injective. Thus, D is the normalization of Wob.

Proof. Given a C×-fixed Higgs bundle (A⊕A∨(p), θ) corresponding to (A, t) ∈ C, the space

of outgoing directions is PExt1(A∨(p), A) which is by definition the fiber of D over (A, t).
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As we saw in Lemma 3.9(b) and we will see again by a different argument in Proposition

4.5 below, D ∼= C × P1. Each P1 fiber of D → C maps to the space of extensions which

is the general form of a line in X = X1. Both the lines and the horizontal C’s map to

positive degree curves, and an effective divisor on the product D is a positive sum of vertical

and horizontal ones, so any effective divisor on D maps to a positive degree curve in X, in

particular it is not contracted. For generic injectivity, we note that a general wobbly bundle

E has a one dimensional space of nilpotent Higgs fields and if we θ is any non-zero nilpotent

Higgs field, we get a well defined line subbundle A = ker θE and a realization of E as an

extension of A∨(p) by A. This determines a unque point in D which shows that the map

D → Wob has a rational section. Since D is irreducible this implies that D → Wob is a

birational morphism. Alternatively, we can see the generic injectivity from the geometry of

the quadric line complex elucidated in section 2.5. Recall that at a general point w of Wob

the four lines in X through that point include one with multiplicity 2. That line corresponds

to the point A ∈ C ⊂ Jac0(C), and the position of w on it corresponds to the extension

class, so we can recover the data of a point of D. It follows that D is the normalization of

Wob.

Lemma 4.4. The divisor class of the wobbly locus is [Wob] = 8H.

Proof. We will consider lines ℓ ⊂ X and show that ℓ intersects W in 8 points. In the moduli

point of view on X a line corresponds to fixing a line bundle L of degree 0 and looking at

the set of bundles E fitting into an extension

0→ L→ E → L∨(p)→ 0.

Such an extension is wobbly if there is A→ E and t ∈ C with A⊗2 = O(t−p). Assuming that

L does not satisfy this condition, it means that A = L∨(p− y), so L⊗2(2y − 2p) = O(p− t)
in other words L⊗2 = O(3p − t − 2y), and the pullback of the extension to A splits. For

a choice of (y, t) there will be a unique extension up to scalars, i.e. a unique point on the

line, such that the pullback extension splits, so we need to look at the number of solutions

of the equation L⊗−2(3p) = O(2y + t). This is the number of branch points of a trigonal

map C → P1, which is 8. Thus ℓ∩Wob has 8 points for a general line ℓ. We will discuss the

trigonal covers more in subsection 4.5 below.

The basic structure of Wob is captured by the following proposition.
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Proposition 4.5. We have D ∼= C × P1 and the factor P1 is naturally identified with the

base of the hyperelliptic covering P1 = C/ιC. The map D → Wob identifies together pairs

of points on 6 curves of the form C × {xi}, yielding a nodal locus in Wob. Furthermore, on

the graph of the natural projection C → P1 the map D → X is non-immersive, yielding a

cuspidal locus in Wob.

Proof. Recall that x1, . . . , x6 ∈ P1 denoted the branch points for the hyperelliptic map hC :

C → P1, i.e. the images of the Weierstrass points p1, . . . ,p6 ∈ C; also we chose p := p1 to

fix the determinant det(E) ∼= OC(p) of our stable vector bundles.

The statement that the P1-fiber of D is naturally identified with the hyperelliptic P1 was

already checked in Lemma 3.9(b) but we recall the argument here for convenience. A point

in C is a line bundle L such that L⊗2(p) is effective, or equivalently such that L⊗2 ∼= OC(t−p)

for some point t ∈ C. Thus L defines uniquely the point t.

A point in D is a pair (L, η) where L ∈ C and η ∈ PExt1(L∨(p), L), defining the extension

0→ L→ E → L∨(p)→ 0.

We note that

Ext1(L∨(p), L) = H1(L⊗2(−p)) ∼= H1(OC(t− 2p)) ∼= H1(OC(−t′))

where t′ is the image of t under the hyperelliptic involution. The map OC(−t′)→ OC induces

an isomorphism on H1 so we can write

Ext1(L∨(p), L) ∼= H1(OC).

The scalar multiplying this isomorphism is not canonical, it depends on something and

indeed that leads (as we have discussed) to the degree 128 of the normal bundle of Ĉ in P .

However, it does give a canonical isomorphism

PExt1(L∨(p), L) ∼= PH1(OC) = P1.

We note that if y ∈ C then the map

H1(OC)→ H1(OC(y))

is a quotient of rank 1 corresponding to the inage hC(y) ∈ P1 of y. This is the identification

between the P1 factor of D, and the base of the hyperelliptic projection of C.
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We would like to understand when two points of D correspond to the same bundle.

Suppose given (L, η) ∈ D, corresponding to an extension as above. We look for a new line

subbundle L1 ⊂ E such that L1 ∈ C. We note first of all that if L ̸= L1 as subbundles in E,

then there is an inclusion

L1 ↪→ L∨(p),

so we may write

L1 = L∨(p− y).

We have

L⊗2
1 = L⊗−2(2p− 2y) = OC(p− t)(2p− 2y) = OC(3p− t− 2y)

so the condition L1 ∈ C becomes

OC(3p− t− 2y) ∼= OC(t1 − p)

for some point t1 ∈ C. In other words,

4p ∼ t+ t1 + 2y.

One may notice that for our hyperelliptic curve, any time that a+ b+ c+ d ∼ 2ωC = 4p, we

have a + b + c + d = x + x′ + y + y′ such that x, x′ (respectively y, y′) are paired under the

hyperelliptic involution ιC .

Given the form t+ t1 + 2y, there are only two possibilities:

(i) either t = t1, and t is ιC-paired with y,

(ii) or (t, t1) are ιC-paired, and y = pi is a Weierstrass point on C.

Case (i): If we are in the first case we get

L1 = L∨(p− y) = L∨(p− (2p− t)) = L∨(t− p)

and so we must have L1
∼= L, that is L and L1 correspond to two different embedings of the

same line bundle in E. However, for L1
∼= L the space Ext1(L1, L) of extensions of L1 by L

has dimension 2 (it is H1(OC). Furthermore, the map on extension sapces

Ext1(L∨(p), L)→ Ext1(L1, L)

89



induced by the inclusion L1 ↪→ L∨(p), is identified with the map on cohomology

H1(L⊗2(−p)) = H1(OC(t− 2p)) = H1(OC(−t′))→ H1(OC)

induced by the inclusion OC(−t′) ↪→ OC , which is an isomorphism. Hence if L1
∼= L, then

no choice of bundle E admits a lifting from L1 into E. Therefore, case (i) does not lead to

any identification.

As we will see below, it will however lead to an identification infinitesimally, yielding the

cuspidal locus. We ignore case (i) for now.

Case (ii): In this case, we have y = pi and t1 = t′. This gives a linear equivalence 2p ∼ 2y

and we get

L1 = L∨(p− pi) = L∨ ⊗ ai

where ai = OC(p − pi) is a 2-torsion point. There are six possibilities in this case. Let us

look at what is the extension η such that L1 lifts into E. The extension η should be in the

kernel of the map

Ext1(L∨(p), L)→ Ext1(L1, L)

i.e. the map

H1(O(−t′))→ H1(O(−t′ + pi)).

We note that this map is isomorphic to the map

H1(OC)→ H1(OC(pi))

so it means that η should be the extension corresponding to the branch point xi ∈ P1.

We obtain 6 glueings, one for each point xi, with the point (L, xi) being glued to (L⊗a, xi).
In other words the surface D is glued to itself along each of the 6 curves C×{xi}, i = 1, . . . , 6.

On each curve C ×{xi}, the glueing map is the automorphism of C given by tensoring with

the 2-torsion point ai. This is the first part of the statement in the proposition.

The analysis of the cuspidal locus, to conclude the proof of the proposition, will be done

later in subsection 4.4.

4.2 Computations in degree one

By convention all answers to Chern calculations are truncated to the terms of degree ≤ 2.
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By Lemma 3.2) and Theorem 3.6 the curve Ĉ embeds in P and the blow-up ε : Y → P of

P along Ĉ resolves the natural rational map π∗(−) : P 99K X producing a finite morphism

f : Y → X. Let E ⊂ Y denote the exceptional locus. It is a P1-bundle over Ĉ, namely

E ∼= P(N) (this being the projective bundle of subspaces), where N := NĈ/P . In fact by

Lemma 3.9(b) we have N = H1(OC)⊗ ŝq∗π∗ωC and so E = Ĉ ×P1 where the second factor

is the hyperelliptic P1 for C.

Remark 4.6. The images in X of the P1’s that are fibers of bE : E → Ĉ are lines in X.

Indeed, these fibers are isomorphic to the projectivized bundle of outgoing directions along

C which map to lines in Wob, see Lemma 4.3.

Let H denote the hyperplane class on X. Since X ⊂ P5 is a degree 4 subvariety of

dimension 3, we get H3 = 4.

Let F = f ∗H be the inverse image of the class H on Y . We know that for a generic

Hitchin fiber the Neron-Severi group of P is Z, so the Neron-Severi group of Y is generated

rationally by the classes E and F .

Proposition 4.7. The Todd classes for the degree 1 moduli spaces are:

td(TX) = 1 +H + 7H2/12,

π∗td(TX)−1 = 1− F + 5F 2/12,

td(TY ) = 1−E/2 + (E 2 + EF )/9,

td(Y/X) = (1− F + 5F 2/12)(1−E/2 + (E 2 + EF )/9).

Proof. Recall from Section 3.12, the Chern class calculations for the intersection of two

quadrics X say

c1(TX) = 2H, c2(TX) = 3H2,

and

td(TX) = 1 + c1/2 + (c21 + c2)/12

= 1 +H + 7H2/12.

A computation shows that

(1 +H + 7H2/12)(1−H + 5H2/12) = 1,
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thus

td(TX)−1 = 1−H + 5H2/12

which pulls back to the same formula with F on Y .

For the blow-up Y of an abelian threefold P along the curve Ĉ we need to know the

degree of the normal bundle. This degree is 2gĈ − 2 for the embedding of a curve in an

abelian variety, thus by either the explicit description of N in Lemma 3.9(b) or by the genus

calculation of Lemma 4.1 we have

δ = deg(N) = 128.

This could also be seen from the intersection number calculations above, one can see that it

is the same as −E 3.

Again from the calculations of Section 3.12 we have

c1(TY ) = −E ,

c2(TY ) = δfib−E 2,

and

td(TY ) = 1 + c1/2 + (c21 + c2)/12

= 1−E/2 + δfib/12.

We note that (E + F )|E is a divisor on E whose intersection with a fiber is zero, indeed

a fiber intersect E is −1 and it intersects F in 1 point since the image of a fiber is a line

contained in X (Remark 4.6). Therefore (E + F ) · E is a sum of fibers. The number may

be calculated as (E + F ) ·E · F again from Remark 4.6, this gives

(E + F ) ·E = 96fib.

Therefore δfib = (128/96)(E + F ) ·E = 4(E 2 + EF )/3. Our formulas become

c2(TY ) = 4(E 2 + EF )/3−E 2 = (E 2 + 4EF )/3,

and

td(TY ) = 1−E/2 + (E 2 + EF )/9

which completes the calculation.

92



Next we compute the triple intersections of divisor classes on Y .

Proposition 4.8. The triple intersections of divisor classes on the degree 1 modular spectral

covering Y are:

F 3 = 32, EF 2 = 64, E 2F = 32, E 3 = −128.

Recall that H denotes the divisor class of the hyperplane section on X, and F := f ∗(H).

We have
H1,1(Y ) ∩H2(Y,Q) = ⟨E ,F ⟩, and

H2,2(Y ) ∩H4(Y,Q) = ⟨EF ,F 2⟩.

The corresponding groups on X are generated (over Q) by H and H2 respectively.

Lemma 4.9. The map f : Y → X has degree 8.

Proof. Since over the very stable locus the map π∗(−) : P 99K X is a proper morphism (see

e.g. [PP21a, Zel20, PN20] it suffices to compute the number of preimages of a very stable

point in X under f : Y → X. Choose a general hence very stable point E ∈ X. The fiber

of the cotangent bundle T∨
EX is the space H0(End0(E)⊗ωC) of ωC-twisted endomorphisms.

The Hitchin base is the 3-dimensional space H0(C, ω⊗2
C ) ∼= A3 of quadratic differentials on

C. The map T∨
EX → A3 is the restriction of the Hitchin map and is thus given by three

quadratic forms, so the inverse image of a general point b ∈ A3 is the intersection of three

quadrics: it has 8 points. As P = h−1(b), and the exceptional divisor E maps to the wobbly

locus, we have that the intersection of Y ∩ T∨
EX is equal to P ∩ T∨

EX and so is this set of 8

points. Thus for a very stable E and a generic C̃ the inverse image f−1(E) ⊂ Y consists of

8 points.

Remark 4.10. Note that the proof of Lemma 4.9 repeats verbatim to show that in the

degree 0 case the map f0 : Y0 → X0 has degree 8 as well.

We have H3 = 4 since X ⊂ P5 is a degree 4 subvariety. Hence,

F 3 = 32.
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We also checked that OY (E + F )|E is a sum of 96 fibers of the map E → Ĉ. In particular,

the divisor (E + F ) restricted to E , has trivial self-intersection. We get the formula

(E + F ) ·E · (E + F ) = 0,

or

E 3 + 2E 2F + EF 2 = 0.

Lemma 4.11. The wobbly locus is the image Wob = f(E ) ⊂ X. The intersection of Wob

with a line ℓ in X (in other words a subvariety that is a line in P5) has 8 points. The map

f|E : E →Wob is generically 2 to 1, and if D denotes the normalization of Wob (see Lemma

4.3 and Proposition 4.5 above) this map factors through a 2 : 1 map E → D.

Proof. Recall from Lemma 4.3 that D can be described as the space of downward or outgoing

directions to the curve C ⊂ Higgs1. As we saw in subsections 3.6 and 3.7 the incoming flow

gives a 2 : 1 map Ĉ → C and a normal direction to a general point of Ĉ maps to a downward

direction at the image point in C. This gives the map E → D. In the present case, downward

flow lines are broken only once and the broken flow line depends only on the first normal

derivative to the point of Ĉ in the Hitchin fiber, so the closure of the downward flow map

restricts on E to the composition E → D →Wob ⊂ X1.

Proof of Proposition 4.8. We saw above that F 3 = 32.

A line ℓ lying on X satisfies ℓ ∩ H = 1, but also (H2) ∩ H = 4; hence in the group

H2,2(Y ) ∩H4(Y,Q) we have

H2 = 4ℓ.

This gives H2 ∩Wob = 32.

From the 2 : 1 covering property we get

F 2 ∩E = H2 ∩ 2Wob

so

EF 2 = 64.
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Let us now calculate E 3. It is the self-intersection of the divisor class c1(OE (E )) on the

surface E . By the usual blowup picture the line bundle OE (E ) is the universal subbundle

for the projectivization P(N) = E so the universal quotient bundle is

UQ = b∗E (N)/OE (E).

In terms of divisor classes on E this gives

c1(UQ) = b∗Ec1(N)− c1(OE (E).

The relative tangent bundle T (E/Ĉ) of the map bE : E → Ĉ is given by

T (E/Ĉ) = Hom(OE (E), UQ),

which gives

c1(T (E/Ĉ)) = c1(UQ)− c1(OE (E )) = b∗Ec1(N)− 2c1(OE (E))

on the level of divisor classes.

Since E ∼= Ĉ × P1, the Neron-Severi group of E is freely generated by two classes ĉ and

fib, where ĉ is the class of Ĉ × pt and as before fib is the class of pt×P1. In terms of these

classes we have

b∗Ec1(N) = 128fib and c1(T (E/Ĉ)) = 2ĉ.

Therefore we get

c1(OE (E)) =
1

2

(
b∗Ec1(N)− c1(T (E/Ĉ))

)
= 64fib− ĉ,

and so taking into account that ĉ2 = fib2 = 0 and ĉ · fib = 1 we get

c1(OE (E)) · c1(OE (E)) = (64fib− ĉ)2 = −128.

That was the self-intersection on E , so it gives on Y , E 3 = −128.

Now from the formula E 3 + 2E 2F + EF 2 = 0 we get

(−128) + 2E 2F + (64) = 0, so E 2F = (128− 64)/2 = 32.

This completes our list of intersection numbers on Y .
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4.3 Main construction

Let L0 be the pullback to Y of a degree zero line bundle on P , and set

La,b := L0(aF + (b+ 1)E ) and Va,b := f∗(La,b).

Following the notation we adopted in the definition of crude parabolic structures in sec-

tion 3.10 we will also set

L′
a,b := L0(aF + bE ) ⊂ La,b and V ′

a,b = f∗(L′
a,b) ⊂ Va,b.

The notations are chosen so that the spectral line bundle defined in section 3.10 is precisely

L′ = L0(aF + bE ). Notice that V ′
a,b = Va,b−1.

The next step is to look at the calculations of the Chern characters of the direct image

Va,b = f∗(La,b). The Chern character of La,b is

ch(La,b) = 1 + (aF + (b+ 1)E ) + (aF + (b+ 1)E )2/2.

Putting the Todd class formula of Proposition 4.7 into the Grothendieck-Riemann-Roch

formula gives

ch(Va,b) = ch(f∗(La,b))

= f∗(1 + (aF + (b+ 1)E )

+ (aF + (b+ 1)E )2/2)(1− F + 5F 2/12)(1−E/2 + (E 2 + EF )/9)

= f∗
[
1 + ((a− 1)F + (b+ 1/2)E ) + (aF + (b+ 1)E )2/2

+5F 2/12 + (E 2 + EF )/9 + EF/2− (F + E/2)(aF + (b+ 1)E)
]
.

The rational cohomology of X1 is generated by H in degree 2 and H2 in degree 4, so if

a1 ∈ H2(Y ) and a2 ∈ H4(Y ) are classes on Y we can write

f∗(1 + a1 + a2) = 8 + b1H + b2H
2,

for some rational numbers b1, b2 ∈ Q. Then, using H3 = 4 we get 4b1 = H2 · f∗(a1) = F 2a1

and 4b2 = H · f∗(a2) = Fa2.

We get, using the calculations of Proposition 4.8:

H2 · ch1(Va,b) = F 2((a− 1)F + (b+ 1/2)E ) = 32(a− 1) + 64(b+ 1/2) = 32a+ 64b
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so

ch1(Va,b) = (8a+ 16b)H.

And

H · ch2(Va,b) = F
[
(aF + (b+ 1)E)2/2

+5F 2/12 + (E 2 + EF )/9 + EF/2− (F + E/2)(aF + (b+ 1)E )
]

= (a2/2 + 5/12− a)F 3 + (a(b+ 1) + 1/9 + 1/2− (b+ 1 + a/2))EF 2

+ ((b+ 1)2/2 + 1/9− (b+ 1)/2)E 2F

= 16a2 − 32a+ 32a+ 64ab+ 16b2 +−64b+ 16b+ 40/3 + 64/9− 32 + 32/9

= 16a2 + 16b2 + 64ab− 48b− 8.

We get

ch2(Va,b) = 4a2 + 16ab+ 4b2 − 12b− 2.

Together these prove the following:

Proposition 4.12. For La,b in the numerical class of OY (aF + (b+ 1)E ) the direct image

Va,b = π∗(La,b) has Chern character (truncated to codimension 2 as usual)

ch(Va,b) = 8 + (8a+ 16b)H + (4a2 + 16ab+ 4b2 − 12b− 2)H2.

Later we will consider a parabolic modification of La,b over the divisor E , giving a new smooth

parabolic structure defined locally upstairs over the modular spectral cover or somewhat

equivalently over the projectivization of the bundle.

4.4 The cusp locus of the wobbly divisor

In this subsection we prove the part of Proposition 4.5 about the cuspidal locus. Specif-

ically we compute the locus Dcusp ⊂ D on which the map f : D → X is not immersive.

Recall that this map is induced from the map f : Y → X. More precisely, the restriction

f|E : E → Wob ⊂ X factors through the double cover E = Ĉ × P1 → C × P1 = D and

f : D → X is just the induced map.

Let (L, η) ∈ D = C × P1 be a point, and let E = f(L, η) ∈ X be the corresponding rank

two bundle. Our goal is to understand when the differential

df(L,η) : TD,(L,η) → TX,E
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has a non-trivial kernel.

Recall that L ∈ C ⊂ Jac0(C) means that L⊗2(p) is effective, i.e. that L⊗2 ∼= OC(t − p)

for some point t ∈ C. Thus L⊗2(−p) ∼= OC(t − 2p) = OC(−t′), where t′ ∈ C is the point

corresponding to t under the hyperelliptic involution.

Hence we have

Ext1(L∨(p), L) = H1(C,L⊗2(−p)) = H1(C,OC(−t′)).

From the long exact sequence in cohomology associated with the short exact sequence

0→ OC(−t′)→ OC → Ot′ → 0 it follows that the natural map

ιt′ : H1(C,OC(−t′))
∼= //H1(C,OC)

is an isomorphism, and hence we can view η as an element in ι−1
t′ (η) ∈ Ext1(L∨(p), L). The

rank two vector bundle E = f(L, η) is the extension

0→ L→ E → L∨(p)→ 0

given by the extension class ι−1
t′ (η).

We have TD,(L,η) = TC,L ⊕ TP1,η and so to understand the map df(L,η) it is enough to

understand its restrictions to the two coordinate lines TC,L⊕{0} and {0}⊕ TP1,η in TD,(L,η).

These restrictions which will abbreviate as

df(L,η)|TC,L
: TC,L

// TX,E

df(L,η)|TP1,η : TP1,η
// TX,E

have a natural modular interpretation.

4.4.1 Interpretation of df(L,η)|TP1,η

Fix L ∈ C and hence the points t, t′ ∈ C. The extensions of L∨(p) by L corresponding

to a varying point η ∈ P(H1(C,OC)) fit in a natural universal family parametrized by P1.

Indeed, consider the surface C × P1. By Künneth we have

Ext1C×P1(p∗CL
∨(p), p∗CL⊗ p∗P1O(1)) = H1(C × P1, p∗CO(−t′)⊗ p∗P1O(1))

= H1(C,O(−t′))⊗H0(P1,O(1))

∼= H1(C,O)⊗H1(C,O)∨.
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Here in the last step we used ιt′ to identify H1(C,O(−t′)) with H1(C,O) and we used

P1 = P(H1(C,O)) to identify H0(P1,O(1)) with H1(C,O)∨.

The extension

0→ p∗CL⊗ p∗P1O(1)→ E → p∗CL
∨(p)→ 0

corresponding to the identity element in H1(C,O) ⊗H1(C,O)∨ is a rank two bundle E on

C × P1 whose restrictiion to C × {ξ} is the extension

0→ L→ Eξ → L∨(p)→ 0

given by the class ι−1
t′ (ξ). In particular we have Eξ = E.

Therefore f |{L}×P1 : P1 → X can be viewed as the classifying map for the bundle

E → C × P1. Let End0(E) denote the bundle of traceless endomorphisms of E. By de-

formation theory we have TX,E = H1(C,End0(E)) and we can identify the restricted map

df(L,η)|TP1,η : TP1,η → H1(C,End0(E))

with the Kodaira-Spencer class of the family E → C × P1 at η. But tensoring a family

with a fixed line bundle does not change the Kodaira-Spencer class and so equivalently we

can compute the Kodaira-Spencer class for the family F = E ⊗ p∗CL(−p) → C × P1. By

definition F is the extension

0→ O(−t′) ⊠O(1)→ F → OC×P1 → 0 (19)

corresponding to the element

ι−1
t′ ∈ H

1(C,O(−t′))⊗H1(C,O))∨ = Ext1C×P1(O,O(−t′) ⊠O(1)),

and so is the universal family of extensions

0→ OC(−t′)→ Fξ → OC → 0,

corresponding to points ξ ∈ P1. To simplify notation we will denote Fη by F .

Now from the exact sequence (19) it follows that End0(F ) = End0(E ) maps naturally

onto Hom(O(−t′) ⊠O(1),F ) and so we have an exact sequence

0→ O(−t′) ⊠O(1)→ End0(F )→ F ⊗ (O(t′) ⊠O(−1))→ 0

which for each ξ ∈ P1 specializes to a short exact sequence

0→ OC(−t′)→ End0(Eξ)→ Fξ(t
′)→ 0. (20)
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Since the family E encodes the variation of the bundle Eξ as the extension class ξ ∈ H1(C,O))

varies, the Kodaira-Spencer class ksEξ : TP1,ξ → H1(C,End0(Eξ)) is captured by the maps

between cohomology of the terms in (20). Indeed, taking into account that H0(C,O(−t′)) =

0 and H0(C,End0(Eξ)) = 0, the long exact sequence of cohomology associated with (20)

reads

0 // 0 // 0 // H0(C,F (t′))

--
H1(C,O(−t′)) // H1(C,End0(Eξ)) // H1(C,Fξ(t

′)) // 0

(21)

Also, in the long exact sequence associated with

0→ OC → Fξ(t
′)→ OC(t′)→ 0

the first edge homomorphism H0(C,O(t′))→ H1(C,O) is given simply by cup product with

ι−1
t′ (ξ) ∈ H1(C,O(−t′)). Since ξ is not zero and H0(C,O(t′)) ∼= C this implies that this

edge homomorphism is injective and so the natural map H0(C,O) → H0(C,Fξ(t
′)) is an

isomorphism. If we identify H0(C,Fξ(t
′)) with H0(C,O) via this isomorphism, then the

first edge homomorphism in (21) becomes the cup product

ι−1
q′ (ξ)∪ : H0(C,O)→ H1(C,O(−t′)).

Using ιt′ to identify H1(C,O(−t′)) with H1(C,O) we then see that the long exact sequence

(21) reduces to a short exact sequence

0→ H1(C,O)/C · ξ → H1(C,End0(Eξ))→ H1(C,Fξ(t
′))→ 0.

But H1(C,O)/C · ξ = TP1,ξ and the first map in this sequence by construction sends an

infinitesimal deformation of the extension ξ to an infinitesimal deformation of Eξ. Therefore

this map is the Kodaira-Spencer map and we can rewrite the previous sequence as

0 //TP1,ξ

ksEξ //H1(C,End0(Eξ)) //H1(C,Fξ(t
′)) //0.

or in the special case ξ = η as

0 //TP1,η

df(L,η)|TP1,η //H1(C,End0(E)) //H1(C,F (t′)) //0.

This gives the desired modular interpretation of df(L,η)|TP1,η , and confirms that f restricted

to any ruling {L} × P1 is an immersion.
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4.4.2 Interpretation of df(L,η)|TC,L

Fix η ∈ P1 = P(H1(C,O)). The extensions of L∨(p) by L corresponding to the fixed

extension class η and a variable L ∈ C fit in a natural family parametrized by C. Indeed,

consider the surface C × C with its diagonal divisor ∆ ⊂ C × C. Pushing down the short

exact sequence

0→ O(−∆)→ O → O∆ → 0

via the projection p2 : C × C → C onto the second factor gives a long exact sequence of

direct images:

0 // p2∗O(−∆) // p2∗O // p2∗O∆

--
R1p2∗O(−∆) // R1p2∗O // R1p2∗O∆

// 0

We have p2∗O(−∆) = 0 since O(−∆) has negative degree along the fibers of p2. Since

p2 : ∆ → C is an isomorphism we also have p2∗O∆ = OC and R1p2∗O∆ = 0. Finally by

Künneth we have p2∗O = OC and R1p2∗O = H1(C,O)⊗OC . Substituting these in the long

exact sequence gives

0 // 0 // OC // OC

..
R1p2∗O(−∆) // H1(C,O)⊗OC // 0 // 0

Therefore we have

p2∗O(−∆) = 0, R1p2∗O(−∆) = H1(C,O)⊗OC

With this in mind we compute

Ext1C×C(O,O(−∆)) = H1(C × C,O(−∆))

= H0(C,R1p1∗O(−∆))

= H1(C,O)⊗H0(C,O)

where at the second step we used the Leray spectral sequence for p2.

Therefore the class η⊗ 1 ∈ H1(C,O)⊗H0(C,O) corresponds to a rank two bundle F on

C × C which is an extension

0→ OC×C(−∆)→ F→ OC×C → 0.
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By construction, for every point x ∈ C, the restriction Fx = F|C×{x} is the extension

0→ OC(−x)→ Fx → OC → 0

given by the class ι−1
x (η) ∈ H1(C,O(−x)). In particular we have Ft′ = F .

Now consider the degree 16 map C ×C → C ×C which is the identity on the first factor

and on the second factor is the composition of the natural map C → C with the hyperelliptic

involution5. Let F → C ×C be the pull back of F by this map, and let L → C ×C be the

Poincaré line bundle. Then the bundle E = F ⊗L ∨({p} × C) is an extension

0→ L → E → L ∨({p} × C)→ 0.

For each M ∈ C restricts to the bundle EM := E|C×{M} which is the extension

0→M → EM →M∨(p)→ 0

corresponding to the class η. In particular EL = E and the map f |C×{η} : C → X is the

classifying map for the family E → C × C.

This identifies the restricted differential df(L,η)|TC,L
with the Kodaira-Spencer class

ksEL : TC,L → H1(C,End0(E))

of the family E computed L ∈ C.

The family E differs from the family of bundles F by a tensoring with a family of line

bundles. So, even though F is a family of bundles with varying determinant, the traceless

parts of the Kodaira-Spencer classes for E and F are equal. Given a family of rank two

bundles F on C let us write κF = ksF − (tr(ksF)/2) · id for the traceless part of the Kodaira-

Spencer class of F . With this notation we then have

df(L,η)|TC,L
= ksEL = κE

L = κF
L .

As a last simplification, note that the map C → C, L 7→ t′ is étale and so its differential

is an isomorphism TC,L
∼=→ TC,t′ of tangent spaces. Taking into account that the family F

is the pullback of the family F we conclude that modulo the isomorphism TC,L
∼=→ TC,t′ the

traceless Kodaira-Spencer class κF
L equals the traceless Kodaira-Spencer class κFt′ .

5The canonical map from C to C assigns to each L the unique point t ∈ C such that L⊗2 = OC(t). The

map we consider here sends L not to t but to its image under the hyperelliptic involution t′
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4.4.3 The kernel of the differential

After these preliminaries we are now ready to understand where the map f : D → X is

not immersive.

Proposition 4.13. Let (L, η) ∈ D = C × P1 be a point, and let E = f(L, η) ∈ X be the

corresponding rank two bundle. Then the differential

df(L,η) : TD,(L,η) → TX,E

has a non-trivial kernel if and only if L ∈ C maps to η ∈ P1 = P(H1(C,OC)) under the

natural degree 32 map C → C → P1.

Proof. Since df(L,η) is determined by its restricions to TC,L and TP1,η and since we saw

that df(L,η)|TP1,η is always injective, it suffices to characterize all points (L, η) ∈ D for which

the image df(L,η)(TC,L) is contained in the line df(L,η)(TP1,η) ⊂ TX,E = H1(C,End0(E)) =

H1(C,End0(F )).

In view of the modular interpretations of the restricted differentials in sections 4.4.1 and

4.4.2 this question is equivalent to the problem of characterizing all points (t′, η) ∈ C × P1

such that

κFt′(TC,t′) ⊂ ker
[
H1(C,End0(F ))→ H1(C,F (t′))

]
. (22)

Here as before F is the extension

0 //OC×C(−∆) a //F b //OC×C → 0, (23)

corresponding to η and F = Ft′ := F|C×{t′}.

More invariantly the condition (22) can be rewritten as follows. The short exact sequence

(23) induces a short exact sequence

0 // Hom(O,O(−∆))
a◦−◦b // End0(F)

−◦a // Hom(O(−∆),F) // 0

O(−∆) F(∆)

(24)

Pushing this down the map −◦a : End0(F)→ F(∆) via the second projection p2 : C×C → C

gives us a map of coherent sheaves

R1p2∗(− ◦ a) : R1p2∗End0(F)→ R1p2∗F(∆).

We also have the universal traceless Kodaira-Spencer class of F

κF : TC → R1p2∗End0(F).
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Composing these two maps we get a map

R1p2∗(− ◦ a) ◦ κF : TC → R1p2∗F(∆),

or equivalently a global section

R1p2∗(− ◦ a) ◦ κF ∈ H0
(
C,Ω1

C ⊗R1p2∗F(∆)
)
. (25)

Note that the bundle F and the global section (25) depend only on the class η ∈ P(H1(C,O)).

The condition (22) is simply the condition that the point t′ belongs to the zero locus of this

section. Therefore we need to describe all pairs (t′, η) ∈ C × P1 for which the section (25)

defined by η vanishes at the point t′.

To understand these pairs observe that O(−∆) ⊂ F can be viewed as the family of

filtered bundles O(−x) ⊂ Fx parametrized by x ∈ C. In particular, the traceless Kodaira-

Spencer class κF will preserve the filtration. In other words if filtEnd0(F) denotes the bundle

of traceless endomorphisms of F preserving the subbundle O(−∆), then the global traceless

Kodaira-Spencer class κF is induced from the traceless part of the Kodaira-Spencer class

filtκF : TC → R1p2∗
filtEnd0(F)

classifying filtered deformations. This means that κF factors as

TC
filtκF //

κF

44R1p2∗
filtEnd0(F) //R1p2∗End0(F).

By definition

filtEnd0(F) = {φ ∈ End(F ) | b ◦ φ ◦ a = 0 and tr(φ) = 0} ,

and hence
filtEnd0(F) = ker

[
End0(F)

b◦−◦a //O(∆)

]
.

This implies that R1p2∗(− ◦ a) ◦ κF maps TC into the subsheaf

ker
[
R1p2∗F(∆)→ R1p2∗O(∆)

]
⊂ R1p2∗End0(F.

But from the long exact sequence of p2 direct images of the short exact sequence

0→ O → F(∆)→ O(∆)→ 0
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it follows immediately that

ker

[
End0(F)

b◦−◦a //O(∆)

]
= (H1(C,O)/η)⊗OC .

This imlplies that the section R1p2∗(−◦ a) ◦κF in ωC ⊗R1p2∗F(∆) is in fact the tautological

section in the natural subbundle

ωC ⊗
(
(H1(C,O)/η)⊗OC)

)
= (H1(C,O)/η)⊗ ωC ,

i.e. is the element in

(H1(C,O)/η)⊗H0(C, ωC) = (H1(C,O)/η)⊗H1(C,O)∨

corresponding to the graph of the quotient map H1(C,O)→ H1(C,O)/η. This is precisely

the section of ωC that vanishes at the preimage of η under the hyperelliptic map hC : C → P1.

Therefore the set of pairs (t′, η) we were seeking is just the graph of the hyperelliptic map

and so the set of points (L, η) at which f is not immersive is the graph of the projection

C → C → P1. This completes the proof of the proposition. □

4.5 The trigonal cover of a general line

Recall from [New68, Theorem 2], [NR69, Theorem 5] that the variety of lines on X is

isomorphic to the Jacobian Jac0(C) of C. Taking up the theme used in the proof of Lemma

4.4 in more detail, consider a general line ℓ ⊂ X. It corresponds to a degree 0 line bundle

A ∈ Jac0(C), and in terms of vector bundles the line is the set of isomorphism classes of

nonzero extensions of the form

0→ A→ V → A∨(p)→ 0.

A point corresponding to a given extension, will lie on a different line ℓ′ corresponding to

A′ ∈ Jac0(C) distinct from A, if and only if there is a map A′ → A∨(p) such that the pullback

extension splits. Such a map corresponds to a point t ∈ C with A′ = A∨(p− t).
The splitting of the extension may be analyzed as follows. We have

Ext1(A∨(p), A) ∼= H1(C,A⊗2(−p))

which is dual to H0(C,A⊗−2(3p)). These spaces have dimension 2, so a nonzero element of

H1(C,A⊗2(−p)) modulo scalars also corresponds to a nonzero element of H0(C,A⊗−2(3p))

modulo scalars, the unique element that pairs with it to zero by the duality.
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The extension splits when pulled back to A∨(p− t) if and only if the class maps to zero

under the map

H1(C,A⊗2(−p))→ H1(C,A⊗2(t− p)),

or equivalently if the dual element is in the image of the map

H0(C,A⊗−2(3p− t))→ H0(C,A⊗−2(3p)).

In turn, this is equivalent to saying that our dual element, viewed as a section of the line

bundle A⊗−2(3p), vanishes at t.

In conclusion, each extension corresponds to a class (up to scalar multiples) of nonzero

sections of A⊗−2(3p), and the other lines ℓ′ passing through the point determined by the

extension correspond to the points where this section vanishes.

We may view this as saying that the complete linear system associated to the line bundle

A⊗−2(3p) of degree 3 determines a trigonal map C → ℓ ∼= P1, and the other three lines

through a point on ℓ correspond to the fibers.

Proposition 4.14. The trigonal cover ramifies over 8 points in ℓ. These are the 8 intersec-

tion points of ℓ with the wobbly locus. If x is such an intersection point, and if we write the

divisor in C as 2u+ v then u corresponds to the line through that point in the wobbly locus.

Proof. If A is general then the line bundle A⊗−2(3p) is general and hence has no base points.

For such an A the trigonal map will be a morphism. The Hurwitz formula implies that there

are 8 ramification points. A general fiber of the trigonal cover is a section of A⊗−2(3p) that

vanishes at three points u, v, w ∈ C. A simple ramification is a point u such that there is a

section of A⊗−2(3p) that vanishes at 2u+ v. We get A⊗−2(3p) ∼= OC(2u+ v). As discussed

above, the extension corresponding to this point of ℓ splits on

A−1(p− u) ∼= A(u+ v − 2p) ∼= A(u− v′)

where v′ is the hyperelliptic conjugate of v, and we get a diagram

0 // A // E // A−1(p) // 0

A(u− v′)

OOcc
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and the bundle fits in an extension

0→ A(u− v′)→ E → A−1(3p− u− v) ∼= A(u)→ 0.

Now A(u− v′)⊗ ωC = A(2p + u− v′) = A(u+ v) so we get a nonzero map

A(u)→ A(u+ v) ∼= A(u− v′)⊗ ωC

yielding a nonzero nilpotent Higgs field. Therefore, the bundle E associated to the given

extension is in the wobbly locus.

Remark: We already argued synthetically in section 2.2.3 that the line ℓ goes through the

cuspidal locus of the wobbly locus when the divisor in C has the form 3u.

Choose a general line ℓ ⊂ X = X1. Over this line we have the trigonal cover C → ℓ

associating to each point x ∈ ℓ the set of three lines passing through x that are distinct from

ℓ. Let u, v, w be the points of C over x ∈ ℓ.
Let Yℓ := Y ×X ℓ. It is a degree 8 ramified cover of ℓ.

Lemma 4.15. Assume x general in ℓ. The fiber of Yℓ → ℓ over the point x is naturally iso-

morphic to the set of 8 points obtained by choosing ũ, ṽ, w̃ ∈ C̃ over u, v, w ∈ C respectively.

Proof. Let L be the line bundle of degree 0 on C corresponding to the line ℓ, and let E be

the rank 2 vector bundle corresponding to x. It fits into an exact sequence

0→ L→ E → L−1(p)→ 0

whose extension class corresponds to the point in ℓ. The fiber of Y over x is the set of line

bundles U on C̃, of degree 3, such that π∗(U) ∼= E. The map L → π∗(U) corresponds by

adjunction to a map π∗(L)→ U . We get

U ∼= π∗(L)⊗OC̃(ũ+ ṽ + w̃).

Let u, v, w be the images of ũ, ṽ, w̃ in C. The determinant of π∗(U) is L⊗2⊗OC(u+v+w)⊗ω−1
C

so we get

L⊗2(u+ v + w) ∼= OC(3p).

It means that u + v + w is in the linear system |L⊗−2(3p)|, in other words it is one of the

fibers of the trigonal cover of ℓ. To show that it is the fiber over the point corresponding to
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the given extension defining E, we need to see that the extension splits when restricted to

L−1(p−u) (and the same for v, w). For this, in turn, it suffices to see that there is a nonzero

map

π∗(L−1(p− u))→ U.

Using the expression

L−1(p−u) = L⊗(L⊗−2(3p))⊗OC(−2p−u) = L⊗OC(−2p−u+u+v+w) = L(v+w−2p),

we are looking for a map

π∗(L)(ṽ + τ ṽ + w̃ + τw̃)→ π∗(L⊗ ωC)⊗OC̃(ũ+ ṽ + w̃). (26)

Here, as usual, τ denotes the covering involution of the spectral cover π : C̃ → C.

Having a map (26) is equivalent to asking for a section of

π∗(ωC)⊗OC̃(ũ− τ ṽ − τw̃).

The ramified cover π : C̃ → C has 4 ramification points a, a′, b, b′ ∈ C̃ such that π(a), π(a′)

and π(b), π(b′) are opposite pairs under the hyperelliptic involution of C.

Recall now that C̃ itself is hyperelliptic of genus 5, with the map hC̃ : C̃ → P1 branched

over the 12 inverse images in C̃ of the 6 Weierstrass points of C. We have ωC̃ = h∗
C̃
OP1(4).

The hyperelliptic involution σ of C̃ is one of the lifts of the hyperelliptic involution of C, so

a, a′ and b, b′ are also opposite pairs under the hyperelliptic involution of C̃. It follows that

OC̃(a+ a′) ∼= OC̃(b+ b′) ∼= h∗
C̃
OP1(1). We get

π∗(ωC) ∼= ωC̃(−a− a′ − b− b′) = h∗
C̃
OP1(2).

In particular, π∗(ωC) admits a section vanishing at the two points τ ṽ, τ w̃. This gives the

required section of π∗(ωC)(ũ− τ ṽ − τw̃).

This (together with the analogous arguments for v and w) completes the proof that the

divisor u + v + w is the fiber of the trigonal map over x ∈ ℓ. Thus, our line bundle U

corresponds to one of the choices of 8 liftings as in the lemma.

Running this argument backwards shows that each of the 8 liftings corresponds to a

choice of U . This gives the isomorphism claimed in the lemma.

Let Yℓ := Y ×X ℓ. It is a degree 8 ramified cover of ℓ whose general fiber is described by the

lemma. From this, we can describe the ramification of Yℓ/ℓ:
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Corollary 4.16. Suppose ℓ is general. The branch locus of Yℓ/ℓ consists two disjoint groups

of points: the x ∈ ℓ of the branch locus of C/ℓ, plus the points that are images of the four

points y ∈ C of the branch locus of C̃/C. The former class of points is the intersection of ℓ

with the wobbly locus. As ℓ is general, the second group consists of four distinct points.

Proof. The line ℓ gives a trigonal map C → P1, and by Lemma 4.15, the fiber of Yℓ over a

point x ∈ ℓ consists of the 8 liftings to C̃ of the three points u, v, w in the trigonal fiber over

x.

When x is a branch point of C/ℓ, as we have seen in Proposition 4.14 it means x ∈ ℓ∩Wob,

and two of the three points come together, let’s say u = v. The monodromy around such a

point interchanges u and v. We may assume that u = v is general in C, in particular it isn’t

a ramification point of C̃/C so we may identify the two sheets of C̃ labeled with 0, 1 near

this point, similarly near w. With these identifications we may write the 8 points as (a, b, c)

where a, b, c ∈ {0, 1}. The monodromy sends (a, b, c) to (b, a, c). This has two transpositions

(1, 0, c)↔ (0, 1, c) for c = 0, 1.

Suppose x is the image of one of the branch points z ∈ C of C̃/C. For ℓ general we may

assume that x isn’t wobbly. The trigonal fiber is u, v, w with, say, u the branch point. As we

move around such a point, the set of choices of lifting of u undergoes a transposition; there

are four such transpositions corresponding to the various liftings of v, w.

The last statement, that was also mentioned in the previous paragraph, is that two dif-

ferent branch points of C̃/C are not contained in the same trigonal fiber. Indeed, the branch

points consist of two general pairs of opposite points under the hyperelliptic involution. If

the trigonal map identified two such points, they would have to be two opposite points, but

that would mean that the trigonal map identifies hyperelliptically opposite points, hence

that it factors through the hyperelliptic map, which isn’t the case.

Lemma 4.17. Suppose V is a vector bundle corresponding to a general point in X. Let

A1, . . . , A4 be the points in Jac0(C) corresponding to the four lines in X through V . Then

the sum of these points in Jac0(C) is the origin of Jac0(C).

Proof. Let A = A1 be one of the line bundles, so we have

0→ A→ V → A∨(p)→ 0.

As we have seen above, the other Ai are of the form Ai = A∨(p− ti) where t2 + t3 + t4 is a

divisor in the linear system A⊗−2(3p). This yields the equation in Jac(C)

t2 + t3 + t4 = [A⊗−2(3p)] = 3p− 2[A].
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Now, the sum of all the points is the sum in Jac(C)

sum = [A] + [A∨(p− q2)] + [A∨(p− t3)] + [A∨(p− t4)]

= [A] + 3[A∨] + 3p− (t2 + t3 + t4)

= [A]− 3[A] + 3p− (3p− 2[A]) = 0.

Given two of the four lines corresponding to line bundles A1 and A2, we obtain a point

q ∈ C such that A2 = (A1)
∨(p − q), in other words A1 ⊗ A2 = OC(p − q). In view of

the lemma, if A3 and A4 are the other two points, we have A1 ⊗ A2 ⊗ A3 ⊗ A4 = OC so

A3 ⊗ A4 = OC(q − p) = OC(p− q′). Thus, the point of C corresponding to A3, A4 is q′ the

image of q by the hyperelliptic involution.

Remark 4.18. In particular, we obtain the conclusion that the point V ∈ X1 yields a well-

defined triple of points in P1. This gives a map X1 → Sym3(P1) ∼= P3 that will be useful in

Section 13.5.

4.6 Local structure of the spectral cover along the cusp locus

Let Rmov ⊂ Y be the movable locus of the ramification of the map Y → X.

Recall that c1(Ω
1
X) = 2H and c1(Ω

1
Y ) = E since Y is obtained from the abelian variety P

by blowing up a curve of codimension 2. Comparing these, we conclude that the ramification

locus has class E + 2F .

Lemma 4.19. The order of ramification of Y → X along E is two (i.e. it has simple

ramification at a general point of E).

Proof. If we assume that the map has ramification of order a along E , we get

2E + F = (a− 1)E + [Rmov].

On the other hand, Rmov is effective, so 2F − (a − 2)E is effective. If a > 2 this says that

2F −E is effective. We note that 2F −E is not zero, since E is clearly not ample whereas

F is ample (it is the pullback of an ample divisor by a finite map).

Since F is ample, if 2F−E is effective then (2F−E )·F 2 > 0. However, from Proposition

4.8 saying F 3 = 32 and EF 2 = 64 it gives (2F−E)·F 2 = 0, contradicting the effectivity.
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Proposition 4.20. For generic choice of point in the Hitchin base, the movable ramification

locus Rmov intersects E in a union of two constant sections of the fibration E → Ĉ and 64

fibers. The constant sections correspond to the two points in P1 whose inverse images in C

make up the 4 branch points of C̃/C.

Proof. From above, the full ramification locus has class E + 2F and the fixed part has

multiplicity 1 along E . Thus, the class of Rmov is 2F .

We use the description of Corollary 4.16. We are interested here in points where the

movable ramification meets the intersection with the wobbly locus.

We can describe more precisely, over points where ℓ meets the wobbly locus, the fiber

of Yℓ. Suppose it is a general point of the wobbly locus, so the degree 3 divisor in C over

x ∈ ℓ has the form 2u+ v. Suppose u and v are not in the branch locus of C̃/C. To describe

the liftings to points of Yℓ we need to consider liftings of nearby divisors into C̃: the piece

2u splits into u1 + u2 and this has 4 liftings. The monodromy action permutes two of those

liftings and leaves fixed the two other ones, depending on whether ũ1 and ũ2 are in different

or the same sheets of C̃/C. Then each of those configurations becomes doubled depending

on the lifting of v. We obtain 2 branch points and 4 unbranched points of Yℓ/ℓ over x ∈ ℓ.
This is as expected.

The points of E ℓ := E ∩ Yℓ are the two branch points.

On the other hand, the points of the movable ramification locus correspond to divisors

u1 +u2 + v such that one of those points is a branch point of C̃/C. When that branch point

is v it does not correspond to a point of E ℓ. We would like to describe the cases where u is

a branch point of C̃/C.

Suppose given a divisor 2u+ v in the linear system associated to A⊗−2(3p). Then as we

saw above, the other line bundle of degree 0 associated to u, that we’ll now denote L := A′,

is of the form

L = A∨(p− u).

Our bundle V is an up-Hecke of A⊕ L at the point u. We can write

0→ L→ V → L∨(p)→ 0

and A = L∨(p − u). The extension is the one that vanishes when pulled back to A, or

equivalently vanishing in the extension group H1(L⊗2(u− p)).

We have

L⊗2(p) = A⊗−2(3p− 2u)
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but

A⊗−2(3p) ∼= OC(2u+ v)

so

L⊗2(p) = OC(v).

This is the equation saying that the line associated to L is in the wobbly locus. Furthermore,

the set of extension classes corresponding to points of this line is

H1(L⊗2(−p)) = H1(OC(v − 2p)) = H1(OC(−v′))

which maps isomorphically to H1(OC). Here v′ is the image of v by the hyperelliptic invo-

lution.

An extension vanishes at the point u if and only if it maps to zero in H1(OC(u)), which

is equivalent to saying that it corresponds to the point in P1 = PH1(OC) that is the image

of u under the hyperelliptic double cover.

We conclude that under the birational map from the wobbly locus to P1, the image of

a point corresponding to the degree 3 divisor 2u + v with respect to the trigonal covering

corresponding to the original line ℓ, it the image of u in P1 corresponding to the hyperelliptic

map.

Now, we are interested in cases where u coincides with one of the branch points of C̃/C.

We know from Proposition 3.1 that there are 4 branch points in C that are the inverse images

of two points in P1. Therefore, the points in question are ones where u maps to one of these

two points in P1.

We conclude from this discussion that the points of E over the wobbly locus that map

to one of these two points in P1 are in Rmov ∩E .

We have made some genericity assumptions in the above discussion. These hold for the

points we have just described, since the two points in P1 are general because we chose a

general spectral cover C̃/C. This says that Rmov ∩E contains at least two constant sections

of the fibration E → Ĉ.

We now rely on the intersection number calculations to conclude. Indeed, we have seen

that F ∩ E has the class of ĉ + 32fib where ĉ is a constant section. This may be re-verified

as follows: this class intersects the fiber in one point, since the fiber maps to a line in X

that meets the hyperplane class in one point. Our class is thus of the form ĉ + a · fib. On

the other hand, the self-intersection of this class on E ∼= P1 × Ĉ is equal to the intersection

number F 2E on Y ; that is 64. The self intersection of ĉ + a · fib is 2a giving a = 32.
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This shows that 2F∩E is a divisor in the class 2ĉ+64fib. Since we have already exhibited

a subset of this divisor consisting of two sections, we conclude that it has to be of the form

two sections plus 64 fibers. This completes the proof of the proposition.

For a point b in the Hitchin base, let Branchmov(b) ⊂ X be the image in X of the

ramification locus Rmov ⊂ Y for the point b. These form a family of closed subvarieties of

X.

We define the base locus of this family to consist of the set of points x ∈ X that lie in

Branchmov(b) for b general with respect to x, or equivalently for all b.

Corollary 4.21. If the base locus contains an irreducible subvariety of codimension ≤ 2

then it is one of the lines in the wobbly locus.

Proof. If x ∈ X is not on the wobbly locus then it is a very stable bundle, and the space of

Higgs fields on that bundle maps properly to the Hitchin base. Thus, the intersection with a

general Hitchin fiber over b is transverse, so x is not in the branch locus of the map Y → X

for general b.

Suppose x is in the wobbly locus and let S be the space of Higgs fields on the correspond-

ing bundle. It maps to the Hitchin base, by a map that is not proper. However, for a general

point b in the Hitchin base, the intersection of the fiber over b with S is transverse. There-

fore, for such a general b, if y ∈ Y is a point over x that is not in E , then it is in S ∩h−1(b)

hence not in Rmov. This shows that the points of Rmov lying over x are in Rmov ∩E .

We have seen in the proposition that for b general, the intersection of Rmov with E

consists of two constant sections of the map E = Ĉ × P1 → Ĉ, that move as a function of

b, and of 64 fibers of the map E = Ĉ × P1 → Ĉ. The images of these in the wobbly locus

have the same description.

So, suppose x is a point of the wobbly locus contained in the image of Rmov for two

different general values of b. Then it is in the intersection of two subsets of the form 2

sections plus images of 64 fibers; but the sections move, so x has to be contained in at most

one of the 64 lines. This completes the proof of the corollary.

Corollary 4.22. A general point on the cuspidal locus of the wobbly locus is not contained

in the movable part of the branch locus.

Proof. This follows immediately from the previous corollary since the cuspidal locus has

codimension 2 and is not a union of fibers.
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Corollary 4.23. The “movable part” of the ramification locus does really move, in the sense

that the base locus does not contain any divisors.

Proof. The above corollary implies that the codimension of the base locus is ≤ 2.

4.7 The step in the parabolic filtration

Recall that Va,b = f∗(La,b) and consider the sheaf

Va,b/Va,b−1

which is supported on Wob ⊂ X by definition. Over X◦ this is the quotient that will be

used to define the crude parabolic structure. For the computations, it will be necessary to

have a refined definition that holds over all of X. Recall that f : D → X denotes the map

from the normalization D of Wob.

Lemma 4.24. There is a quotient defined over D,

f∗(Va,b)→ Ua,b

such that Ua,b is a rank 2 torsion-free sheaf on D, hence a bundle outside of a finite collec-

tion of points. Over X◦ (this restriction being denoted by a superscript as usual) we have

(Va,b/Va,b−1) |X◦ = f∗U◦
a,b as quotients of V◦

a,b and this characterizes Ua,b.

Proof. Start by noting that the property of the lemma uniquely characterizes Ua,b. Indeed,

the condition at the end states that the kernel of the map f∗(Va,b)→ Ua,b is, over X◦ (where

D◦ = Wob◦ ⊂ X) the subsheaf of sections generated by Va,b−1. The condition that the

quotient Ua,b is a torsion-free sheaf means that the kernel is a saturated subsheaf, so it is

defined by its restriction to D◦.

This discussion tells us how to construct Ua,b, namely set

U◦
a,b := f∗ ((Va,b/Va,b−1) |X◦) = (Va,b/Va,b−1) |X◦

and then let Ua,b be the unique torsion-free quotient of f∗Va,b that restricts to U◦
a,b over D◦. It

is constructed by taking the saturated subsheaf extending the kernel and taking the quotient.

For this discussion, one should note that Va,b is a reflexive sheaf on X, indeed it is the

dirct image of a line bundle under a map from a normal (and indeed smooth) variety to X.
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In particuler, Va,b is a vector bundle outside of codimension 3, therefore f∗(Va,b) is a vector

bundle outside of codimension 2 on D.

The fact that Ua,b has rank 2 will become apparent from the next lemma.

Lemma 4.25. Let fE/D : E → D be the morphism induced by f . That is f|E : E → X

factors as

E
fE/D //D

f //X.

Then we have

Ua,b = fE/D,∗(La,b|E ).

Proof. Over X◦, we have D◦ = Wob◦ ⊂ X◦ and f∗U◦
a,b = U◦

a,b = f∗(L◦
a,b)/f∗(L◦

a,b(−E ◦)).

This quotient is equal, in turn, to f∗
(
iE◦,∗

(
L◦
a,b|E◦

))
, where iE◦ : E ◦ → Y is the natural

inclusion. Over these smooth points f∗ induces an equivalence between sheaves on D◦ and

sheaves on X◦ supported on D◦. Also, f ◦ fE/D = f ◦ iE so

f∗fE◦/D◦,∗(L◦
a,b|E◦) = f∗(iE◦,∗L◦

a,b|E◦).

From the equivalence we conclude that

fE◦/D◦,∗(L◦
a,b|E◦) = U◦

a,b.

This gives the claimed statement over D◦.

Next, consider the commutative diagram

E //

##

Y ×X D

��

// Y

��

D // X

we see that Va,b = f∗(La,b) restricts over D to the direct image under the middle downward

map, and this maps to fE/D,∗(La,b|E ). In other words, we have a map expressing the re-

lationship in question. This map is an isomorphism over D◦ by the preceding discussion.

Since E is smooth fE/D,∗(La,b|E ) is torsion-free—in fact it is a bundle, by “miracle flatness”.

Also, the map E → Y ×X D is a closed embedding so

f∗(La,b)→ fE/D,∗(La,b|E )

is surjective. It follows that the right hand side is the unique torsion-free quotient sheaf

extending the quotient U◦
a,b already known over D◦. This completes the proof that the right
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hand side is Ua,b. Notice that we obtain Ua,b as a torsion free sheaf of rank 2 because E → D

is a 2 : 1 covering.

The next step is to use this characterization to calculate the Chern character of Ua,b. This

calculation may be truncated at codimension 1 on D since that corresponds to codimension

2 on X.

Proposition 4.26. The Chern character of Ua,b truncated to codimension 1 on D is

ch(Ua,b) = 2 + (2a+ b)HD − (3b+ 2)H⊥
D

where H⊥
D = [C]− 16[P1] is a class whose direct image to X vanishes.

Proof. Write

HD := f∗(H) = α[C] + β[P1].

Noting that HD · [P1] = 1 gives α = 1, then noting that

HD ·HD = H2 ·Wob = 32

(see Lemma 4.4), we get 2αβ = 32 so β = 16. Thus

HD = f∗(H) = [C] + 16[P1].

We have

f∗[C] ·H = [C] ·HD = 16

so (recalling H3 = 4) we get f∗[C] = 4H2. We have that f∗[P1] is the class of a line in X,

this is H2/4. We get

f∗(HD) = 8H2.

The class H⊥
D := [C]− 16[P1] has the property that f∗(H⊥

D) = 0.

Turn to the question of the proposition. Consider the diagram

E
iE //

fE/D

��

Y

f

��

D
f
// X.
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We have

iE ,∗(La,b|E ) = La,b/La,b−1.

Applying f∗ to this gives Va,b/Va,b−1.

Recall that Ua,b := fE/D,∗(La,b|E ). From the diagram,

f∗(Ua,b) ∼= Va,b/Va,b−1.

Therefore, in order to calculate ch(Ua,b) we would like to know the relationship between it and

ch(f∗(Ua,b). Some further information will be needed due to the fact that the codimension 1

cycle class group of D ∼= C × P1 does not inject into that of X.

First apply the Grothendieck-Riemann-Roch formula for f. Recall that

td(TX)−1 = 1−H + 5H2/12.

Truncated to codimension 1 we get f∗td(TX)−1 = 1−HD. On the other hand, 2gC − 2 = 32

so c1(TD) = 2[C]− 32[P1], and

td(TD) = 1 + [C]− 16[P1].

The Grothendieck-Riemann-Roch formula says

ch(f∗(Ua,b) = f∗(2 + c1(Ua,b))(1 + [C]− 16[P1])(1−HD)

= f∗
(
2 + c1(Ua,b) + 2[C]− 32[P1]− 2[C]− 32[P1]

)
.

Noting that f∗(2[D]) = 2[Wob] and recalling from Lemma 4.4 that [Wob] = 8H, then also

using f∗[P1] = H2/4, we get

ch(f∗(Ua,b) = 16H + i∗c1(Ua,b)− 16H2.

Denote by ∆b the operation on a function f , ∆b(f) := f(a, b)−f(a, b−1). Thus for example

∆b(b) = 1 and ∆b(b
2) = 2b− 1 With this notation,

ch(Va,b/Va,b−1) = ∆b

[
8 + (8a+ 16b)H + (4a2 + 16ab+ 4b2 − 12b− 2)H2

]
= 16H + (16a+ 8b− 16)H2.

The comparison ch(i∗(Ua,b) = ch(Va,b/Va,b−1) yields

f∗c1(Ua,b) = (16a+ 8b)H2.
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In particular, it follows that

c1(Ua,b) = (2a+ b)HD + ξH⊥
D

for some ξ.

On the other hand, we can note that the inverse image in E of a line P1 ⊂ D consists of

two fibers in E . A fiber maps to a line in X so its intersection with F has one point. On

the other hand, E intersected with a fiber is −1. Thus, the bundle La,b restricted to a fiber

has class Ofib(a− b− 1) so its direct image to the line P1 ⊂ D has c1 = 2c1[OP1(a− b− 1)].

This tells us that

c1(Ua,b|P1) = 2a− 2b− 2.

Thus

((2a+ b)HD + ξH⊥
D).[P1] = 2a− 2b− 2.

This gives

(2a+ b) + ξ = 2a− 2b− 2

so ξ = −2− 3b and we get

c1(Ua,b) = (2a+ b)HD − (3b+ 2)H⊥
D .

From this calculation we immediately get the following

Corollary 4.27. Suppose S ⊂ D is a curve in the class of kDH , and take 2a+ b = 0. Then

Ua,b|S is a rank 2 vector bundle of degree 0 on S.

4.8 Hyperplane section

Let us now intersect the wobbly locus Wob ⊂ X with a general hyperplane section XH ,

this denoting a smooth divisor in the class of H on X.

The class of the divisor H on D is HD, described above as

HD = [C] + 16[P1].
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One has (HD)2 = 32. We note also that HD is the trace of XH on D, in particular its image

in XH is Wob ∩XH . That is a curve WobH in XH whose normalization is isomorphic to C

since the projection HD → C is an isomorphism.

We would now like to count the double points of the curve WobH . The intersection of

the curve with the 6 divisors

C × {pi}

are the points in the normalization C that get identified in pairs to form the double points

of the image curve WobH = Wob∩XH . The number of points in the intersection of HD with

these 6 horizontal divisors is 6 · 16 = 96, so there are 96 points lying over the double points.

We conclude:

• There are 48 double points on the curve WobH .

We now consider the genus of the normalization of WobH . The class of WobH is in 8H

on XH , so

(WobH)2 = (8H)2XH
= 64H3 = 64 · 4 = 256.

The genus of a smooth curve S in this class is given as follows: we recall that KXH
= −H so

KS = KXH
· S +OS(S) = −H · (8H)XH

+ (8H) · (8H)XH
= 56H3 = 224.

This gives 2gS − 2 = 224 so gS = 113.

If there were no singularities except the 48 double points, we would get the genus of the

normalization of WobH to be 113 − 48 = 65. However, the normalization is C that has

genus 17. Hence, there are additional singularities accounting for a drop in the genus of

65− 17 = 48. We first guessed then proved:

• The curve WobH has its 48 nodes, plus 48 cusps.

The count of cusps comes from the structural result on the cuspidal locus in Proposi-

tion 4.5, proven in Subsection 4.4. The number of cusps of is obtained as follows. The

structural result says that the cuspidal locus of Wob is the graph of a map C → P1 of degree

32. It intersects [P1] in 1 point and [C] in 32 points so it intersects HD = [C] + 16[P1] in 48

points.
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4.9 Summary of properties of our given sheaves

We are defining a vector bundle Va,b on X by taking the direct image of the line bundle

L0(aF + (b+ 1)E) for a line bundle L0 of degree 0. We have calculated its Chern character

in Proposition 4.12,

ch(Va,b) = 8 + (8a+ 16b)H + (4a2 + 16ab+ 4b2 − 12b− 2)H2.

It is instructive to calculate the Bogomolov ∆-invariant. Notice that modifying a cor-

responds to tensoring with a line bundle pulled back from X, so we may assume a = 0.

Then

∆(V0,b) =
1

2r
c21 − ch2

= (16b2 − (4b2 − 12b− 2))H2

= (12b2 + 12b+ 2)H2.

For integer values of b, the minimum of 2H2 is attained at both values b = −1 and b = 0.

Symmetry considerations suggest that the desired parabolic weight should be 1/2. with the

parabolic structure creating an interpolation from V0,−1 to V0,0.
One can see, by the way, that it is not correct to just imagine a fractional value of b, indeed

the above formula at b = −1/2 would give ∆ = −H2 contradicting the Bogomolov-Gieseker

inequality. Nonetheless, the symmetry consideration leads us to try using a parabolic weight

of 1/2 which will turn out to work, once the second Chern class is adjusted appropriately at

the singularities.

Over D we have a morphism

f∗(Va,b)→ Ua,b → 0

and the Chern character of Ua,b on D is

ch(Ua,b) = 2 + (2a+ b)HD − (3b+ 2)H⊥
D

by Proposition 4.26.

We would like to use this to define a parabolic structure along Wob. It will be easier now

to pass to the hyperplane section XH and consider the parabolic structure along WobH . Let

DH denote the normalization of WobH , and HDH
the restriction of H to here.

Note that H⊥
D restricts to zero on the hyperplane section DH , so

ch(Ua,b)|DH
= 2 + (2a+ b)HDH

.
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It is not at all easy to understand how to calculate the contributions of cusps to the parabolic

c2. Taher’s papers [Tah10, Tah13] consider a multiple point, rather than a cusp, and in any

case the procedure—which could theoretically be implemented also for the cusp, or even

imported by going to a covering and transforming the cusp to a triple point—is rather

complicated.

Therefore, we shall adopt a shortcut: we will just look at the calculation for the parabolic

weight α = 1/2, and we will do that by going to a cover that is ramified with ramification

index of 2 over the curve WobH . Then, on the cover rather than defining a parabolic structure

we will use the quotient U to make a modification of the bundle. The construction follows

the technique described in Proposition 3.15.

4.10 First parabolic Chern class

The first parabolic Chern class may be described by a simplified integral formula as just

the average of ch1(Ea) over a ∈ [0, 1]. In our situation of a crude parabolic structure with

sheaves V = Va,b and V ′ = Va,b−1 and parabolic weight α = 1/2 the formula becomes

chpar
1 (E·) =

∫ 1

a=0

ch1(Ea)da

=
ch1(V ′) + ch1(V)

2

=
(8a+ 16(b− 1))H + (8a+ 16b)H

2

= (8a+ 16b− 8)H.

We should choose a = 1 and b = 0 to give chpar
1 = 0. This is motivated by the symmetry

consideration described above and the fact that we are looking for a parabolic structure with

vanishing first Chern class.

However, recall that modifying a amounts to tensoring with a line bundle on X = X1.

We can do that later. For simplicity we will therefore assume a = 0, b = 0.

4.11 Going to a cover of XH

In order to put this strategy into play, let us suppose we are given a finite ramified

covering g : Z → XH together with a ramification locus R ⊂ Z, such that g−1(WobH) = 2R,

in other words g is ramified with ramification of order 2 along R over WobH .
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We recall that the cusp is the downstairs branch locus of the quotient

C2 → C2/S3 = C2.

Upstairs, the branch locus consists of 3 crossed lines. Therefore, we may assume that this

provides the local model for our covering Z → XH over cusps of WobH . This local model is

a covering of degree 6.

On the other hand, we will suppose that the local model for the covering over a double

point, is just the product of two ramified coverings with ramification two. This local model

is a covering of degree 4.

The covering Z may be constructed globally by the Kawamata covering trick [Kaw88].

There may be ramification elsewhere but that does not need to worry us.

Let d denote the degree of the covering Z → XH .

• Over the 48 cusps of WobH we will therefore have 48d/6 = 8d triple points of R.

• Over the 48 double points of WobH we will in turn have 48d/4 = 12d double points of

R.

Let R̃ denote the normalization of R. Let VZ denote the restriction of V = Va,b to Z. We

have a map, defined over R̃:

VZ |R̃ → UR̃.

Here UR̃ is the pullback of Ua,b to R̃. Let

iR̃ : R̃→ Z

denote the birational inclusion. We can define the “normal bundle” NR̃/Z by

i∗
R̃
KZ ⊗NR̃/Z

∼= KR̃.

Let us calculate this in the following way. From the picture, a double point leads to two

extra self-intersection points, whereas a triple point leads to 6 extra self-intersection points.

Therefore, we get

NB̃/Z + 2(double pts) + 6(triple pts) = R2.

Now R has class 4H so R2 = (4H)2 = 16H2, which pulled back to Z together with H2 = 4

on XH , gives

R2 = 64d.
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Recall that we have 12d double points and 8d triple points, so our formula gives

degNR̃/Z = 64d− 2 · 12d− 6 · 8d

= 64d− 24d− 48d

= −8d.

On the other hand, let us recall the Grothendieck-Riemann-Roch formula (ignoring higher

order terms)

ch(iR̃∗UR̃) = iR̃∗ch(UR̃)− rU
R̃
iR̃∗NR̃/Z/2.

Recall that U has rank 2. Thus the term −rU
R̃
iR̃∗NR̃/Z/2 is equal to −(−8d) = +8d and so

we get

ch(iR̃∗UR̃) = 2R + degUR̃ + 8d.

Recall that 2R = g∗(WobH) has class 8H.

Let us now set (a, b) = (0, 0). As explained in the previous subsections, this differs from

the value we guess that it will be good to look at, by a modification of a that amounts to

tensoring with a line bundle on X, and we will recover that later.

With this choice, U has degree 0 by Corollary 4.27, so we get

ch(iR̃∗UR̃) = 8H + 8d.

We now note that the map

VZ → iR̃∗UR̃

is not going to be surjective.

Here is a guess as to what the image is going to be. The proof will be a consequence of

the Bogomolov-Gieseker inequality.

A little like the principle that the two quotients are independent at the double points,

it looks likely that the quotient over the double point is something that is “moving”, cor-

responding to a smooth curve in the Grassmanian of the total bundle above the cusp. The

guess is that the image of the above map corresponds then, not to the structure sheaf of the

embedded plane curve R, but rather to the version of R that has a triple point embedded

as a space curve. Let us call this curve R♯, it is obtained by not glueing together the points

lying over double points, but by glueing together the points lying over a triple point in as

small a way as possible. We get

0→ OR♯ → OR̃ → S → 0
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where S is a skyscraper sheaf that has length 2 over each triple point. (To get to the plane

curve R one would use a skyscraper sheaf of length 3).

Lemma 4.28. The image of the map

VZ → iR̃∗UR̃

is the subsheaf

UR♯ ⊂ iR̃∗UR̃.

The proof will be deferred to below, since it is motivated by the following computations.

With this hypothesis, we have

0→ UR♯ → iR̃∗UR̃ → SU → 0

where SU has length 4 over each triple point (4 because U has rank 2).

Then, the hypothesis is that we have a surjection

VZ → UR♯ → 0.

Let V ′
Z be the kernel, this will be our vector bundle over the covering Z corresponding to

the “pullback of the parabolic bundle to Z”.

Using the fact that there are 8d double points, we get

ch(UR♯) = ch(iR̃∗UR̃)− 8d · 4

= 8H + 8d− 32d = 8H − 24d.

Let us put this together with the Chern character of VZ . Recall that we are setting (a, b) =

(0, 0) so ch2(V0,0) = −2H2 on XH . Recall that H2 has 4 points on XH , and then we pullback

by the covering g of degree d, so we get

ch2(VZ) = −8d

(here measuring in terms of numbers of points) on Z.

Recall also that at (a, b) = (0, 0) we have ch1(V0,0) = 0.

Altogether:

ch(V ′
Z) = ch(VZ)− ch(UR♯)

= 8− 8H − 8d+ 24d

= 8− 8H + 16d

= 8(1−H + 2d).
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We now note that H2/2 = 2d points on Z so, the term 2d above that is counted in terms of

points on Z, may be written as H2/2. We get the formula:

ch(V ′
Z) = 8(1−H +H2/2).

This clearly expresses the bundle V ′
Z as equivalent to 8 times a line bundle since 1 − H +

H2/2 = e−H . Therefore, just by inspection, its ∆-invariant vanishes and we have a projec-

tively flat bundle.

If we then tensor with OX(H) we obtain a Higgs bundle with vanishing Chern classes.

4.11.1 Proof of the lemma

Following through what would happen in the above calculations if the image were differ-

ent, we can now give the proof of the lemma.

Proof of Lemma 4.28. We note that the map VZ → iR̃∗UR̃ sends sections of VZ to sections of

UR̃ that agree over the point where the three branches come together. Thus, the morphism

factors through a map VZ → UR♯ . The question is to show that it is surjective. Suppose not.

Let U ′ denote the image, and let ℓ denote the total length of the quotient sheaf U ′/UR♯ (take

the sum over all the cuspidal points).

In the above discussion, let V ′
Z still denote the kernel of the map VZ → U ′, so we have a

left exact sequence

0→ V ′
Z → VZ → U ′ → 0.

Now ch(U ′) = ch(UR♯)− ℓ = 8H − 24d− ℓ, and following the same calculation as before but

with the extra term ℓ gives

ch(V ′
Z) = ch(VZ)− ch(U ′)

= 8− 8H − 8d+ 24d+ ℓ

= 8(1−H + 2d) + ℓ

= 8(1−H +H2/2) + ℓ.

Recall that the Bogomolov-Gieseker inequality says that c2 can only go up from the flat case,

hence ch2 can only go down. The bundle V ′
Z would be a stable Higgs bundle on Z, and if

ℓ > 0 this would contradict Bogomolov-Gieseker. Thus, we conclude ℓ = 0 which completes

the proof of the lemma.
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4.12 Degree one case—conclusion

Theorem 4.29. Suppose L0 ∈ Pic(Y ) is the pullback of a flat line bundle on the abelian

variety P, and set L := L0 ⊗OY (E + F ). Let

V := f∗(L) = V0,0 ⊗OX(H)

provided with its natural crude parabolic structure with weight α = 1/2 (tensoring the one

defined above with quotient U0,0, by OX(H)). Then this is a crude parabolic logarithmic Higgs

bundle over (X◦,Wob◦) that admits an extension to a purely imaginary twistor D-module as

in Theorem 3.13. The associated local system on X −Wob has rank 8 and its monodromy

around Wob is semisimple with eigenvalues 1 of multiplicity 6 and −1 of multiplicity 2.

The spectral line bundle on Y is L′ = L0 ⊗OY (F ).

Proof. We saw in the previous subsections that choosing Va,b for (a, b) = (0, 0) yields a

projectively flat solution whose (truncated) parabolic Chern character is 8(1−H +H2/2).

Tensoring this by OX1(H) corresponds to choosing (a, b) = (1, 0), taking the crude

parabolic structure V1,0 with subsheaf V ′
1,0 = V1,−1, and this yields a parabolic Higgs bundle

with vanishing parabolic Chern classes. The rank is 8 and the parabolic structure along Wob

has parabolic weight 1/2 with multiplicity equal to the rank of U which is 2, completed by

parabolic weight 0 with multiplicity 6. This gives the stated eigenvalues of the monodromy.

We note that the spectral line bundle, by definition the one whose direct image from Y

to X gives E0, is L′
a,b = La,b−1 = L0 ⊗OY (F ).

5 The degree zero moduli space

In this section X denotes the degree 0 moduli space and Y denotes its modular spectral

covering of degree 8 that is the blow-up of the Prym variety P = P2 in 16 points. Similarly

Wob means Wob0 and so forth.

Narasimhan and Ramanan show that X ∼= P3 [NR69]. There is a Kummer surface

of degree 4 with 16 nodes that we will denote by Kum ⊂ X. This is the moduli space of

bundles that are semistable but not stable, up to S-equivalence. The S-equivalence class

corresponding to a point of Kum is represented by a polystable bundle of the form L ⊕ L∨

where L ∈ Jac0(C) is a line bundle of degree 0.

We have

Kum ∼= Jac0(C)/± 1,
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a point on Kum corresponding to a pair (L,L−1) of degree zero line bundles on X, up to

interchangeing L and L−1. The corresponding polystable bundle is E = L ⊕ L−1. When

L = L−1, that is to say at the 16 points of order two on Jac0(C), we get a singular point of

Kum.

Let Higgs0 be the corresponding Hitchin moduli space of Higgs bundles with determinant

OC , the Higgs field having zero trace.

5.1 Geometry of the wobbly locus in degree zero

The Higgs bundle moduli space has a locus analogous to the Kummer surface.

Lemma 5.1. The Hitchin moduli space is singular along a codimension two subvariety

Higgssing0 , and this subvariety consists of the set of polystable but not stable Higgs bundles.

We have

Higgssing0
∼=

Jac0(C)×H0(C,KC)

±1
,

a point here parametrizing a Higgs bundle of the form (L, ϕ)⊕(L−1,−ϕ). The set of C× fixed

points of Higgssing0 is equal to the Kummer surface Kum ⊂ X. Outside of the 16 singular

points of Kum, the transverse local structure of Higgs0 along Higgssing0 is that of a simple

double point.

Proof. A stable Higgs bundle E has only scalar endomorphisms, and by duality the trace-

free H2, that is to say H2
Dol(End0(E)), vanishes. This is the obstruction space to deforming

E. Thus, a stable Higgs bundle is a smooth point of Higgs0 (this is well-known, of course).

Thus, a singular point must be a strictly semistable point represented by a polystable Higgs

bundle. Since we are in rank 2, it is a direct sum of line bundles, and the condition that

the determinant is trivial means that it must have the stated form (L, ϕ)⊕ (L−1,−ϕ). The

structure is that of the moduli space of (L, ϕ) modulo the involution (L, ϕ) 7→ (L−1,−ϕ).

A Higgs bundle of this form is fixed by C× if and only if ϕ = 0, the fixed points are

therefore inside the moduli space of bundles X ⊂ Higgs0 and are in the Kummer surface.

Suppose we are at a point L ∈ Kum corresponding to (L, ϕ = 0) with L ̸∼= L−1. In other

words L = (L, 0)⊕ (L−1, 0), H2
Dol(End

0(L)) = C, and

H1
Dol(End0(L)) = H1

Dol(O)⊕H1
Dol(L

⊗2)⊕H1
Dol(L

⊗−2)

with the Kuranishi map being given by the trace of the cup-product (recall that the Goldman-

Millson deformation theory is formal [GM88, Sim92]). The cup product vanishes on H1
Dol(O),
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which is the unobstructed deformation space of (L, 0). On H1
Dol(L

⊗2)⊕H1
DOLpar

L2
(L⊗−2) it is

the same as the Poincaré duality form. Thus, as a quadratic form it defines a simple double

point in the direction transverse to the deformation space of (L, 0) i.e. the tangent space of

Higgssing0 . We see in particular that Higgs0 is indeed singular along this locus.

In Proposition 3.3(a) we showed that the set HiggsC
×,nu

0 of C×-fixed points on Higgs0 that are

not on X, is a disjoint union of 16 points. These points cprrespond to the 16 Higgs bundles

Eκ = (Eκ, θκ) =

(
κ⊕ κ−1,

(
0 0

1 0

))
, κ ∈ Spin(C).

From this picture, we can now describe the wobbly locus in X completely.

Proposition 5.2. The wobbly locus Wob ⊂ X decomposes as

Wob = Kum ∪

 ⋃
κ∈Spin(C)

Tropeκ


where each Tropeκ

∼= P2 ⊂ X = P3 is a plane corresponding to the fixed point Eκ. Outside of

its 16 nodes Kum is simply tangent to each Tropeκ along a smooth conic Cκ ⊂ Tropeκ
∼= P2,

and any two trope planes intersect transversally.

Proof. We already described the components of the wobbly locus in the proof of Theorem 3.6

but for completeness we recall the relevant arguments here. A wobbly bundle E is either

strictly semistable, in which case it corresponds to a point of Kum, or it is stable but has a

nonzero nilpotent Higgs field. In the second case, the upward limit of the C× orbit corre-

sponding to that Higgs field is a fixed point not in X, so by Proposition 3.3(a) the limiting

Higgs bundle has the form κ ⊕ κ−1 where κ is a square-root of ωC . In terms of the bundle

E, it means that there is an exact sequence

0→ κ−1 → E → κ→ 0.

Thus E corresponds to an extension class ξ ∈ H1(κ−2) = H1(ω−1
C ) ∼= H0(ω⊗2

C )∨. The set

of bundles corresponding to extension classes like that is a P2. Narasimhan-Ramanan’s

discussion [NR69, Proposition 6.1, Theorem 2] shows that the map from the projectivized

space of extension classes into X = P3 is linear, thus we obtain a linear Tropeκ
∼= P2 ⊂ P3.
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These define the 16 divisors Tropeκ. They are different since the fixed points are different.

The intersections Tropeκ ∩Tropeκ′ are therefore transverse. Note also that, as we will see in

Corollary 5.5 below, three distinct trope planes can not meet along a line, so the intersections

between trope planes are normal crossings in X-codimension 2.

We consider next the condition that an extension of the above form lies in the Kummer

surface. It means that there is a line bundle U of degree 0 with a map U → κ such that the

extension splits. We may write U = κ(−t) for a point t ∈ C. Splitting the extension means

that the image of ξ under the map

H1(ω−1
C )→ H1(ω−1

C (t)) ∼= H1(OC(−t′))

should vanish, where t′ is the hyperelliptic conjugate of t. This determines an extension ξ

uniquely up to scalars. Furthermore, the extension determined by t′ yields an S-equivalent

bundle since

κ(−t)⊗ κ(−t′) = ωC(−t− t′) = OC .

Thus, the map from C to the space of extensions factors through a map from P1. Notice

that the map from C to Kum comes by sending t to the line bundle κ(−t) ∈ Jac0(C) and

then projecting from the Jacobian to the Kummer.

Let us consider a different plane given by the space of extensions of the form

0→ V −1 → E → V → 0

for V some general line bundle of degree 1. This plane is the space of bundles such that

H0(V ⊗ E) ̸= 0. If that holds for E then it holds for the polystable bundle in the S-

equivalence class of E, so it means that we look for the condition H0(V ⊗ κ(−t)) ̸= 0. We

note that the degree 2 bundle V ⊗ κ is general, so it has a single section with two zeros. If t

is one of these zeros, then we get a solution. The case of a hyperelliptically conjugate point

is when the other piece H0(V ⊗ κ(−t′)) ̸= 0. There are two points in P1 that are the images

of the zeros of the section of V ⊗ κ, corresponding to the intersection with this plane. We

conclude that the rational curve image of P1 is a conic.

Thus, Kum ∩ Tropeκ has reduced scheme equal to a conic, so it is twice a conic in the

plane Tropeκ
∼= P2.

Remark 5.3. In the classical studies of the geometry of the Kummer surface (see [Kle70,

GH94, NR69, Bea96, Keu97, Dol20, Hud05]), these 16 planes were known as the trope planes.
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Each trope plane passes through 6 of the 16 singular points of the Kummer surface, and each

singular point is contained in 6 of the 16 trope planes. This configuration was known as the

Kummer 166 configuration. The conics Cκ are called trope conics. We have adopted

the ‘trope’ terminology.

Proposition 5.4. Inside one of the trope plane Tropeκ, the trope conic may be identified

with the hyperelliptic P1. The six branch points in the hyperelliptic P1 correspond to the 6

nodes of Kum contained in that trope plane. The 15 lines of intersection with the other trope

planes, consist of all lines passing through pairs of branch points (i.e. nodes of Kum on the

trope conic.

Proof. In modular terms, a trope plane corresponds to a choice of a square-root κ of ωC ,

with the corresponding Tropeκ ⊂ X ∼= P3 consisting of all the bundles that are extensions of

the form

0→ κ−1 → E → κ→ 0.

Such a bundle E belogs to Kum if it contains a degree 0 line bundle; such would be of the

form L = κ(−t) with the dual L−1 = κ(−t′) where t′ is the hyperelliptic conjugate of t.

The bundle determines in this way, and is determined by, a point on the hyperelliptic P1.

The nodes of the Kummer surface occur when L−1 ∼= L, thus t′ = t in other words these

correspond to branch points in the hyperelliptic P1. Now, given two different branch points

x1 and x2 we get (κ′)−1 := κ(−x1 − x2). This is the dual of another square-root κ′ of ωC .

The set of bundles E that admit non-zero maps from (κ′)−1 is the intersection of Tropeκ and

Tropeκ′ . This set contains in particular the bundles containing κ(−x1) respectively κ(−x2),
i.e. this intersection line passes through the two branch points x1 and x2 on the trope conic.

We have identified a set of 15 lines that is on the one hand the set of intersection lines

between Tropeκ and all the other planes, and on the other hand is the set of lines through

pairs of the 6 branch points.

Corollary 5.5. No three trope planes pass through the same line.

Proof. Recall that we are assuming genericity of the set of 6 branch points of the hyperelliptic

curve. If there were three trope planes passing through the same line, then another trope

plane would contain a configuration of three lines of the form Lκκ′ = Tropeκ∩Tropeκ′ as in the
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proof of the proposition, that pass through the same point. However, noting that all smooth

plane conics are projectively equivalent to a given fixed one, our set of 6 branch points is

general on the conic. If three of the lines Lκκ′ were to pass through the same point, we could

jiggle one of the branch points to move one of the three lines away from that intersection

point, so this can not happen under our genericity hypothesis.

Let P ⊂ Higgs0 be the fiber of the Hitchin fibration corresponding to a spectral curve

π : C̃ → C. Notice that, although the Hitchin fibrations are different for degree 0 and 1, the

base is still the space of quadratic differentials and the spectral curves are the same. Thus,

Proposition 3.1 applies, and C̃/C is branched over two pairs of hyperelliptically conjugate

points a, a′, b, b′.

Then, as we saw in Theorem 3.6 we need to blow up P = P2 at the 16 points {π∗κ}κ∈Spin(C)

to get Y with a map f : Y → X. Let H be the hyperplane class on X, let F be its pullback

to Y , and let E =
∑

κ∈Spin(C) Eκ be the exceptional divisor (union of 16 disjoint P2’s).

Lemma 5.6. Under the finite morphism f : Y → X each plane Eκ maps isomorphically

to the corresponding plane Tropeκ in X, the map from Y to X being ramified with index 2

there, and this accounts for the ramification over general points of Tropeκ.

Proof. We have seen in the proof of Theorem 3.6 and in Proposition 5.2 that the plane

Tropeκ is the projectivized set of downward directions at the fixed point, which is isomorphic

to the projectivized normal bundle of the upward subset emanating from the fixed point.

This in turn is isomorphic to the projectivized normal bundle of the intersection point of the

upward set with P , which is the exceptional divisor Eκ.

Let us recall why the upward subset intersects the Prym in a single point (this explains

why there are 16 points to blow up, as stated above). Our fixed point corresponds to a

nilpotent Higgs bundle with underlying bundle of the form κ ⊕ κ−1 where κ is a square-

root of ωC . The upward subset is the set of Higgs bundles whose underlying vector bundle is

unstable with detabilizing subbundle L. To intersect with the Prym, we look for line bundles

U on C̃ of degree 2 whose norm is ωC , such that there is a map κ → π∗(U) or equivalently

π∗κ→ U . But π∗κ also has degree 2 on C̃ so U = π∗κ is the unique solution.

There is an involution of P given by applying the hyperelliptic involution on C̃ (which

covers the hyperelliptic involution on C). Up to translation by ωC , this amounts to doing

−1 on the abelian variety, and the 16 points being blown up are the fixed points. Normal
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directions to these points are also fixed, so the Eκ are fixed points of the induced involution

of Y .

The pullback of a semistable degree 0 bundle by the hyperelliptic involution on C is

S-equivalent to itself. This is known for local systems in the work of Goldman and Heu-

Loray [Gol97, HL19], in particular it applies to unitary local systems and hence to polystable

bundles.

The map f : Y → X therefore factors through the quotient by the involution. But the

involution acts by −1 on the normal directions, so it acts by −1 on the normal bundle of

Eκ, giving a simple ramification divisor of the map from Y to its quotient by this involution

along Eκ.

We claim that this accounts for the ramification of the map f : Y → X along Eκ.

Suppose that a point of Eκ counts for m points in the fiber of f : Y → X that has degree

8 (Lemma 4.9). We are claiming that m = 2, and have shown in the preceding paragraph

that m ≥ 2. A monodromy argument (when moving everything around, the planes Eκ get

interchanged transitively) tells us that this coefficient m is the same for all Eκ. Now, Tropeκ

is a plane inside X = P3, so a different component Tropeκ′ intersects it in a line. Consider

yet a third component Tropeκ′′ that intersects this line in at least one point. This is not

a smooth point of the Kummer surface, since the trope planes are tangent planes to the

Kummer surface at points on the trope conics that are different from the 16 singular points,

and the tangent plane is unique so in that case the three planes would be the same. The

point might be one of the 16 singular points of the Kummer surface. However, that does

not always happen. Indeed, the other trope planes intersect Tropeκ in 15 lines, and the

various intersection points of these lines can not be limited to only the singular points of

the Kummer surface (of which there are 6 corresponding to the Weierstrass points inside the

P1 of the trope conic). So we can choose Tropeκ′ and Tropeκ′′ to correspond to lines that

intersect somewhere in Tropeκ other than a singular point.

Now, the exceptional divisors upstairs in Y are three disjoint planes Eκ,Eκ′ ,Eκ′′ . In

particular, lying over the intersection point inside X, there are at least three different points

in the Eκ,Eκ′ ,Eκ′′ . This would give 3m ≤ 8, from which we conclude m = 2.

We now know that in a fiber over a general point of Tropeκ, there is a ramification point

in Eκ counting for 2 points in the degree 8 fiber, plus 6 other points on Y that are not

in the exceptional divisor, in other words they are in the locus of Higgs0 whose underlying

bundle is stable. An argument similar to the proof of Lemma 5.13 below shows that for a

general point in the Hitchin base, and over a general point of Tropeκ, the other 6 points are
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unramified.

5.2 Computations in degree zero

Recall that by convention we drop terms of degree ≥ 3 in all expressions.

Proposition 5.7. The Todd classes for the degree 0 moduli spaces are:

td(TX) = 1 + 2H + 11H2/6,

f ∗td(TX)−1 = 1− 2F + 13F 2/6,

td(TY ) = 1−E + E 2/3,

td(Y/X) = (1− 2F + 13F 2/6)(1−E + E 2/3).

Proof. For Y which is the blow-up of an abelian variety at 16 points we saw

ch(TY ) = 3− 2E + 2E 2.

In particular c2(TY ) = 0. Thus

td(TY ) = 1 + c1/2 + (c21 + c2)/12

= 1−E + E 2/3.

Next,

td(TPn) = 1 + c1/2 + (c21 + c2)/12

= 1 +
n+ 1

2
H +

3n2 + 5n+ 2

24
H2.

For X = P3 this gives

td(TX) = 1 + 2H + 11H2/6,

hence

td(TX)−1 = 1− 2H + 13H2/6.

Thus

(f ∗td(X))−1 = 1− 2F + 13F 2/6.
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Proposition 5.8. The triple intersections of divisor classes on the degree 0 modular spectral

covering Y are:

F 3 = 8, EF 2 = 16, E 2F = −16, E 3 = 16.

Proof. The degree of f : Y → X is 8 and we have H3 = 1 in X = P3, so F 3 = 8. Next,

F 2 is the pullback of a line that intersects the 16 trope planes in 16 points. As the map π

identifies the trope planes with the corresponding components of E we have EF 2 = 16.

Next, for each Eκ the self-intersection E 2
κ is the class on Eκ of the normal bundle. The

normal bundle of Eκ in Y is OEκ(−1) so it is minus the class of a line in Eκ. We get that

E 3
κ is the intersection of two of these together, so it is 1. Adding 16 of these together gives

E 3 = 16. The intersection of the line with F is the same as the intersection of its image in

X, which is again a line in the trope plane, with H. This is 1 so with the minus sign and 16

planes we get E 2F = −16.

Proposition 5.9. Suppose L = OY (aF + bE) is a line bundle on Y and let E := f∗L. Then

ch1(E) = (8(a− 2) + 16(b− 1))H

and

ch2(E) = 4(a2 + 4ab− 2b2 − 8a− 4b+ 11)H2.

Proof. The Grothendieck-Riemann-Roch formula says

ch(E) = f∗
(
td(Y/X)eL

)
= f∗

[
(1−E + E 2/3)(1− 2F + 13F 2/6)(1 + (aF + bE) + (aF + bE )2/2)

]
.

Thus

H2 · ch1(E) = F 2((a− 2)F + (b− 1)E ) = 8(a− 2) + 16(b− 1).

And

H · ch1(E) = F (E 2/3 + 13F 2/6 + (aF + bE)2/2 + 2EF − (aF + bE)(E + 2F ))

= E 2F (1/3 + b2/2− b) + EF 2(ab+ 2− a− 2b) + F 3(13/6 + a2/2− 2a)

and using Proposition 5.8 this becomes

4a2 + 16ab− 8b2 − 32a− 16b+ (52/3 + 32− 16/3)

= 4(a2 + 4ab− 2b2 − 8a− 4b+ 11).

Noting that H3 = 1 on P3 this gives the required formula.
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Corollary 5.10. If we impose the condition ch1(E) = 0 by setting

L = OY (E + 2F +m(E − 2F )) with m ∈ Z

then

ch2(E) = (−24m2 + 4)H2.

Proof. Indeed we then have a = 2(1−m) and b = (m+ 1) so the formula becomes

4(4(1−m)2 + 8(1 +m)(1−m)− 2(m+ 1)2 − 16(1−m)− 4(m+ 1) + 11)

= 4(4m2 − 8m+ 4 + 8− 8m2 − 2m2 − 4m− 2− 16 + 16m− 4m− 4 + 11)

= 4(−6m2 + 1) = (−24m2 + 4).

Corollary 5.11. The extremal value for ch2(E) is at m = 0 in other words L = OY (E +2F )

and then

ch2(E) = ch2(π∗(OY (E + 2F )) = 4H2.

Note that the extremal value for L is the same as −td1. This is a general phenomenon. At

this value, ch2(E) = 4H2 contradicts the Bogomolov-Gieseker inequality. That indicates, on

the one hand, that E is not a stable bundle. On the other hand, it is stable as a bundle

with meromorphic Higgs field. The Higgs field is logarithmic along the smooth points of the

wobbly divisor, but the contradiction to the Bogomolov-Gieseker inequality indicates that if

we pull back to a resolution making the wobbly divisor into a normal crossings divisor, the

resulting Higgs field there is not going to be logarithmic. We will see that in more detail

in the next sections, in which we investigate what parabolic structure can be put over the

resolution of singularities in order to get a logarithmic Higgs field with maximal value of ch2.

We will see that the maximal value is then 0 yielding a flat bundle.

We may note here a general principle: the corrections to ch2 coming from the required

parabolic structures at the singularities, over a planar slice (so the singularities are tacnodes),

are local and do not depend on L. Therefore, whatever they are, the extremal value has

to be obtained when the ch2 calculated above is extremal. This means that L has to be

numerically equivalent to OY (E + 2F ).
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5.3 Ramification and Riemann-Roch

Recall that f : Y → X is a finite covering of degree 8. We would like to understand the

ramification. First is the ramification over the wobbly locus.

Proposition 5.12. The ramification of the map f : Y → X over general points of the

components of the wobbly locus is as follows. Over a general point of the Kummer surface

Kum ⊂ X, the covering f is fully ramified, breaking into four pieces with simple ramification.

Over each of the 16 trope planes, the covering f breaks generically into a simply ramified

map along the corresponding component of E plus a degree 6 etale cover.

Proof. The part about ramification over the trope planes was shown in Lemma 5.6. We need

to describe the ramification over a general point of the Kummer surface.

Let us describe the points of Y lying over a general point of Kum. If E ∈ Kum is such a

point, there is a line bundle L of degree 0 on C with an inclusion L ↪→ E. If E = π∗(U) for a

degree 2 line bundle U on C̃, by adjunction it means that there is a nonzero map π∗(L)→ U ,

hence

U = π∗(L)⊗OC̃(ũ+ ṽ)

for two points ũ, ṽ ∈ C̃. Let u, v denote their images in C. The determinant of π∗(U) is

L⊗2 ⊗ ω−1
C (u+ v) so the trivial determinant condition detE = OC says

OC(u+ v) = ωC ⊗ L⊗−2.

This determines the points u, v as the zeros of the unique section of ωC ⊗ L⊗−2 (for generic

L). Then, ũ and ṽ are liftings of these points to C̃. There are 4 combinations of liftings.

Conversely, each one determines a bundle U such that there exists a map L ↪→ π∗(U).

We claim that π∗(U) is polystable. This may be seen by noting that as we move around

in Kum, the line bundles L and L−1 interchange, so if there is an inclusion from L at a

general point there has to be an inclusion from L−1 too. It may also be seen as follows.

Recall that C̃ is hyperelliptic too, and let σ denote its hyperelliptic involution, that covers

the hyperelliptic involution ιC of C. Thus, σ∗π∗(L) = π∗(L−1) since L−1 is the pullback of

L by the hyperelliptic involution on C. We obtain a map L−1 → π∗(σ
∗(U)) = ι∗C(E). As

noted in the proof of Lemma 5.6, ι∗C(E) ∼= E so we get a map L−1 ↪→ E. For L general, this

gives an isomorphism L⊕ L−1 → E.

Using the fact that π∗(U) are polystable, we can calculate the fiber using either one of

the degree 0 line bundles contained in E. The previous calculation shows that there are 4

points.
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As L⊕ L−1 moves around in Kum, the points u, v move around in C and this induces a

transitive action on the set of 4 liftings. Thus, the ramification degree of Y/X at the different

points must be the same, and since deg(Y/X) = 8 we conclude that the 4 points each have

ramification degree 2, in other words simple ramification. This completes the proof.

Next we calculate the class of the ramification divisor of the map f : Y → X. We have

ωX = OX(−4H) so f ∗ω−1
X = OY (4F ). From the formula for the canonical class of the

blow-up, we have ωY = OY (2E). This gives

OY (R) = ωY ⊗ f ∗ω−1
X = OY (2E + 4F ).

The ramification divisor includes a copy of the reduced divisor of the inverse image of the

Kummer surface Kum since π is fully ramified over Kum. Let us call this part RKum. As

OX(Kum) = OX(4H), but the pullback of Kum is twice RKum we get

RKum = 2F .

Let RTro = E be the part of the ramification over the trope planes. Let RMov denote the

novable part RMov := R−RKum −RTro of the ramification divisor. We therefore have

RMov ∈ |OY (2F + E)| .

Lemma 5.13. The ramification RMov is movable in the following sense: all components of

the image of this divisor in X move as a function of the point in the Hitchin base.

Proof. Let BMov ⊂ X be the image of RMov. This does not contain any component of the

wobbly locus, indeed we have seen in Proposition 5.12 that the only ramifications over the

various components of the wobbly locus are those given by RKum and RTro. Suppose that

some component was fixed. That means that we would have a divisor B′ ⊂ BMov remaining

fixed as our point in the Hitchin base moves. In particular, for a general point x ∈ B′,

which is very stable, the well-defined fiber A3 of the projection Higgs0 → X over x would

have a ramification point inside every Hitchin fiber that it intersects. This would give a 3-

dimensional family of ramification points, which would have to be all of A3. In that case, the

projection map from Higgs0 to X (over the very stable open subset) would be non-smooth

there, but the general Hitchin fiber is smooth so that can not be the case. This contradiction

shows that there are no non-movable components in BMov.
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Suppose Eκ is one of the components of E . It follows from the lemma and the previous

proposition, that RMov does not include Eκ. Therefore RMov∩Eκ is a transverse intersection.

Recall that Eκ
∼= P2. The map Eκ → X is an isomorphism to a trope plane in X ∼= P3, so

OEκ(F ∩Eκ) = OEκ(1). On the other hand, OEκ(E ) ∼= OEκ(−1) since Eκ is the exceptional

divisor from blowing up P at a point. We conclude that

OEκ(RMov ∩Eκ) ∼= OEκ(1).

This proves the following

Corollary 5.14. The divisor RMov ∩ Eκ ⊂ Eκ is a line in the plane Eκ. In particular, it

does not contain the trope conic which is the inverse image in Eκ of the intersection of the

trope plane with the Kummer surface.

Consider a general point y ∈ RKum ∩ RTro. From the previous corollary, the ramification of

the map f in a neighborhood of y is only the ramification due to the two pieces RKum and

RTro.

Corollary 5.15. In the neighborhood of such a point y, the map f has a piece of degree 4

given in local coordinates (u, v, z) of Y and (x, y, z) of X by

x = u2 + v, y = v2.

There remain two pieces of degree 2 each that are simply ramified over the Kummer surface

only.

Proof. The picture is local and occurs at a general point of the trope conic consisting of a

one-dimensional family of tacnodes, so we can use the third coordinate z in both coordinate

systems. The trope conic is given by x = y = 0 in this picture. Transverse to the z

direction the Kummer surface is given by y = 0 and the trope plane is given by y = x2. Our

coordinates are, of course, not those of X = P3.

The local fundamental group of this singularity is generated by loops around these two

pieces, and from the ramification picture we know that they act on the covering by a single

transposition (for the loop around y = x2) and a product of four distinct transpositions (for

the loop around y = 0). The fact that the moving part of the ramification does not meet
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our general point of the trope conic means that there is no other ramification and Y is a

covering of X given by the action of these two elements on a set of 8 elements.

There are only two possibilities: either the single transposition is equal to one of the

four, or else it connects two of them. In the first case, the resulting covering is singular,

but we know that Y is smooth, so we must be in the second case. In particular, the

covering breaks into two pieces consisting of ramification along y = 0 only (for the two

out of four transpositions that do not touch the single one) and a piece of degree 4 with two

transpositions over y = 0 and one transposition over y = x2. Furthermore, any local model

that has this type of ramification and with smooth total space must be isomorphic locally

to our covering.

We can construct such a model in the following way: first take a degree 2 cover ramified

along y = 0 given by y = v2, and look at the inverse image in here of x2 − x. It breaks into

two irreducible components as x2 − v2 = (x + v)(x− v). Choose one, let’s say (v − x), and

take a covering of degree 2 ramified a long there, so u2 = x − v. We have our coordinate

system (u, v) with the equations as stated. Let us verify the Jacobian:∣∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =

∣∣∣∣∣2u 1

0 2v

∣∣∣∣∣ = 4uv

so the ramification locus upstairs is the union of u = 0 and v = 0 and these project to y = x2

and y = 0 respectively.

5.4 Blowing up the tacnodes

Cut with a general plane in X0 = P3. Locally using the coordinates above, we may

assume that our plane is z = 0 so it has local coordinates (x, y) and the degree 4 piece of

the covering is given in coordinates as described in Corollary 5.15. We are going to use the

description as a composition of two covers of degree 2 to describe this piece of Y0.

In what follows, we’ll change temporarily the meaning of the notations X, Y : assume

that we have cut X0 down to the general plane that will be denoted by X, and Y0 is cut

down to the corresponding covering, denoted by Y for simplicity of notations. We will also

focus on a single tacnode, noting that altogether there are 32 of them in the plane.

Blow up twice to resolve the tacnode. Let X̂ denote the blown-up variety and let Ŷ

denote the local degree 4 piece of the blown-up covering, normalized, with map f̂ : Ŷ → X̂.
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Let DTro and DKum be the trope and Kummer divisors in X, locally near our point.

When we blow up the first time, the strict transforms of DTro and DKum form, together

with the exceptional divisor, an ordinary triple point. Then blow that up again to get X̂. Let

A be the strict transform in X̂ of the first exceptional divisor, and let B be the exceptional

divisor of the second blow-up. Let T and K denote the strict transforms of the original

divisors DTro and DKum respectively. Let α : X̂ → X be the map. Then

α∗(DTro) = T + A+ 2B

and

α∗(DKum) = K + A+ 2B.

We can factorize our covering f̂ as a composition

Ŷ
µ−→ Ẑ

ν−→ X̂

where ν is a normalized double cover ramified over α∗(DKum) and µ is a double cover ramified

over one half of the pullback divisor ν∗α∗(DTro) as will be described below.

One description of Ẑ is to say that we take the smooth double cover Z of X ramified

over DKum, then Ẑ is the normalization of X̂ ×X Z.

Another viewpoint is that ν is a double cover ramified over K and A, because normal-

ization removes the double cover over 2B. Since K and A are disjoint, the covering space Ẑ

is smooth.

The inverse image of B in Ẑ is a double covering BZ → B ramified over A∩B and K∩B.

The divisor α∗(DTro) pulls back in Ẑ to a divisor that has multiplicity 2 along BZ , has

two disjoint pieces that compose ν∗(T ), and includes 2AZ where AZ is the reduced inverse

image of A in Ẑ. Taking half of this will be one of the two pieces over T plus AZ plus BZ .

The double covering µ therefore has simple ramification over AZ , BZ , and the one piece of

ν∗(T ) that we have chosen.

Let A′, B′ and T ′ denote the reduced inverse images of these pieces in Ŷ . Let K ′ be the

reduced inverse image of K in Ŷ . It is a double covering of the ramification locus KZ of

Ẑ/X̂ that lies over K.

We see that Ŷ has ordinary double points at A′ ∩B′ and T ′ ∩B′.

The map f̂ : Ŷ → X̂ has the following types of ramification: a cyclic covering of order 4

along A′; simple ramification along B′ that maps to B by a generically 2-sheeted covering;

simple ramification along T ′ that maps isomorphically to T , with the other part T ′′ of the
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inverse image of T being a generically 2-sheeted covering; and simple ramification along K ′

that maps by a generically 2-sheeted covering to K. We may write altogether

f̂ ∗(A) = 4A′

f̂ ∗(B) = 2B′

f̂ ∗(T ) = 2T ′ + T ′′

f̂ ∗(K) = 2K ′.

We can construct a parabolic Higgs bundle over X̂ in the following way: choose a line

bundle L̂ on Ŷ , take its direct image, then use the natural filtrations over A,B, T,K to put

a parabolic structure with some parabolic weights. The pullback of the tautological 1-form

on Y is a 1-form on the smooth locus of Ŷ and this will lead to a logarithmic Higgs field on

f̂∗(L̂) away from A∩B and T ∩B. As f̂∗(L̂) is a bundle over Y , this logarithmic Higgs field

extends to a logarithmic Higgs field over all of Y . Furthermore, it will respect the filtrations

if we choose them to be compatible with the covering.

On the other hand, if we let L denote the corresponding line bundle on Y (reflexive

extension of the line bundle restricted to the complement of the points over the tacnodes)

then f∗(L) is a bundle on X, and it has a meromorphic Higgs field that is logarithmic along

the smooth points of the divisor D = DKum + DTro. As we will see below, the Bogomolov-

Gieseker inequality indicates that this bundle with Higgs field cannot be considered as being

logarithmic over the tacnodes, since its pullback to X̂ will violate the Bogomolov-Gieseker

inequality. However, it is the bundle f∗(L) for which we can obtain a calculation of the

Chern classes using the Grothendieck-Riemann-Roch formula.

We would therefore like to compare the Chern classes of our parabolic structure on f̂∗(L̂)

with those of f∗(L) or rather the pullback α∗(f∗(L)).

The comparison between these two things is a local question. To see this, let us assume

that the parabolic weights are rational, as will be the case for the structure to be used. Then,

there is a root stack ρ : X̃ → X̂ such that the parabolic bundle may be viewed as a vector

bundle on the root stack. Let us call this bundle V . The root stack structure occurs over

A+B. On the other hand, let

V := ρ∗ (α∗(f∗(L)))

be the bundle pulled back from a vector bundle on X. Let ȷ : X◦ ↪→ X be the complement

of the tacnode, and we have ȷ̃ : X◦ ↪→ X̃. Let V ◦ := ȷ̃∗(V ), so we are given a natural isomor-

phism V ◦ ∼= ȷ̃∗(V). Thus f∗(L) = ȷ∗(V
◦). In particular there are inclusions of quasicoherent
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sheaves on X̃

V ↪→ ȷ̃∗(V
◦)←↩ V .

These are isomorphisms away from (the inverse images in X̃ of) the divisors A and B. The

images are both contained in a coherent sheaf of the form, say, V (nA+ nB) so we may use

these to compare the Chern characters, namely we have coherent sheaves V (nA + nB)/V

and V (nA+ nB)/V supported on A+B and

ch(V)− ch(V ) = ch(V (nA+ nB)/V )− ch(V (nA+ nB)/V).

The Chern characters of V (nA+nB)/V and V (nA+nB)/V only depend on the local picture

at the tacnode.

Because of this locality, we may do the calculation assuming that L = OY is the trivial

line bundle, then multiply by 32 since there are 32 tacnodes, to get the global difference of

Chern characters, and add this to the Chern character of f∗(L) for the chosen global line

bundle L on Y , to get the Chern character of the parabolic logarithmic extension.

To further simplify the exposition, we are now going to just state what are the good

parabolic weights to use. These were found by doing some computations and then solving

the optimization problem in a crude way using a computer, and in fact that was done

in a couple of stages: the first time, we noticed that the parabolic weights would involve

multiples of 1/4. When we picked up the question some time later, instead of re-doing this

optimization we just did a grid search over all the possible weights that were multiples of

1/4. At the present time, instead of exposing this (the details of the computation would

be difficult to explain, and the technique was not optimal) we will just state how to get

the resulting parabolic structure and then check that it satisfies the parabolic Chern class

vanishing conditions. This is made easier by the description of the covering in two stages.

First calculate the vector bundle U := f̂∗(OŶ ). The map µ : Ŷ → Ẑ is a double covering

in particular it is Galois, so

µ∗(OŶ ) =W+ ⊕W−

where W+ and W− are two line bundles on Ẑ where the involution of the covering µ acts

by +1 and −1. Notice that W+ = OẐ . Taking the direct image by ν of this decomposition

gives

U = U+ ⊕ U−

where U+ = ν∗(W+) and U− = ν∗(W−). These are two bundles of rank 2.

142



The variety Ẑ is obtained from Z (the double cover of X ramified along DKum) by blowing

up twice, with the first time generating an exceptional divisor whose strict transform is BZ

and the second time generating an exceptional divisor AZ ; the other strict transforms are

KZ and TZ . Note that BZ = ν∗(B) whereas ν∗(A) = 2AZ and ν∗(K) = 2KZ while ν∗(T ) is

TZ plus another piece. The self intersections are A2
Z = −1 and B2

Z = −2.

The decomposition of ν̂∗(T ) into two pieces comes from a decomposition of the inverse

image of T in the double cover Z → X, with one of the two pieces being the image in Z

of our chosen TZ ⊂ Ẑ. In particular, this divisor is principal in the neighborhood in Z. Its

inverse image in the blow-up Ẑ is AZ +BZ + TZ , which is therefore also principal.

In taking the double cover ramified over a principal divisor, it means in our situation to

use the trivial bundle as a square root. Thus, the covering Ŷ is a double cover of Ẑ defined

by using the trivial bundle as the square root of the ramification divisor AZ +BZ +TZ . This

divisor gives a line bundle whose restriction to BZ is trivial as is its restriction to AZ . It

follows that

W− ∼= OẐ

too. This gives to W− an equivariant structure for the double covering below.

Now Ẑ is a double cover of X̂ branched over the divisor A+T . It came from normalizing

the inverse image of the double cover branched over DTro and the pullback of that divisor

in X̂ is A+ 2B + T . This is principal and its square-root used for the covering is the trivial

bundle. Taking the normalization has the effect of declaring that the square-root of the 2B

term is B. We have

OX̂ =
√
OX̂(A+ 2B + T ) = OX̂(B)⊗

√
OX̂(A+ T )

so
√
OX̂(A+ T ) = OX̂(−B). That is to say, the covering Ẑ is defined by using OX̃(−B) as

square-root of OX̃(A+ T ). Checking, A has self-intersection −2 so (−B).A = (A+ T ).A/2.

Thus, the formula for the structure sheaf of the double cover says

ν∗(OẐ) ∼= OX̂ ⊕OX̂(B).

This gives for both pieces

ν∗(W+) = ν∗(OẐ) ∼= OX̂ ⊕OX̂(B)

and

ν∗(W−) ∼= ν∗(OẐ) ∼= OX̂ ⊕OX̂(B).
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The subsheaves generated by global sections are given by the subsheaf OX̂ ⊂ OX̂(B) in the

second factor in each case.

We can therefore write

V = V1 ⊕ V2 ⊕ V3 ⊕ V4

as a direct sum of trivial line bundles, with

U+ = V1 ⊕ V3(B), U− = V2 ⊕ V4(B),

so

ν∗(OŶ ) = V1 ⊕ V2 ⊕ V3(B)⊕ V4(B).

We now consider the constraints on the parabolic structure. Over B, the U− piece

constitutes the natural subspace of the filtration. The parabolic weights of any piece of U−

should be ≤ the weights of any piece of U+.

Near A, let b be a local coordinate defining A in X (this is in keeping with the notations

we’ll have later: A is the a-axis defined by b = 0). The local coordinate defining AZ is b1/2,

and the local coordinate defining A′ is b1/4. This is the square-root of the coordinate defining

AZ . The functions OẐ include 1, b1/2, . . .. Now W+ is generated over OẐ by 1 so it includes

the functions 1 and b1/2. On the other hand, W− is generated over OẐ by b1/4 so it includes

the functions b1/4 and b3/4.

The subspaces OX̂(B) correspond to the functions that are multiples of b1/2.

If we say that V1 ⊕ V3(B) corresponds to U+ and V2 ⊕ V4(B) corresponds to U− then V1

is generated over OX̂ by 1, V3(B) is generated by b1/2, V2 is generated by b1/4 and V4(B) is

generated by b3/4.

The parabolic filtration should therefore be adapted to our decomposition, in the order

1, 2, 3, 4 along A.

We will now declare a precise collection of parabolic levels. Our parabolic structure is

now a direct sum of four parabolic line bundles. Recall that when we have a bundle O with

filtration level that is placed at parabolic level −c ∈ (−1, 0] at a divisor div it corresponds

to a line bundle that is written as O(c · div). Let’s denote the parabolic line bundles as

P1, P2, P3, P4.
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Define

P1 = OX̂(−1

4
A− 1

2
B)

P2 = OX̂
P3 = OX̂

P4 = OX̂(
1

4
A+

1

2
B).

Over A the parts that have been added are in the correct order.

Over B, this is obtained from V1⊕ V3(B) and V2⊕ V4(B) by adding −B/2 to V1, adding

−B to V3(B) (which really means to make an elementary transformation), and adding −B/2
to V4(B). Thus on the U+ pieces we added −B/2 and −B whereas on the U− pieces we

added 0 and −B/2. This satisfies the required criterion. The decomposition into a sum of

line bundles is compatible with the Higgs field in the tangential directions, because of the

blowing up: tangential vector fields along B map to zero in the tangent bundle of Y . This is

the short reason why this parabolic structure is allowable. In subsection 5.5 below, we will

do a calculation in local coordinates to make sure that the Higgs field is logarithmic with

respect to this structure.

Technically the definition of the local contribution to ch2 is as was described previously,

but it may now be expressed as

ch2(P1 ⊕ P2 ⊕ P3 ⊕ P4) =

=

(
−1

4
A− 1

2
B
)2

2
+

(
1
4
A+ 1

2
B
)2

2

=
1

16
(A+ 2B)2

=
1

16
(A2 + 4AB + 4B2).

We have A2 = −2 and B2 = −1 with AB = 1. So our contribution is

(−2 + 4− 4)/16 = −1/8.

The local contribution is therefore −1/8. When we multiply by the 32 tacnodes in a plane

section, we obtain a global adjustment of −4 to ch2. In view of the calculations in Corollary

5.11, this adjustment leads to a parabolic Higgs bundle with vanishing first and second Chern

characters.

We need to check that the local parabolic structure we have been considering in this

section is one for which the Higgs field becomes logarithmic.
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5.5 Calculations in coordinates

The easiest way to make sure that the parabolic structure we are defining will induce a

logarithmic property of the Higgs field, is to write things out in local coordinates.

Recall that X denotes a slice by a plane in X0 = P3, and localize at a tacnode point of

the wobbly locus. Then, we will look near a point in the covering Y/X that is the center

of the piece of degree 4 over the neighborhood in X. Fix coordinates x, y for a small ball

around the point in X, such that the Kummer is given by y = 0 and the trope is given by

x2 − y = 0. Let C{x, y} be the coordinate ring of convergent series in x and y.

Express the neighborhood in Y as a composition of two coverings of degree 2. The first

has coordinates x, v with y = v2, so it has coordinate ring C{x, v}. The inverse image of

the tacnode divisor in here has equation x2 − v2 = 0 that decomposes as (x + v)(x − v) so

the pullback divisor decomposes into two irreducible components. Choose one of these, say

x − v = 0, as the branch locus for the second covering. Introduce the coordinate u with

u2 = x − v. This gives the system of coordinates u, v for the neighborhood in Y , with ring

C{u, v} and equations for the degree 4 map f to the neighborhood in X are:

x = u2 + v, y = v2.

Calculation of the Jacobian matrix showed that the branch locus downstairs is the union of

the components y = 0 and x2 − y = 0. Set ∆ := x2 − y.

The direct image f∗O is a rank 4 vector bundle V over the neighborhood in X, which may

be viewed as given by the module C{u, v} considered as a module of rank 4 over C{x, y}.
Write the decomposition into a direct sum of line bundles V = V1⊕V2⊕V3⊕V4 corresponding

to the module decomposition

C{u, v} = 1 · C{x, y} ⊕ u · C{x, y} ⊕ v · C{x, y} ⊕ uv · C{x, y}.

Suppose our tautological form on Y is written as λ = φ(u, v)du + ψ(u, v)dv. Note that it

satisfies a constraint, due to the fact that the trope plane is the exceptional divisor for a

blow-up of the Prym, and the form comes from a form on the Prym. This says that ψ is a

multiple of u, although that condition does not seem to be needed later since the dv term

does not pose a problem.

The equation v2 = y tells us that

dv = vdy/2y.
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The equation u2 = x− v tells us that

du = u−1(dx− dv)/2

where dv may be written in terms of dy.

The actions of multiplication by u and v my be expressed in the form of 4× 4 matrices

acting on the direct sum decomposition. Use as basis vectors 1, u, v, uv. We have

u =


0 x 0 −y
1 0 0 0

0 −1 0 x

0 0 1 0

 , v =


0 0 y 0

0 0 0 y

1 0 0 0

0 1 0 0

 .

One calculates:

u−1 =
1

∆


0 ∆ 0 0

x 0 y 0

0 0 0 ∆

1 0 x 0


as may be verified by multiplying together with the matrix for u. Also, v−1 = v/y so

v−1 =


0 0 1 0

0 0 0 1

1/y 0 0 0

0 1/y 0 0

 .

The differentials du and dv may now be expressed as matrices with entries in terms of dx

and dy:

dv = (v/2y)dy =


0 0 dy/2 0

0 0 0 dy/2

dy/2y 0 0 0

0 dy/2y 0 0

 ,

and

du = u−1(dx− dv)/2 =
1

2∆


0 ∆ 0 0

x 0 y 0

0 0 0 ∆

1 0 x 0

 ·


dx 0 −dy/2 0

0 dx 0 −dy/2
−dy/2y 0 dx 0

0 −dy/2y 0 dx
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=
1

4∆


0 2∆dx 0 −∆dy

2xdx− dy 0 −xdy + 2ydx 0

0 −∆dy/y 0 2∆dx

2dx− xdy/y 0 2xdx− dy 0

 .

The terms 2xdx−dy are equal to d∆. We also note that y = x2−∆ so dy = 2xdx−d∆ and

−xdy + 2ydx = (2y − 2x2)dx+ xd∆ = xd∆− 2∆dx,

hence

2dx− xdy/y = (x/y)d∆− (2/y)∆dx.

We may therefore write

du =
1

4


0 0 0 0

0 0 0 0

0 0 0 0

(x/y)d∆
∆
− 2dx/y 0 0 0



+
1

4


0 0 0 0
d∆
∆

0 xd∆
∆

0

0 0 0 0

0 0 d∆
∆

0

+
1

4


0 2dx 0 −dy
0 0 −2dx 0

0 −dy/y 0 2dx

0 0 0 0

 .

The second and third matrices have terms that are either holomorphic forms, or multiples

of d∆/∆ and dy/y. When we pull back to a blow-up, these will remain as (at worst)

logarithmic forms. The first matrix, with a single non-zero coefficient in the lower left, is

not logarithmic. This term is however logarithmic on points of the divisors y = 0 or ∆ = 0

away from the origin, indeed that is clear from the expression here when y ̸= 0 and it is clear

from the original expression (1/4∆)(2dx − xdy/y) when ∆ ̸= 0. This term will lead to a

non-logarithmic term when we blow up twice the tacnode, so the elementary transformations

and parabolic structures will need to take that into account.

Consider the filtration of V that has three steps, with quotient V1, subquotient V2⊕V3 in

the middle, and subbundle V4. This filtration is preserved by the operators of multiplication

by u or v, modulo the maximal ideal (x, y). Furthermore, it is preserved by the residues,

although not strictly because of the terms xd∆/∆ in position (2, 3) and −dy/y in position

(3, 2).

We can therefore use this filtration to put parabolic structures after blowing up, as will

be done in the next subsection.
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5.6 Pulling back to the blow-up and a root cover

Blowing up the origin introduces the coordinate a = y/x so y = ax and the coordinate

chart on the blow up has coordinates (x, a).

The main term in the lower left corner of du becomes

(x/y)
d∆

∆
− 2dx/y =

1

a
d log

(
x− a
x

)
=
−1

x− a
d log(ax).

Then blow up again using b = x/a so x = ab and y = a2b. Our lower left corner term

becomes
1

a(b− 1)

(
2
da

a
+
db

b

)
.

This is logarithmic along the divisor A which is b = 0 (the a-axis) and has a pole of order 2

along B (the b-axis given by a = 0).

We therefore need to make an elementary transformation in order to get a logarithmic

pole along B. This corresponds to the normalization of the spectral covering in the previous

discussion.

In all, we are going to use the same decomposition into 4 line bundles, but putting

parabolic levels on these pieces, to get a decomposition into four parabolic line bundles of

the form

O(−A/4−B/2)⊕O ⊕O ⊕O(A/4 +B/2).

We would like to calculate that this indeed gives a parabolic logarithmic Higgs bundle when

we use a Higgs field that is a combination of du and dv.

To do this calculation, let us pull back to a root covering. Since we want the divisors A/4

and B/2, with A given by b = 0 and B given by a = 0, let’s introduce the root coordinates

α = a1/2, β = b1/4.

Thus

a = α2, b = β4, x = α2β4, y = α4β4,

and we have

dx = 2αβ4dα + 4α2β3dβ, dy = 4α3β4dα + 4α4β3dβ

and

∆ = α4β8 − α4β4 = α4β4(β4 − 1).
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The lower left corner term is

(∗) =
−1

x− a
d log(y) =

−4

α2(β4 − 1)

(
dα

α
+
dβ

β

)
.

The full matrix for du becomes:

1

4


0 2dx 0 −dy

d∆/∆ 0 −2dx+ xd∆/∆ 0

0 −dy/y 0 2dx

(∗) 0 d∆/∆ 0



=
1

4


0 4αβ4dα + 8α2β3dβ 0 −4α3β4dα + 4α4β3dβ

d∆/∆ 0 −4αβ4dα− 8α2β3dβ + α2β4d∆/∆ 0

0 −d log(α4β4) 0 4αβ4dα + 8α2β3dβ

(∗) 0 d∆/∆ 0

 .

Instead of the basis e1, e2, e3, e4 (which was originally 1, u, v, uv), the new frame for the new

bundle over the root covering is f1 = α−1β−1e1, f2 = e2, f3 = e3, f4 = αβe4. In this frame,

the new matrix is obtained by multiplying the top row and last column by α−1β−1, and

multiplying the last row and first column by αβ. This yields the new matrix:

duf =
1

4


0 4β3dα + 8αβ2dβ 0 −4αβ2dα + 4α2βdβ

αβd∆/∆ 0 −4αβ4dα− 8α2β3dβ + α2β4d∆/∆ 0

0 −d log(α4β4) 0 4β3dα + 8αβ2dβ

α2β2 · (∗) 0 αβd∆/∆ 0

 .

Now,

α2β2 · (∗) =
−4β2

(β4 − 1)

(
dα

α
+
dβ

β

)
.

This is logarithmic at general points of α = 0 and β = 0. Note that the locus β4 = 1

corresponds to a strict transform of one of our original divisors and we have verified the

logarithmic property over those. The remaining terms of duf are also logarithmic or better.

Our Higgs field is obtained as a combination of du and dv times 1, u, v, uv times functions

of x, y. To complete the verification, we need to express the matrices for u, v and dv in terms

of the coordinates α and β and in the new frame. In the frame e1, e2, e3, e4 we had

u =


0 x 0 −y
1 0 0 0

0 −1 0 x

0 0 1 0

 =


0 α2β4 0 −α4β4

1 0 0 0

0 −1 0 α2β4

0 0 1 0
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which becomes, in the new frame (multiplying the top and bottom rows and the first and

last columns as previously):

uf =


0 αβ3 0 −α2β2

αβ 0 0 0

0 −1 0 αβ3

0 0 αβ 0

 .

Similarly, in the original frame

v =


0 0 y 0

0 0 0 y

1 0 0 0

0 1 0 0

 =


0 0 α4β4 0

0 0 0 α4β4

1 0 0 0

0 1 0 0


so in the new frame

vf =


0 0 α3β3 0

0 0 0 α3β3

αβ 0 0 0

0 αβ 0 0

 .

Also, in the previous frame dv = (dy/2y) · v so in the new frame,

dvf = 2

(
dα

α
+
dβ

β

)
0 0 α3β3 0

0 0 0 α3β3

αβ 0 0 0

0 αβ 0 0



=


0 0 α2β3dα + α3β2dβ 0

0 0 0 α2β3dα + α3β2dβ

βdα + αdβ 0 0 0

0 βdα + αdβ 0 0

 .

We see that any products of 1, u, v, uv times du or dv in the new frame are logarithmic, so

the Higgs field will induce a logarithmic Higgs field on this bundle as desired. This completes

the proof of theorem to be stated in the concluding subsection below.
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5.7 Degree zero case—conclusion

Theorem 5.16. Suppose L0 is a flat line bundle on the abelian variety P, and define the

spectral line bundle L = ε∗0(L0)⊗OY (E + 2F ) on Y . Put

E := f∗(L)

as a meromorphic Higgs bundle on X = P3, then blow up twice at the tacnodes in a general

planar section, and put the parabolic structure we have defined above so that the Higgs field

becomes logarithmic. For this parabolic structure, chpar
i = 0 for i = 1, 2. Therefore, this

parabolic Higgs bundle admits an extension to a purely imaginary twistor D-module as in

Theorem 3.13. The associated local system on X0−Wob0 has rank 8. Its monodromy around

the trope planes in Wob0 is unipotent with a single Jordan block of size 2. Its monodromy

around the Kummer surface in Wob0 is unipotent consisting of a direct sum of 4 Jordan

blocks of size 2.

Proof. In keeping with the result of Corollary 5.11, choose the line bundle L to be anything

numerically equivalent to OY (E + 2F ), that is to say anything of the form

L = ε∗0(L0)⊗OY (E + 2F ) for L0 a flat line bundle on the Hitchin fiber P .

The tautological 1-form on P pulls back to a 1-form on Y , which we may view as a

meromorphic section of f ∗(Ω1
X) on Y , yielding a meromorphic Higgs field Φ : E → E ⊗ Ω1

X

satisfying the commutativity condition Φ ∧ Φ = 0. A local calculation at the ramification

points of f : Y → X shows that Φ has logarithmic singularities along smooth points of the

branch divisor of f . However, the fact that P may be viewed as a subvariety of the cotangent

bundle of X over the very stable points, shows that Φ has no poles along smooth points of

the branch divisor not on the wobbly locus. Thus, we obtain a logarithmic Higgs bundle

(E◦,Φ◦) over X◦ defined to be the complement of the singular locus of Wob.

Let ζ : X̂+ → X+ be obtained by blowing up twice the trope conics, on the open subset

X+ ⊂ X complement of the 16 singular points of Kum.

Our discussion in the transverse plane sections to the trope conics shows how to create

a parabolic bundle E+· on (X̂+, D+) where D+ is the reduced inverse image of the wobbly

divisor in X̂+. The nontrivial parabolic structure is concentrated on the parts of D+ lying

over the trope conics. The parabolic structure extends the given bundle E◦ from the open

subset X◦ ⊂ X̂+. We have seen, in the transverse plane sections, that the Higgs field Φ+

(unique extension of Φ◦) becomes logarithmic for this parabolic structure. This verification

was completed in the previous subsection.
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Let E+raw := ζ∗E|X+ . If XH ⊂ X is a plane (general so that it misses the singular points

of Kum) it intersects the trope conics in a total of 32 points (two points for each of the 16

conics). Its inverse image X̂H is obtained by combining 32 times the local picture we have

seen above. We took care to make sure that

chpar
1

(
E+· |X̂H

)
= 0.

As pointed out in Subsection 5.4, the difference in second Chern characters between E+raw|X̂H

and E+· |X̂H
is local, so it is 32 times the quantity (−1/8) calculated in Subsection 5.4. In

other words,

chpar
2

(
E+· |X̂H

)
= ch2

(
E+raw|X̂H

)
+ 32 · (−1/8).

On the other hand, from Corollary 5.11, for our choice of line bundle L we have

ch2

(
E+raw|X̂H

)
= 4.

We conclude that chpar
2

(
E+· |X̂H

)
= 0.

We now have a parabolic logarithmic Higgs bundle (E+· ,Φ+) on (X̂+, D+) such that the

first and second parabolic Chern characters vanish on a plane section X̂H . The divisor D+

has normal crossings. Mochizuki’s theory [Moc06, Moc09] implies that there exists a tame

purely imaginary harmonic bundle on X̂+−D+ ∼= X −Wob whose corresponding parabolic

Higgs bundle is this one. The rank is 8. The monodromy along smooth points of Wob is

given by the residue of the Higgs field, which in turn corresponds to the ramification of Y/X

over the different components of the wobbly locus, giving the stated properties.

Remark 5.17. Our technique of construction yields more precise information about the

monodromy of the local system along the exceptional divisors in X̂ lying over the trope

conics. For example, the eigenvalues around the A divisors are 4-th roots of unity and the

eigenvalues around the B-divisors are ±1. There is also a unipotent piece around the A

divisor. It is left to the reader to make a more explicit statement.

6 Hecke operators

6.1 Hecke transformations in terms of bundles

In Chapter 2 we encountered the geometric picture of the Hecke correspondences in the

context of pencils of quadrics in P5. Let us review the Hecke transformations on bundles.
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If E is a rank 2 vector bundle and t ∈ C is a point, the Hecke line of E at t is

the projectivization PEt parametrizing rank 1 quotients Et ↠ C. A vector space quotient

corresponds to a surjection of coherent sheaves E ↠ Ct where Ct denotes the skyscraper sheaf

at t. Let E ′ denote the kernel of this map, usually known as the down-Hecke transform

of E centered at Et ↠ C. It is a torsion-free coherent sheaf, hence locally free and therefore

it is itself a bundle. We have

det(E ′) = det(E)⊗OC(−t).

In order to get a map between points of our moduli spaces we need to correct the determinant

by tensoring with a line bundle. Thus, consider a point (A, t) ∈ C, meaning that A is

a line bundle with A⊗2 = OC(t − p). Now, if E is a vector bundle with determinant

det(E) ∼= OC(p), and Et ↠ C, we can use the associated down-Hecke E ′ = ker(E → Ct)

with determinant OC(p− t) to form the transformed bundle

E ′ ⊗ A.

Note that by definition

det(E ′ ⊗ A) = det(E ′)⊗ A⊗2 = det(E)⊗OC(−t)⊗OC(t− p) = OC .

Thus, if E was stable, i.e. representing a point of the moduli space X1, then the Hecke

transform E ′⊗A is a bundle (that one may verify is semistable) with trivial determinant so

it corresponds to a point ofX0. We obtain the Hecke P1 parametrizing the trivial determinant

down-Hecke transforms of E at t. It is always a line in X0
∼= P3 as we will see in Theorem

6.3.

In the other direction, suppose E is a stable bundle with trivial determinant. We need

to transform the “down-Hecke” into an “up-Hecke” to get a point of X1 with determinant

OC(p). Again, this will depend on the choice of a point (A, t) ∈ C and a choice of a quotient

Et ↠ C. Once these choices are made we define the transform to be

E ′ ⊗ A(p),

where again E ′ = ker(E → Ct). By definition det(E ′) = OC(−t) and so

det(E ′ ⊗ A(p)) = det(E ′)⊗ A⊗2(2p) = det(E)⊗OC(−t)⊗OC(t− p)⊗OC(2p) = OC(p).

It is straightforward again to verify that E ′ ⊗A(p) is also stable so it is a point of X1. The

image of the Hecke line is a smooth rational curve in X1, which in fact is a smooth plane

conic as we will see in Theorem 6.4. These are the Hecke curves over points of X0 − Kum.

154



If we start with a point of the Kummer surface, there are several choices of semistable

bundle corresponding to that S-equivalence class. The above formulas, applied to these

different bundles, yield the Hecke fiber. For smooth points of Kum it is the union of two

lines corresponding to the two semistable bundles; for nodes of Kum it is a single line counted

twice. See Theorem 6.4.

In the next section we will put the Hecke correspondences together in a family over the

base C. The fiber of H over a = (A, t) ∈ C will be

H(a) :=

{
(E, k)

∣∣∣∣ E ∈ X1 and k : Et ↠ K is a one dimensional

quotient of the fiber of E at t.

}
.

We have maps

X1
p←− H(a)

q−→ X0

where p is just the projection. It is a P1-bundle whose fiber over E ∈ X1 is the projective

line of rank 1 quotients of Et. Existence of the moduli space and the fibration property of

the projection are due to the fact that all points of X1 are stable.

For a point (E, k) ∈ H(a) the corresponding point q(E ′) ∈ X0 is the S-equivalence class

of the down-Hecke of E at the point t, defined by the quotient k and normalized using A as

described above.

6.2 The big Hecke correspondences

Putting together these fibers yields the big Hecke correspondences

H
p

��

q

""

X1 X0 × C

H
d

��

b

""

X0 X1 × C

(27)

whose notation was introduced in Subsection 3.4.

These Hecke correspondences are the ones that most conveniently encode the eigensheaf

property for the de Rham data (D-modules) or the Dolbeault data (parabolic Higgs com-

plexes) on the moduli of PSL2(C)-bundles on C. These are the de Rham and Dolbeault

objects that under the Langlands correspondence should correspond to flat SL2(C)-bundles

on C or to a semistable Higgs SL2(C)-bundle on C respectively.
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To spell this out, note that the moduli of PSL2(C)-bundles on C is a disconnected

Deligne-Mumford stack

M0 ⊔M1, Mi = [Xi/J[2]] , for i = 0, 1.

Here J[2] is the group of 2-torsion points in the abelian surface J := Jac0(C), and a ∈ J[2]

acts on the moduli space X0 ⊔X1 of bundles with fixed determinant by E 7→ E ⊗ a.

The big M1 to M0 Hecke correspondence is a correspondence

Hecke

{{ %%

M1 M0 × C

It is described explicitly in terms of a correspondence

H

~~   

X1 X0

,

Here

• X0 is the moduli space of semistable rank two bundles with determinant of the form

OC(p− t) for some t ∈ C. It fibers X0 → C over C, the fiber over a given t ∈ C being

the moduli X0(t) is the moduli of bundles with determinant equal to the specific line

bundle OC(p− t).

• H is the moduli space of triples

H =

(E,E ′, β)

∣∣∣∣∣∣∣∣∣
E ∈ X1, E

′ ∈X0(t)

β :E ′ ↪→ E, supp(coker(β)) = t

 .

• the South-West map is given by by (E,E ′, β) 7→ E and the South-East map is given

by (E,E ′, β) 7→ E ′.
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In fact X0 → C is an algebraic P3 bundle, equipped with a flat (Heisenberg-like) connection

with monodromy J[2]. The group J[2] also acts on X0 by tensorization, and the action

preserves the flat connection. The quotient

[X0/J[2]]→ C

inherits a flat structure with trivial monoromy and taking p ∈ C as a base point we get an

algebraic isomorphism

[X0/J[2]] //

∼=
��

C

M0 × C prC
// C.

The group J[2] also acts on H by tensoring with 2-torsion line bundles:

J[2]×H → H, (a, (E,E ′, β)) 7→ (E ⊗ a, E ′ ⊗ a, β ⊗ ida),

and passing to quotients we get
[H/J[2]]

zz %%

[X1/J[2]] [X0/J[2]]

 ∼=


Hecke

|| $$

M1 M0 × C

 .

Similar comments apply to the action of the big Hecke correspondence in the other direction.

Thus we can recast the problem of finding a Hecke eigensheaf on M0 ⊔M1 as the equivalent

problem of finding a J[2]-equivariant Hecke eigensheaf on X1 ⊔X0.

We can refine this further by observing that X0 trivializes on a finite cover of C. Indeed,

recall the curve sq : C → C which is an étale J[2]-Galois cover of C defined as the fiber

product

C
ıC //

sq

��

Jac0(C)

mult2
��

C
AJp
// Jac0(C)

where the bottom horizontal arrow is the p-based Abel-Jacobi map AJp : C → Jac0(C),

t 7→ OC(t− p). In other words we have C = {(A, t) ∈ Jac0(C)× C |A⊗2(p) = OC(t) }.
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Because the monodromy of X0 over C is J[2], the pullback of X0 trivializes canonically

if we use (OC ,p) as the base point on C. That is, we have a fiber square

X0 × C //

prC ��

X0

��

C sq
// C

where the top horizontal map is given by (E, (A, t)) 7→ E⊗A−1. Thus we get a base changed

Hecke diagram

H
p

��

q

""

X1 X0 × C

where the base changed big Hecke correspondence is the moduli

H =

((E,E ′, β), (A, t))

∣∣∣∣∣∣∣∣∣
E ∈ X1, E

′ ∈ X0, (A, t) ∈ C

β :E ′ ⊗ A−1 ↪→ E, supp(coker(β)) = t


and the maps p and q are defined by

p((E,E ′, β), (A, t)) := E, and q((E,E ′, β), (A, t)) := (E ′, (A, t)).

For future reference, note that H can also be viewed as a correspondence

H
d

��

b

""

X0 X1 × C

where d = prX0
◦q and b = p× (prC ◦q).

Thus the Hecke eigensheaf problem on M0 ⊔M1 can be reformulated as the problem of

finding a J[2]×J[2]-equivariantH-eigensheaf on X0⊔X1. Here an element (a1, a2) ∈ J[2]×J[2]

acts by

(a1, a2)·E = E ⊗ a1 ⊗ a−1
2 , forE ∈ X1,

(a1, a2)·(E ′, (A, t)) = (E ′ ⊗ a1, (A⊗ a2, t)), for (E ′, (A, t)) ∈ X0 × C,

(a1, a2)·β = β ⊗ ida1⊗a−1
2
.
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With this in place we can formulate the Dolbeault version of theH-Hecke eigensheaf problem

as follows.

Problem 6.1 (Dolbeault H-Hecke eigensheaf problem ). Fix a general semistable

SL2(C)-Higgs bundle (E, θ) on C. Construct J[2] × J[2]-equivariant tame parabolic Higgs

bundles (F0,•,Φ0) on X0 and (F1,•,Φ1) on X1 so that

• F0,• and F1,• have rank 8.

• The parabolic structure on Fi,• and the poles of Φi are along the wobbly divisors in

Xi for i = 0, 1.

• the first and second parabolic Chern classes of each Fi,• are trivial and (Fi,•,Φi) are

stable for i = 0, 1.

• Fi,• satisfy the H-eigensheaf property with eigenvalue (E, θ). In other words we have

(X1 to X0) q∗p
∗ (F1,•,Φ1) = (F0,•,Φ0) ⊠ sq∗(E, θ),

(X0 to X1) b∗d
∗ (F0,•,Φ0) = (F1,•,Φ1) ⊠ sq∗(E, θ).

where all pullbacks, pushforwards, and tensoring are induced from the corresponding

operations on polarized twistor D-modules.

6.3 Comparison with the synthetic approach

In the modular direction used for most of the present paper, we start with the curve C

having a chosen Weierstrass point p ∈ C, define the moduli spaces X0 and X1, and observe

that X0 is isomorphic to P3 and X1 is the base locus of a pencil of quadrics in P5 [NR69].

In the following discussion, the Narasimhan-Ramanan projective space will be denoted by

P5
NR.

Choose a = (A, t) in the covering curve C. The Hecke correspondence

H(a) ⊂ X0 ×X1

has Hecke fibers that are lines in X0, over every point of X1. This yields a map X1 →
Grass(2, 4) to the Grassmanian of lines in X0. If we write X0 = P(V ) for a four-dimensional
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vector space V then the Grassmanian embedds by the Plücker embedding Grass(2, 4) ↪→
P(
∧2 V ) with image a quadric hypersurface. We get the composed map

X1 → Grass(2, 4) ↪→ P(
2∧
V ).

Proposition 6.2 (cf Theorem 4, [NR69]). The restriction OP(
∧2 V )(1)|X1 is isomorphic to the

line bundle OX1(1) corresponding to the embedding of X1 as an intersection of two quadrics

in P5
NR. There is an isomorphism P(

∧2 V ) ∼= P5
NR such that Grass(2, 4) becomes one of

the quadrics in the pencil containing X1, and the above composed map identifies with the

embedding X1 ↪→ P5
NR. Under these identifications, the modular Hecke correspondence H(a)

is equal to the synthetic incidence Hecke correspondence of Section 2.4.

Proof. Consider a line ℓ ⊂ X1 corresponding to a family of bundles fitting into an exact

sequence

0→ L→ E → L∨(p)→ 0.

The family of Hecke lines over bundles E in this family consists of the lines in X0 contained in

a plane and passing through a point. The point is the S-equivalence class of (L⊗A)⊕ (L∨⊗
A(p − t)), while the plane is the subset of X0 consisting of bundles that have a nontrivlal

map from L⊗A(−t) (as pointed out in the proof of Proposition 5.2, the discussion of [NR69,

Proposition 6.1, Theorem 2] implies that this is a plane).

The Schubert cycle σ1 of codimension 1 in Grass(2, 4), the divisor of OGrass(2,4)(1), is the

set of lines passing through a given general line V ⊂ X0. Then V intersects the plane in

a general point, and there is exactly one line in the family that passes through that point.

Thus, the pullback of the Schubert cycle to the line ℓ via the embedding ℓ ⊂ X1 → Grass(2, 4)

is a single point. This shows that the pullback of OGrass(2,4)(1) is OX1(1) since the Picard

group of X1 is Z.

The 6-dimensional space
∧2 V of sections that embedd the Grassmanian pulls back to a

6-dimensional space of sections of OX1(1), and this is also the 6-dimensional space of sections

of OP5
NR

(1). We get the required identification between P5
NR and P(

∧2 V ). The Grassmanian

is a quadric containing X1 so it is one of the members of the pencil.

Now X0 = P(V ) is recovered as one of the rulings of the quadric Grassmanian, namely

the ruling of Schubert cycles σ2: a point x ∈ X0 corresponds to the Schubert cycle σ2(x) of

lines through x, which is a plane in Grass(2, 4). The dual projective space parametrizes the

Schubert cycles σ1,1(h) of lines in a given plane h ⊂ X0.
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The synthetic Hecke correspondence of Section 2.4 is the incidence correspondence saying

when a point of X1 is in an element of the ruling. Now, the ruling is isomorphic to X0 and

a point E of X1 is in the element σ2(x) of the ruling corresponding to x ∈ X0, if and only if

the Hecke line corresponding to E contains x. This is the same as the Hecke correspondence

H(a). This equality is indeed tautological, because we already used H(a) to get the map

X1 → Grass(2, 4) that led to the identification P(
∧2 V ) ∼= P5

NR.

6.4 Description of Hecke curves

The previous proposition shows that the Hecke correspondence H(a) may be viewed, in

the synthetic picture of Section 2.4, as the incidence correspondence between points x of

X1, corresponding to lines ℓx ⊂ P3 and hence also to points of the Grassmanian quadric G,

thought of as points in P5 (that happen to be on the other quadric G′ defining the pencil

too), and points y of X0, corresponding to planes Πy ⊂ P5 (that happen to be contained in

the Grassmanian quadric G and to belong to ruling R):

H(a) =
{

(x, y) ∈ X1 ×X0

∣∣ x ∈ Πy ⊂ P5
}

=
{

(x, y) ∈ X1 ×X0

∣∣ y ∈ ℓx ⊂ P3
}
.

More precisely, if a = (A, t) we have that t ∈ C corresponds to the ruling R of the quadric

G which is identified as the Grassmannian.

We now get a clear description of the Hecke curves:

• Given x ∈ X1, the Hecke curve p−1(x) is the line ℓx itself.

• Given y ∈ X0, the Hecke curve q−1(y) is the conic Πy ∩X1 = Πy ∩G′.

As explained in section 2.4 we can interpret this globally as describing a subvariety H of

C ×X0 ×X1. Recall that we have three copies of (Z/2)4, acting respectively on C, X0, and

X1 with quotients C, M0, and M1. The quotient R of C × X0 by the diagonal action of

(Z/2)4 fibers rul : R → C over C with fibers non-canonically isomorphic to X0. In section 2

we described R as the universal ruling for the pencil of quadrics: it parametrizes the family

of planes Π contained in some member of our pencil. If we choose a Weierstrass point

p ∈ C, we can also identify R with the family X0 of pairs (t, V ) with t ∈ C and V a rank 2

bundle on C with determinant OC(p− t). A point a ∈ C above t ∈ C determines a square

root A of the line bundle OC(t− p), and tensoring with A converts V to an SL(2) bundle,
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i.e. kills its determinant. So the pullback of X0 to C is identified with C ×X0, proving the

identification of R with X0.

Most naturally, the incidence description above gives a Hecke subvariety X1 ×R:{
(x, y) ∈ X1 ×R

∣∣x ⊂ Πy ⊂ P5.
}
, (28)

which is identified with H ⊂ X1 ⊂ X0 via the isomorphism R ∼= X0. As noted above, the

Hecke actual PGL(2) Hecke correspondence that we need is a substack Hecke ⊂ C×M0×M1.

The relationship is that the subvariety (28) is the inverse image of Hecke under the (Z/2)8-

quotient map R × X1 → C × M0 × M1. Alternatively, what we are doing mainly in this

paper, is to pull back further to H ⊂ C ×X0 ×X1 where the Hecke eigensheaf calculations

may be viewed as most straightforward.

The set of points p(q−1(y)) is the set of points in X1 that admit a Hecke transform equal

to y. In the correspondence with the quadric line complex, it is the set of points whose

associated line ℓx passes through y. That was called Xp in [GH94]. The Hecke curves p−1(x)

are projective lines, so they never degenerate. The following theorem uses the results of

section 2 to restate the results of [NR69] in the synthetic language.

Theorem 6.3. The fiber p−1(x) over any point x ∈ X1 is mapped by q isomorphically to a

line in X0
∼= P3. This provides a map X1 → G = Grass(2, 4) to the Grassmanian of lines

in P3. Furthermore, the embedding X1 ⊂ P5 extends uniquely to an embedding of Grass(2, 4)

in P5 identifying it with one of the quadrics in the pencil that cuts out X1. The family

of projective planes in P3 consisting of all the lines through a given point, is a ruling of

the quadric G, and this ruling is identified with the point t ∈ C (image of a ∈ C) via the

identification between C and the set of pairs of a quadric in the pencil and a ruling of that

quadric.

On the other hand, the Hecke curves q−1(y) are conics, embedded in planes in G ⊂ P5 so

they can degenerate into pairs of lines. This happens when two distinct lines ℓ,m ⊂ X1

intersect, and Πy is their span in P5. Our choice of a Weierstrass point p ∈ C allows us to

identify the variety of lines in X1 with the degree zero Jacobian Jac0(C) of C. In particular

a line ℓ ⊂ X1 corresponds to a line bundle L ∈ Jac0(C) in such a way that distinct lines ℓ,m
intersect if and only if for the corresponding points L,M ∈ Jac0(C) the degree 1 line bundle

L⊗M ⊗OC(p) is effective on C, i.e. it is OC(t) for some t ∈ C. The plane Πy spanned by
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such a pair of lines ℓ,m is then in the ruling Rt indexed by this t. The locus of such Πy’s in

R = Rt, for a fixed t ∈ C, is isomorphic to the Kummer surface Jac0(C)/(±1) ⊂ R.

It is also possible for the Hecke curve q−1(y) to degenerate into a double line. This

happens when ℓ = m, which occurs for 16 lines ℓ if we fix t. If we vary t, these lines ℓ

are parametrized by the cover C → C, and their union in X1 is the wobbly locus of X1.

However, in X0 = R, their image is a curve (=quotient of C by the action of the hyperelliptic

involution of C) which is contained in the Kummer.

This is all analyzed and proved synthetically in section 2. For ease of reference we summarize

the above conclusions as follows:

Theorem 6.4. The Hecke fibers over points of the trivial determinant moduli space X0 fall

into three categories:

• Over X0−Kum, the map q is smooth with fibers that are identified with their images in

X1. These images are conics inside planes in P5. If y ∈ X0 − Kum, the corresponding

conic q−1(y), isomorphic to P1, is the intersection of the plane Πy ⊂ P5 with X1. The

conic q−1(y) is identified with the space of rank 1 quotients of the fiber at t ∈ C of

the stable rank 2 bundle with trivial determinant corresponding to y. This gives the

viewpoint of a Hecke correspondence going back from X0 to X1.

• Over smooth points of Kum the fibers of q degenerate into reducible conics composed of

two distinct lines meeting at a single point.

• Over the 16 singular points of Kum, the fiber degenerates further into a double line.

Proof. The trichotomy of possibilities was discussed above in Corollary 2.10, see [GH94, pp

762-763]. The synthetic Hecke correspondence used there is identified with the modular

Hecke correspondence in question here, by Proposition 6.2.

Let K3(a) ⊂ H(a) denote the closure of the subset of points lying over Kum that are the

intersection points of the two lines in the fibers of q over general points of Kum.
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Remark 6.5. The subvariety K3(a) is the K3 surface obtained by blowing up the 16 nodes of

Kum. The double lines over the nodes are the exceptional divisors. Its image p(K3(a)) ⊂ X1

is the K3 surface denoted by Σ in [GH94]. This embedding depends on a ∈ C.

Remark 6.6. In fact the surface K3(a) only depends on the choice of point t ∈ C rather

than a ∈ C, due to the fact that the Kummer surface is invariant by the action of (Z/2Z)4

and in another viewpoint, the Hecke correspondence between X1 and a moduli space X0(t)

depends only on the choice of t; the image of the Kummer K3 surface back into X1 should

therefore only depend on t. We do not need this fact so a full proof is not given.

6.5 The Heisenberg group

For our given curve C the group J[2] of points of order 2 on Jac0(C) is isomorphic to

(Z/2Z)4 and we will adopt informally the latter notation for this group. It may be viewed

as the group of bundles on C with structure group Z/2Z, a group that we can view in turn

as the center of SL2(C).

There is a natural Heisenberg central extension

1→ Gm → Heisen→ (Z/2Z)4 → 1 (29)

whose extension class is given by the natural Z/2Z-valued symplectic bilinear form on

(Z/2Z)4 = H1(C,Z/2Z) given by the intersection pairing. Indeed, this Z/2Z-valued sym-

plectic bilinear form on (Z/2Z)4 = H1(C,Z/2Z) defines a finite Heisenberg central extension

1→ Z/2→ Heisenfin → (Z/2Z)4 → 1

which under the natural inclusion Z/2 ↪→ Gm induces the extension (29). In particular, by

construction, the finite group Heisenfin is a normal subgroup in Heisen.

Consider the theta divisor

Θ =
{
L ∈ Jac0(C)

∣∣h0(C,L(p)) ≥ 1
}

corresponding to the theta characteristic OC(p) on C. From the work of Mumford [Mum66,

Mum07a, Mum08, Mum07b, BL04a] it is known that the group Heisen can be identified

with the theta group of authomorphisms of the total space of the line bundle O(2Θ) ∈
Pic(Jac0(C)) that lift the translation action of J[2] on Jac0(C).
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In particular Heisen acts on the vector space H0(Jac0(C),O(2Θ)) ∼= C4 and this action

can be identified [Mum66, Mum08] with the Schrödinger representation, i.e. with the unique

irreducible representation of Heisen with a tautological central character. The projectivisa-

tion of H0(Jac0(C),O(2Θ)) is the Narasimhan-Ramanan model of the moduli space of rank

two bundles with trivial determinant giving an identification X0
∼= P3 [NR69]. The center

of Heisen acts by scalars, so the action descends to an action of (Z/2Z)4 on X0.

The resulting action of Heisen on C6 =
∧2(C4) is also an action for which the center

of Heisen acts by scalars and thus again provides an action of (Z/2Z)4 on P5, preserving

and hence acting on X1. If we view (Z/2Z)4 as being the group of bundles on C with

structure group the center of SL2(C) then these actions are the actions obtained by tensoring

semistable bundles with finite order line bundles that we described in section 6.2. It is worth

noting that the action of (Z/2Z)4 on X1 can be naturally linearized on the hyperplane bundle

OP5(1)|X1 while the action of (Z/2Z)4 on X0 is only projective, i.e. it does not linearize on

the hyperplane bundle OX0(1) = OP3(1). Indeed, the group Heisen and hence its subgroup

Heisenfin ⊂ Heisen both act linearly on C4 and on C6 =
∧2C4. Since the center of Heisenfin

acts by multiplication by ±1 on C4 it follows that this center acts trivially on C6 =
∧2C4.

In particular the action of Heisenfin factrors through a linear action of (Z/2Z)4 on C6. In

contrast, since C4 is the Schrödinger representation of Heisenfin, and this representation

determines the non-trivial extension class defining Heisenfin, it follows that the projective

action of (Z/2Z)4 on P3 can not be lifted to a linear action on C4.

The natural family of moduli spaces X1 → C whose fiber over t ∈ C is the moduli space

X1(t) of stable bundles of determinant OC(t), is étale locally trivial but not globally trivial.

It is obtained by dividing X1 × C by the action of (Z/2Z)4, where a 2-torsion line bundle

a ∈ (Z/2Z)4 = J[2] acts by sending a piar (E, (A, t)) ∈ X1×C to the pair (E⊗a, (A⊗a, t)).

This is similar to the family X0 → C of moduli spaces, whose fiber over t ∈ C we

described before, where the fiber over t ∈ C is the space X0(t) of bundles determinant

OC(t − p). Note that while X1 depends only on the curve C, the space X0 depends on

having fixed the Weierstrass point p.

As mentioned above, pulling back to the covering C → C gives a trivialization

X1 ×C C ∼= X1 × C.

This yields the isomorphism between X1(t) and X1, through which we pass to obtain the

Hecke correspondence between X0 and X1 depending on the point a = (A, t) ∈ C. We
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similarly have a trivialization

X0 ×C C ∼= X0 × C.

If one wants to work with structure group G = PGL(2), the moduli of G-bundles on C is

a disjoint union M = M0 ⊔M1. Each Mi is a quotient of Xi by the action of (Z/2Z)4. The

action on X1 flips the sign of an even subset of the 6 coordinates. As the point t varies, M1

is constant, while X1 is fixed only up to this subgroup of its finite group of symmetries. The

action on X0 is the Heisenberg action on P3 = PH0(Jac0(C),O(2Θ)). Neither X0 nor M0

depend on t ∈ C. In this viewpoint, the Hecke correspondence is a 5-dimensional subvariety

of C × M0 × M1. Fixing t ∈ C and lifting from Mi to Xi gives the Hecke correspondence

between X0 and X1(t), and then fixing a lifting of t to a ∈ C yields the Hecke correspondence

between X0 and X1.

6.6 Hecke fibers over the nodes

The Hecke fibers over nodes of Kum are lines in X1 counted with multiplicity two. In this

subsection we indicate their locations, in particular they will be lines in the wobbly locus.

For comparison, we look also at the special lines on the wobbly locus that correspond to the

trope planes.

For the latter question, suppose given a line in the wobbly locus parametrizing all non-

split extensions

0→ L→ E → L∨(p)→ 0,

for some line bundle L for which L⊗2 = O(q − p). If a = (A, t) ∈ C is given, then the

corresponding Hecke transforms of such an E are of the form E ′ ⊗A where E ′ is the kernel

of some map E ↠ Ct. Now, for all Hecke transforms except a special one that we will ignore

here, the bundle E ′ will be an extension

0→ L(−t)→ E ′ → L∨(p)→ 0.

Thus the Hecke transform contains as subbundle U = L⊗A(−t). The equation saying that

this collection is equal to a trope plane is the equation U⊗2 = O(−2p). For U = L⊗A(−t)
we have

U⊗2 = L⊗2 ⊗ A⊗2(−2t) = O(q − p + t− p− 2t) = O(q − t− 2p).

The condition that we are on a trope plane is that this bundle is O(−2p), i.e. the equation

O(q − t) = O in other words, q = t. Thus, we conclude that the 16 lines on the wobbly
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locus that correspond to bundles whose Hecke transforms are trope planes, are the 16 lines

corresponding to solutions of L⊗2 = O(q − p) with q = t.

Now to the main question: suppose given a node of Kum ⊂ X0, and let us do the Hecke

transformation. The Hecke transformation is unstable if we take the polystable representative

to start with, so let us look at a bundle E that is an extension of V by itself with V ⊗2 = OC .

Then the subsheaf E ′ has as line subbundle V (−t), so the Hecke transform E ′ ⊗ A(p) has

as line subbundle L = V ⊗A(p− t). Let us verify that this is on the wobbly locus: we have

L⊗2 = V ⊗2 ⊗ A⊗2(2p− 2t) = O(t− p)⊗O(2p− 2t) = O(p− t).

We may also set q = t′ to be the conjugate point of t, and note that O(t+ q) = O(2p) so we

can write

L⊗2 = O(t− p)⊗O(2p− 2t) = O(t+ q − p− t) = O(q − p).

Thus the bundle E ′ ⊗A(p) being an extension containing L as subbundle, is on the wobbly

locus. It corresponds to the line over the point (L, q) of C with L = V ⊗A(p− t) and q = t′

is the conjugate point of t.

We now have a description of the 16 lines, that are on the wobbly locus, that are Hecke

transforms of the nodes. They are the 16 lines corresponding to solutions of L⊗2 = O(q−p)

with q = t′ being the conjugate point of t.

Putting together these two collections of 16 lines, we get 32 lines on the wobbly locus

that correspond to the 32 points in C whose images in C are either t or t′.

It looks like these should be the 32 lines under discussion on [GH94, pp 775-77]. In

particular, the 32 lines of [GH94] should have the property that they are ‘special’ in the

sense of the definition of page 792 (i.e. being lines of the wobbly locus). This is certainly

known in the classical theory but does not seem to have been mentioned in [GH94].

One may also ask to describe the planes in X0 that correspond to the second collection of

16 lines i.e. the Hecke fibers over nodes. We think that the plane corresponding to the Hecke

fiber over a node will contain that node, and will have tangent cone that is the tangent line

to the conic (tangent cone of Kum) at the point of the hyperelliptic line given by the image

of t. We do not have a proof of that; it should follow from a closer look at the theory of the

relationship between the Kummer surface Kum and its dual [Keu97, GH94], but that goes

beyond our present scope.
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6.7 Pullbacks of wobbly divisors and ramification

Let

W 0 := d−1(Wob0) ⊂ H, W 1 := p−1(Wob1) ⊂ H

be the inverse images of the wobbly divisors in the big Hecke correspondence.

Fix a point a = (A, t) ∈ C. Let W 0(a) and W 1(a) denote the fibers of W 0 → C and

W 1 → C over a ∈ C. We have a diagram

W 1(a) �
� //

##

H(a)

��

X0

Recall that the map pH(a) → X1 is a P1-bundle. Therefore, the map W 1(a) → Wob1 is

smooth. It follows that the singularities of W 1(a) are the same as those of Wob1 pulled back.

Namely, we have a locus of cusps and a locus of nodes in codimension 1.

Let Wobn
1 → Wob1 denote the normalization, so Wobn

1 = C × P1. Similarly denote by

W 1(a)n the normalization of W 1(a), which maps by a smooth P1-fibration to Wobn
1.

We give here some statements about the wobbly from X1 pulled back and ramifying over

X0.

6.7.1. The map W 1(a)→ X0 is a proper morphism which is a finite 16-sheeted cover away

from a codimension 2 subset of X0.

Proof: We have computed that the class of the divisor Wob1 ∈ X1 is 8H, where H is the

hyperplane class in P5. This means that Wob1 intersects each line in X1 at 8 points and

each conic in X1 at 16 points. Since the fibers of H(a)→ X0 are the conics in X1 this shows

that W 1(a)→ X0 is a map of degree 16. □

6.7.2. Let J = Jac0(C)) denote the Jacobian of C viewed as the moduli of lines ℓ ⊂ X1.

Let

Γ = {(x, ℓ) ∈ X1 × J | x ∈ ℓ}

be the incidence correspondence. Γ is a P1-bundle over J . In the interpretation of X1 as the

moduli of vector bundles of determinant OC(p) a point of the Jacobian A ∈ J corresponds
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to the line ℓA ⊂ X1 parametrizing all non-trivial extensions

0→ A→ E → A∨(p)→ 0.

Thus the fiber ℓA of Γ→ J over A is identified canonically with the line P(H1(C,A⊗2(−p))).

In particular if A ∈ C ⊂ J , then A⊗2 = OC(t − p) for some point t ∈ C and so we have

H1(C,A⊗2(−p)) = H1(C,OC(−t′)) where t′ is the hyperelliptic conjugate of t. This space

in turn is equal to H1(C,OC) under the natural embedding OC(−t′) ⊂ OC . In other words

the restriction of the P1-bundle Γ→ J to the curve C ⊂ J is trivial, i.e. Γ|C
∼= P1 ×C - the

product of the hyperelliptic P1 and C. The projection map Γ→ X1 is known [New68] to be

a finite morphism of degree 4.

Claim 6.7.3. (a) For every line ℓ ⊂ X1 there is natural line bundle γ(ℓ) of degree three

giving a rational map C 99K ℓ. The map has a base point if and only if ℓ ⊂ Wob1 (ℓ

“wobbles”).

(b) The branch divisor of the map Γ → X1 contains Wob1, and the ramification divisor

above Wob1 is equal to

Γ|C
∼= P1 × C → P1 × (C × C) = (P1 × C)× C →Wob1 × J ⊂ X1 × J,

where the maps between products are the natural maps on the components. Also,

Γ→ X1 is simply ramified at the general point of P1 × C ⊂ Γ.

(c) If ℓ ⊂ Wob1 does not wobble, then the intersection points ℓ ∩Wob1 are the 8 branch

points for the cover C → P1.

Proof. We identify the curve C with the family of rulings of the pencil of quadrics. A point

t ∈ C Corresponds to a ruling Rt , which is a family (whose parameter space is isomorphic

to P3) of planes P2 contained in quadric Qh(t), where h : C → P1 is the hyperelliptic map.

We get a morphism i : C × J → J : if ℓ is a line in X1, it is contained in a unique plane

of ruling Rt. The intersection of this plane with X1 equals its intersection with the quadric

Qλ for any λ ̸= h(t), so it consists of ℓ plus another line i(t, ℓ). If we use the Weierstrass

point p to embed C in J = Jac0(C), then this morphism becomes i(t, ℓA) = ℓA∨(t−p). For

each t ∈ C, the restriction it : J → J is an involution, so it has 16 fixed points, namely

{a | 2a = O(t− p)}. We see that C is the union of these fixed loci as the point t varies over
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C. On the other hand, for each ℓ ∈ X1, the restriction iℓ identifies C with the family of lines

in X1 intersecting ℓ. So we get a morphism j : Γ×X1 Γ→ Γ× C.
The fiber product Γ×X1 Γ is reducible, consisting of the diagonal plus a 3-sheeted cover

Γ′ → Γ. The image j(Γ′) ⊂ Γ× C gives a morphism Γ→ Sym3C which induces the desired

γ : J → Jac3C. For a given ℓ, the sections of γ(ℓ) map C to ℓ itself. A point x ∈ C is a base

point of γ(ℓ) iff ℓ is a fixed point of the involution ix. So as we noted above, γ(ℓ) has a base

point iff ℓ is a line contained in Wob1. More generally, for a line ℓ ⊂ X1, the points where ℓ

meets Wob1 are the points above which two of the three points of the corresponding divisor

in |γ(ℓ)| come together .

Corollary 6.7.4. The general line ℓ ⊂ X1 intersects Wob1 at 8 distinct points and therefore

W 1(a)→ X0 is unramified over the general point of the Kummer surface Kum.

The non-smooth divisor of the map W 1(a)→ X0 decomposes into three pieces that we will

denote as

W 1(a)ramif , W 1(a)node, W 1(a)cusp

where W 1(a)node is the nodal locus of W 1(a), W 1(a)cusp is the cuspidal locus, and W 1(a)ramif

is the remainder of the ramification locus.

We note that the ramification locus of the map from the normalization W 1(a)n → X0

will consist of the pieces mapping to W 1(a)ramif and W 1(a)cusp, the latter because a cusp

gives ramification. Furthermore, the three pieces are not disjoint since they intersect in

codimension 2 of W 1(a) but we ignore this aspect.

As W 1(a) is a 3-dimensional variety these pieces are two-dimensional, so they map to

divisors in X0. The previous Corollary 6.7.4 tells us that none of these images meet the

Kummer surface.

Claim 6.7.5. The images of W 1(a)node and W 1(a)cusp do not contain any trope planes.

Proof. The locus W 1(a)cusp is irreducible and the locus W 1(a)node has 6 pieces. On the other

hand, when all the data moves around, the trope planes are permuted in an orbit of size 16,

so a monodromy argument in terms of our general parameters implies that these divisors

can not contain trope planes.
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Proposition 6.7. Fix a point a = (A, t) ∈ C. Away from the inverse image of a codimension

2 subset of X0,

W 1(a)ramif =
⋃

a∈J[2]

W 1(a)ramif
a

is a union of 16 divisor pieces W 1(a)ramif
a ⊂ W 1(a) each of which is a ruled surface F1

mapping to the corresponding trope plane Tropea(p)
∼= P2.

The map back to Wob1 decomposes as a sum of maps (ruled surfaces)

W 1(a)ramif
a → (line)a(a) ⊂Wob1

where (line)a(a) is one of the P1’s in the expression Wobn
1 = C × P1 → Wob1 and it corre-

sponds to the point b = (A⊗ ξ, t) ∈ C.

Proof. If b = (B, u) ∈ C then the line {b}× P1 ⊂Wob1 pulls back to an F1-surface in H(a).

Such a surface then contracts to a plane that we will denote by P2(b) ⊂ X0. The contraction

has an exceptional P1 that maps to a point we will denote by x(b) ⊂ X0.

The line corresponds to bundles fitting into an extension

0→ B → E → B−1(p)→ 0

and the Hecke transformed bundle will be of the form E ′ ⊗ A where E ′ is the kernel of a

length 1 quotient of E supported on t ∈ C. In particular, the Hecke transformed bundle

contains the line bundle B ⊗A(−t), and this determines the plane P2(b) as being the plane

of semistable bundles in X0 that contain the degree −1 line bundle B ⊗ A(−t).
Let W 1(a)p denote the resulting family of P2’s. It is a P2-bundle over C with a dominant

map to X0 = P3.

The map b 7→ x(b) has image a curve being the subset of codimension 2 appearing in the

statement of the proposition. Outside of this curve, W 1(a)p and W 1(a)n coincide. Therefore

it is enough to locate the ramification of W 1(a)p → X0.

The map b 7→ P2(b) may be viewed as a map to the dual projective space that we will

denote by X∨
0 . It factors as

C → Jac−1(C)→ Kum∨ → X∨
0

where Kum∨ is the dual Kummer surface appearing in the classical synthetic theory

[Keu97, GH94]. It is the dual surface of Kum. The birational map sending a point to its

tangent plane blows up the nodes of Kum and blows down the trope conics to get the dual

171



Kummer surface Kum∨. We remark that an important element of the classical theory says

that Kum∨ is projectively isomorphic to Kum although not by this birational map.

The map Jac−1(C) → Kum∨ ⊂ X∨
0 is not an immersion, exactly over the nodes of the

dual surface, and there the tangent map vanishes. Any translation of the map C → Jac−1(C)

is an immersion. Thus, the map C → X∨
0 is non-immersive exactly at points that go to nodes

of Kum∨.

This implies that the family of P2(b)’s becomes stationary exactly whenever the plane in

question is a trope plane. In particular, the map W 1(a)p → X0 is ramified along the planes

in W 1(a)p that map to trope planes.

We claim that there are 16 of these, and then we will see by a characteristic class calcu-

lation that this accounts for all of the ramification.

The condition that the plane P2(b) of vector bundles containing the line bundle B⊗A(−t)
should be a trope plane, is equivalent to saying that B ⊗A(−t) is the dual of a square root

of the canonical bundle. We calculate

[B ⊗ A(−t)]⊗2 = B⊗2 ⊗ A⊗2 ⊗OC(−2t) = OC(u− p + t− p− 2t) = OC(u− t− 2p).

This is isomorphic to the dual of the canonical bundle exactly when u = t. Thus the set of

choices of b making P2(b) into a trope plane is the set of choices of square-root B such that

B⊗2 = OC(t− p). There are 16 of these.

To complete the proof, we need to see that we have accounted for all of the ramifica-

tion. Notice that there is another reason for ramification, namely the fact that the map

W 1(a)n → X0 factors through W 1(a) → X0 that has a cuspidal locus. This provides a

divisor of ramification that is the inverse image of the cuspidal locus in Wob1 and consists

of a line in each of the planes P2(b).

Let ω denote here the canonical class of W 1(a)p. Its restriction to each fiber P2(b) is

OP2(−3). Therefore, the relative canonical class of W 1(a)p over X0, which is OX0(4) ⊗ ω,

restricts to OP2(1) on each plane P2(b).

We already know a divisor, the ramification coming from the cuspidal locus, that is a line

in each P2(b). This therefore accounts for any ramification that restricts to a divisor in the

P2(b). The leftover possibility is of ramification consisting of a union of fibers. But, if the

map were ramified along a fiber then the family of planes P2(b) ⊂ X0 will be stationary at

that fiber. Above we saw that the cases where the planes are stationary correspond exactly

to the cases where they are trope planes. We conclude that the ramification locus of the

map W 1(a)p → X0 consists of the 16 planes corresponding to lines in Wob1 as are described
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in the statement of the proposition, plus the divisor that maps to W 1(a)cusp.

Similar analysis proves the following

Corollary 6.7.6. The ramification along the planes given in the proposition is simple.

7 Abelianized Hecke

7.1 Setup for abelianization of the Hecke property

Let as before C be our smooth genus 2 curve, and let p ∈ C be our fixed Weierstrass

point. Let (E, θ) be an eigenvalue SL2(C)-Higgs bundle for our Hecke eigensheaf problem.

That is

• E is a rank two algebraic vector bundle on C with trivial determinant.

• θ : E → E ⊗ ωC is a traceless Higgs field satisfyig the genericity condition that the

spectral curve

C̃ : det(λ · id−π∗θ) = 0 ⊂ T∨C

is smooth.

Note that this genericity condition automatically implies that the Higgs bundle (E, θ)

is stable, i.e. corresponds to a flat bundle and a polarized twistor D-module on C by the

non-abelian Hodge correspondence [Sim92].

Let N ∈ Pic(C̃) be the spectral line bundle corresponding to (E, θ). That is N is a line

bundle on C̃ such that

E = π∗N , θ = π∗(λ⊗ (−)).

The spectral data (C̃ ⊂ T∨C,N ) is the abelianization of the Higgs bundle (E, θ). We

used this spectral data to construct modular spectral data defininig a tame parabolic rank

8 Higgs bundle on the moduli of semistable PSL2(C)-bundles on C. We already checked

that this rank 8 Higgs bundle is stabe and has vanishing first and second parabolic Chern

class, hence by Mochizuki’s theorem [Moc07a, Moc07b] it gives rise to a polarized twistor

D-module and a tame parabolic flat bundle. Now we will use the modular spectral data to

rewrite the Hecke eigensheaf property on this rank 8 Higgs bundle in terms of abelianized
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information and the abelianized Hecke correspondence. We will then explain how to use

the abelianized picture to prove that the rank 8 Higgs bundle is indeed a Hecke eigensheaf

satisfying the conditions in Problem 6.1.

Our strategy in constructing (Fi,•,Φi) and checking the eigensheaf property is to use abelian-

ization. To abelianize the problem we look at the C̃-Hitchin fibers inside the moduli of Higgs

bundles Higgs0 and Higgs1 respectively. These are the degree 2 and degree 3 Prym varieties

P2 and P3 of the cover π : C̃ → C:

P2 =
{
M ∈ Jac2(C̃)

∣∣∣ Nmπ(M) = ωC

}
,

P3 =
{
M ∈ Jac3(C̃)

∣∣∣ Nmπ(M) = ωC(p)
}
.

We have natural rational maps

P2
// X0,

M � // π∗M

and P3
// X1,

M � // π∗M

(30)

which are surjective, quasifinite, and finite of degree 8 over the very stable loci in X0 and

X1. These maps fit in the following commutative diagrams of correspondences

P2 × Ĉ

��

sum

yy

id

&&

P3

π∗

��

P2 × Ĉ

π∗×π̂

��

H
p

yy

q

''

X1 X0 × C

P3 × Ĉ

��

diff

yy

id

&&

P2

π∗

��

P3 × Ĉ

π∗×π̂

��

H
d

yy

b

''

X0 X1 × C

(31)

where Ĉ is the curve defined by the fiber product

Ĉ
π̂ //

ŝq
��

C

sq
��

C̃ π
// C

,
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the maps sum/diff are the sum/difference maps

sum : P2 × Ĉ // P3,

(L, (A, t̃)) � // L⊗ π∗A−1(t̃)

diff : P3 × Ĉ // P2,

(L, (A, t̃)) � // L⊗ π∗A(−t̃)

while the rational maps P2 × Ĉ 99K H and P3 × Ĉ 99K H are defined by

P2 × Ĉ 99K H, (L, (A, t̃)) 7→ ((E,E ′, β), (A, t)),

P3 × Ĉ 99K H, (M, (A, t̃)) 7→ ((V, V ′, γ), (A, t))

where

∣∣∣∣∣∣∣∣∣∣
E = π∗

(
(L⊗ π∗A−1)(t̃)

)
,

E ′ = π∗L,

β = π∗
[
L⊗ π∗A−1 ↪→ (L⊗ π∗A−1)(t̃)

]
,

t = π(t̃).

and

∣∣∣∣∣∣∣∣∣∣
V = π∗M,

V ′ = π∗
(
(M ⊗ π∗A(−t̃)

)
,

γ = π∗
[
M(−t̃) ↪→M

]
,

t = π(t̃).

(32)

The modular spectral covers Y0 and Y1 corresponding to C̃ are minimal resolutions

Y0

εo
��

f0 // X0

P2

>>
and Y1

ε1
��

f1 // X1

P3

>>

of the rational maps in (30). We will recall the explicit construction of these resolutions

below. The resulting covering maps fi : Yi → Xi are finite of degree 8 and we will use them

to construct the Hecke eigensheaf.

Let (C̃ ⊂ T∨C,N ) be the spectral data abelianizing the Higgs bundle (E, θ) on C. Our

approach to solving Problem 6.1 is to use the Fourier-Mukai transform on the Jacobian of

C̃ to convert the skyscraper sheaf ON to line bundles on P2 and P3 respectively. After that

we pull back these line bundles to Y0, Y1, modify them appropriately along the exceptional

divisors of the blow-up maps ε0 : Y0 → P2 and ε1 : Y1 → P3 and push them forward via f0

and f1 to get the eigensheaf: a pair of parabolic Higgs bundles (F0,•,Φ0) (F1,•,Φ1) on X)

and X1 respectively, which are stable and satisfy the vanishing Chern class conditions from

Problem 6.1.
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Once the parabolic Higgs bundles (F0,•,Φ0) and (F1,•,Φ1) are constructed via this pro-

cedure, we can use the diagram (31) to rewrite the eigensheaf equation from Problem 6.1

as an equation of line bundles. Specifically, the (X1 to X0) part of the eigensheaf condition

becomes an equation of line bundles on Y0× Ĉ while the (X0 to X1) part of eigensheaf con-

dition becomes an equation of line bundles on Y1 × Ĉ. To carry this out and to show that

our Fourier-Mukai constructions satisfy the equations on Y0× Ĉ and Y1× Ĉ we will need the

abelianized Hecke correspondence Ĥab which can be described either as the minimal blow-up

of P2 × Ĉ resolving the rational map P2 × Ĉ 99K H or as the minimal blow-up of P3 × Ĉ
resolving the rational map P3 × Ĉ 99K H. In the next section we will construct and analyze

this minimal resolution in detail.

7.2 The abelianized Hecke correspondence in context

Recall that the (big) abelianized Hecke space Ĥab depends on the choice of a fixed spectral

curve π : C̃ → C and can be viewed either as a correspondence between Y1 and Y0× Ĉ or as

a correspondence between Y0 and Y1 × Ĉ:

Ĥab

pab

~~

qab

##

Y1 Y0 × Ĉ

Ĥab

dab

~~

bab

##

Y0 Y1 × Ĉ

(33)

Here

• Y0 is the blow-up of the Prym variety

P2 =
{
M ∈ Jac2(C̃)

∣∣∣ Nmπ(M) = ωC

}
,

at the 16 points {π∗κ}κ∈Spin(C) ⊂ P2, where Spin(C) = {κ ∈ Jac1(C) |κ⊗2 = ωC}
denotes the set of theta characteristics on C. We will write ε0 : Y0 → P2 for the blow

up morphism and E 0 = ⊔κ∈Spin(C)E 0,κ for the corresponding exceptional divisor.

• Y1 is the blow-up of the Prym variety

P3 =
{
M ∈ Jac3(C̃)

∣∣∣ Nmπ(M) = ωC(p)
}
,

at the image of the map (4) which is explicitly given by

ıĈ : Ĉ → P3, (A, t̃) 7→ π∗(A−1(p))⊗OC̃(t̃).
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We will write ε1 : Y1 → P3 for the blow up morphism and E 1 for the corresponding

exceptional divisor.

Note that E 0 is disconnected with 16 connected components E 0,κ each isomorphic to P2. In

contrast the divisor E 1 is irreducible. In fact, as we saw in Lemma 3.2 and Lemma 3.9(b)

it is smooth and isomorphic to Ĉ × P1.

We are now ready to describe the space Ĥab as a common blow-up of Y0 × Ĉ and Y1 × Ĉ.

Namely Ĥab is the blow up of Y0× Ĉ centered at the strict transform of the surface Ĉ× Ĉ ⊂
P2 × Ĉ, where the inclusion Ĉ × Ĉ ⊂ P2 × Ĉ is given by

ıĈ×Ĉ : Ĉ × Ĉ � � // P2 × Ĉ

((A1, t̃1), (A2, t̃2)) //
(
π∗ (A2 ⊗ A∨

1 (p)) (t̃1 − t̃2), (A2, t̃2)
)
.

(34)

The fact that (34) is a closed embedding follows from Lemma 3.2 since the restriction of the

map (34) to Ĉ × {(A2, t̃2)} is a translate of the map (4).

Note next that for each theta characteristic κ ∈ Spin(C), the curve {π∗κ}×Ĉ ⊂ P2×Ĉ is

contained in the image of (34). Indeed, if (A, t̃) ∈ Ĉ, then (A⊗κ∨(p), t̃) is also in Ĉ, and the

image of the pair ((A⊗κ∨(p), t̃), (A, t̃)) under the map (34) is precisely (π∗κ, (A, t̃)) ∈ P2×Ĉ.

This implies that the strict transform of Ĉ × Ĉ in

Y0 × Ĉ = Bl ⊔
κ∈Spin(C)

{π∗κ}×Ĉ

(
P2 × Ĉ

)
is still equal to Ĉ × Ĉ. Hence we can describe the abelianized Hecke correspondence Ĥab as

the iterated blow up

Ĥab = BlĈ×Ĉ

(
Y0 × Ĉ

)
= BlĈ×Ĉ

(
Bl ⊔
κ∈Spin(C)

{π∗κ}×Ĉ

(
P2 × Ĉ

))
ε−→ P2 × Ĉ.

Furthermore, since the centers of these succesive blowups are smooth and nested in each

other ⊔
κ∈Spin(C)

{π∗κ} × Ĉ ⊂ Ĉ × Ĉ

we can also describe Ĥab by performing the blow ups in the opposite order, i.e. first blow

up P2× Ĉ along Ĉ× Ĉ, and then blow up along the strict transforms of the curves π∗κ× Ĉ.
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In other words, we also have

Ĥab = Bl ⊔
κ∈Spin(C)

{π∗κ}×Ĉ BlĈ×Ĉ P2 × Ĉ.

For ease of reference we introduce notation for the exceptional divisors of these blow ups.

We let Exc1 ⊂ Ĥab denote the exceptional divisor of the blow up map Ĥab → Y0 × Ĉ, and

let Exc0 = ⊔κExc0,κ ⊂ Ĥab denote the strict transform of the divisor E 0 × Ĉ ⊂ Y0 × Ĉ.

Equivalently Exc0 is the exceptional divisor of the blow up map Ĥab → BlĈ×Ĉ P2 × Ĉ, and

Exc1 is the strict transform of the exceptional divisor of the map BlĈ×Ĉ P2 × Ĉ → P2 × Ĉ.

The map qab : Ĥab → Y0×Ĉ is just the blow up morphism, while the map pab : Ĥab → Y1

lifts the Abel-Jacobi sum map

sum : P2 × Ĉ → P3, sum(L, (A, t̃)) = L⊗ π∗A−1(t̃)

to the blow ups of the source and target. Recall that Y1 = BlĈ P3 is the blow up of P3

centered at the curve Ĉ ↪→ P3, (A, t̃)→ π∗(A−1(p))(t̃).

The preimage sum−1(Ĉ) of this curve under sum is exactly the surface Ĉ × Ĉ ⊂ P2 × Ĉ
given by the image of (34). So by the universal property of blow ups we see that the map

sum lifts to a morphism

BlĈ×Ĉ P2 × Ĉ → BlĈP3 = Y1

which we can further precompose with the second blow up map

Ĥab = Bl ⊔
κ∈Spin(C)

{π∗κ}×Ĉ BlĈ×Ĉ P2 × Ĉ −→ BlĈ×Ĉ P2 × Ĉ

to obtain the morphism pab : Ĥab → Y1. This exhibits Ĥab as a blow-up of Y0× Ĉ and gives

the first correspondence diagram in (33).

To realize Ĥab as a blow-up of Y1 × Ĉ and describe the second correspondence diagram

in (33) note that the products P2 × Ĉ and P3 × Ĉ are naturally isomorphic via the pair of

mutually inverse maps

(diff, id) : P3 × Ĉ // P2 × Ĉ,

(M, (A, t̃)) � // (M ⊗ π∗A(−t̃), (A, t̃))

and

(sum, id) : P2 × Ĉ // P3 × Ĉ.

(L, (A, t̃)) � // (L⊗ π∗A−1(t̃), (A, t̃))
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But postcomposing the inclusion (34) with the map sum× id gives the map

ıĈ × id : Ĉ × Ĉ // P3 × Ĉ,

((A1, t̃1), (A2, t̃2))
� // (π∗(A−1

1 (p))(t̃), (A2, t̃2))

gives the product of Ĉ ⊂ P3 with Ĉ. Therefore the composition

BlĈ×Ĉ (P2 × Ĉ) // P2 × Ĉ
(sum,id) // P3 × Ĉ

is simply the blow up of P3 × Ĉ along the product surface ıĈ(Ĉ)× Ĉ. Thus

BlĈ×Ĉ (P2 × Ĉ) = Y1 × Ĉ,

which in turn identifies Ĥab with a blow up of Y1 × Ĉ.

The morphism bab : Ĥab → Y1 × Ĉ is again the blow-up morphism, while the morphism

dab : Ĥab → Y0 now lifts the difference map diff : P3× Ĉ → P2 to the blow-ups of the source

and target. This describes the second correspondence in diagram (33).

Observe also that the two maps (diff, id) and (sum, id) not only identify P3×Ĉ and P2×Ĉ
but also identify the two diagrams of correspondences in (31) when the maps between all of

the other corresponding nodes in the two diagrams are taken to be identities.

Recall next that the blown up Prym varieties Y0 and Y1 are equipped with finite degree 8

morphisms f0 : Y0 → X0 and f1 : Y1 → X1 which are the minimal resolutions of the rational

maps P2 99K X0 and P3 99K X1 both given by L 7→ π∗L, for L in either P2 or P3. These

maps realize Y0 and Y1 as the modular spectral covers of X9 and X1 which are used to define

the putative Hecke eigen Higgs bundle on X0 ⊔X1.

Following our general strategy, we will check the Hecke eigensheaf property for this prar-

bolic Higgs bundle by reducing the question to checking an abelianized Hecke eigensheaf

property for the corresponding modular spectral data. This is facilitated by the observation

that the Pryms P2, P3, the moduli X0, X1 of bundles, their modular spectral covers Y0, Y1,

the classical Hecke correspondence H, and the abelianized Hecke correspondence Ĥab can all

be organized in a single geometric context, which, for the (X1 to X0) direction of the Hecke
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property, is most compactly recorded in the following commutative diagram

P2 × Ĉ

��

sum

yy

id

&&

Ĥab

pab

{{

qab

%%
g

��

εoo

P3

π∗

��

P2 × Ĉ

π∗×π̂

��

Y1

ε1

ss

f1

��

Y0 × Ĉ

f0×π̂

��

ε0×id

ss

H
p

yy

q

''

H
p

{{

q

&&

X1 X0 × C X1 X0 × C

(35)

We used f0, f1, and g to denote the resolutions of the rational maps from the Pryms to the

moduli of bundles and the Hecke correspondence to maps from the modular spectral covers,

and the abelianized Hecke correspondence. Note that the map g : Ĥab → H is indeed a

morphism because the the maps f1 : Y1 → X1 and f0× π̂ : Y0× Ĉ → X0×C are morphisms,

and also the map p× q : H → X1 × (X0 × C) is a closed embedding.

Finally note that we also have a companion diagram which compactly records all spaces

and maps needed to abelianize and check the (X0 to X1) direction of the Hecke property,

namely

P3 × Ĉ

��

diff

yy

id

&&

Ĥab

dab

{{

bab

%%
g

��

(sum,id)◦εoo

P2

π∗

��

P3 × Ĉ

π∗×π̂

��

Y0

ε0

ss

f0

��

Y1 × Ĉ

f1×π̂

��

ε1×id

ss

H
d

yy

b

''

H
d

{{

b

&&

X0 X1 × C X0 X1 × C

(36)

7.3 The pullback of the relative dualizing sheaf

For the verification of the Hecke property we need to understand the line bundles g∗ωq

and g∗ωb on Ĥab, where ωq = ωH⊗q∗ω−1

X0×C
and ωb = ωH⊗b∗ω−1

X1×C
are the relative dualizing
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sheaf of the maps q and b respectively. The key thing is to understand the pullbacks of ωH,

ωq, and ωb under the rational map P2 × Ĉ 99K H. Note that the base locus of this map has

codimension at least two, and so the pullback of line bundles is well defined.

First we have the following

Proposition 7.1. The Picard group of H is

Pic(H) = Pic(X1)× Pic(X0)× Pic(C) ∼= Z× Z× Pic(C).

In particular there is a unique line bundle M ∈ Pic(C) so that

ωH = p∗OX1(−1)⊗ q∗(OX0(−2) ⊠M).

Proof. Recall that the map p× (pC ◦ q) : H → X1 ×C is a P1 bundle. In moduli terms this

P1-bundle is described as follows.

The moduli space X1 has a universal bundle E → X1 × C, satisfying E|{E}×C ∼= E for

all E ∈ X1 [New68, NR69]. The universal bundle E is not quite unique6 but is well defined

up to tensoring with a line bundle of the form p∗X1
OX1(k) for some k. We also have the

normalized Poincaré line bundle Poinc→ Jac0(C)×C, i.e. the unique line bundle satisfying

Poinc|{A}×C ∼= A for all A, and Poinc| Jac0(C)×{p}
∼= O| Jac0(C). Since the curve

C = {(A, t) ∈ Jac0(C)× C |A⊗2(p) ∼= OC(t)}

is embedded in Jac0(C) × C, we can consider the pulled back line bundle A := Poinc|C .

Then we have

H = P
(
(id×sq)∗E ⊗ p∗

C
A
)
−→ X1 × C. (37)

Also, recall that the fibers of the P1-bundle H → X1 × C map to straight lines in X0 under

the projection prX0
= pX0 ◦ q : H → X0, and so the line bundle pr∗X0

OX0(1) has degree one

on the fibers of H → X1 × C.

Suppose ξ is a line bundle H. If ξ has degree k on the fibers of H → X1 × C, then

ξ ⊗ pr∗X0
OX0(−k) is trivial on the fibers of H → X1 × C, and so by cohomology and base

change

(H → X1 × C)∗(ξ ⊗ pr∗X0
OX0(−k)) (38)

6In fact in our setting there the universal sheaf can be normalized by further requiring that

det(E )|X1×{p} ∼= OX1(1). One can show that such a normalized universal bundle is unique but we will

not need this fact.
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is a line bundle on X1 × C. Since Pic(X1) = Z and is generated by OX1(1) it follows that

the restriction of the line bundle (38) to any slice X1 × {t̄}, t̄ ∈ C is isomorphic to OX1(r)

for some fixed integer r ∈ Z, independent of t̄. Again by cohomology and base change we

conclude that the further pushforward of (H → X1 × C)∗(ξ ⊗ pr∗X0
OX0(−k)) ⊗ p∗OX1(−r)

under the map pC : X1×C → C is some line bundle α on C. But now the projection formula

implies that

ξ = pr∗X1
OX1(r)⊗ pr∗X0

OX0(k)⊗ pr∗
C
α,

where prX1
= p, prX0

= pX0 ◦ q, and prC = pC ◦ q.
We can now apply this reasoning to ωH. We will have

ωH = pr∗X1
OX1(r)⊗ pr∗X0

OX0(k)⊗ pr∗
C
M.

Since the restriction of the dualizing sheaf to a smooth fiber of a map is the dualizing sheaf

of that fiber, and since the fibers of H → X1 × C map to lines in X0 we conclude that

k = −2. Also, a smooth fiber of the map H → X0 ×C maps to a conic inside X1 ⊂ P5, and

so we conclude that r = −1. Therefore

ωH = pr∗X1
OX1(−1)⊗ pr∗X0

OX0(−2)⊗ pr∗
C
M,

for some line bundle M ∈ Pic(C). This completes the proof of the proposition

Let now ωq = ωH ⊗ q∗ω−1

X0×C
denote the relative dualizing sheaf for the map q. Then the

previous proposition gives

ωq = p∗OX1(−1)⊗ q∗
(
OX0(2) ⊠

(
M ⊗ ω−1

C

))
,

and therefore

(
P2 × Ĉ 99K H

)∗
ωq =

(sum∗ (P3 99K X1)
∗OX1(−1))⊗

(
(P2 99K X0)

∗OX0(2) ⊠ π̂∗
(
M ⊗ ω−1

C

))
.

(39)

Similarly, if ωb = ωH ⊗ b∗ω−1

X1×C
denotes the relative dualizing sheaf for the map b, then the

formula for ωH implies

ωb = d∗OX0(−2)⊗ b∗
(
OX1(1) ⊠

(
M ⊗ ω−1

C

))
,
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and therefore(
P3 × Ĉ 99K H

)∗
ωb =

(diff∗ (P2 99K X0)
∗OX0(−2))⊗

(
(P3 99K X1)

∗OX1(1) ⊠ π̂∗
(
M ⊗ ω−1

C

))
.

(40)

Next we will compute the line bundle M ∈ Pic(C) appearing in Proposition 7.1 and in the

formulas (39) and (40).

Lemma 7.2. M = sq∗ωC(p).

Proof. Let E ∈ X1 be a general point. Consider the surface PE := p−1(E) ⊂ H. Then PE is

a smooth geometrically ruled surface over C and in fact from the P1-bundle description (37)

of H we get

PE = P
(

(id×sq)∗E|{E}×C ⊗A
)

= P(sq∗E ⊗A ) ∼= P(sq∗E).

The map

PE
q|PE //

��

X0 × C

zz
C

embeds PE into X0 × C by embedding each fiber of PE → C as a straight line in X0
∼= P3.

Also, since PE = p−1(E) is a fiber of a map, we have ωH|PE

∼= ωPE
and so by Proposition 7.1

we have

ωPE
∼= ωH|PE

=
(
q|PE

)∗
(OX0(−2) ⊠M) .

So we can compute M by computing the restrictions of pr∗X0
OX0(−2) and ωPE

to some

section ζ : C → PE of the ruled surface PE → C.

Any line subundle L ⊂ E of degree zero will give rise to such a section. There are four

such sububundles for a generic E and we can choose any one of them. Let L ⊂ E be a line

subbundle of degree zero. Then we have a short exact sequence

0 // L // E // L∨(p) // 0,

and L gives a section of P(E) → C which pulls back to a section ζ : C → PE of PE → C.

Note that for any point (A, t) ∈ C the fiber of PE → C over (A, t) is canonically P(Et ⊗At)
and the value of the section ζ at (A, t) is given by the line Lt ⊗ At, i.e.

ζ(A, t) = [Lt ⊗ At] ∈ P(Et ⊗ At).
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The bundle E ⊗ A fits in a short exact sequence

0 // L⊗ A // E ⊗ A // L∨ ⊗ A(p) // 0.

(L⊗ A)∨(t)

By definition the map PE ⊂ H
prX0−→ X0 sends the point ζ(A, t) to the down Hecke transform

of E ⊗A centered at the line (L⊗A)t ⊂ (E ⊗A)t, i.e. to the locally free sheaf Ẽ defined by

the commutative diagram

0 0

((L⊗ A)∨(t))t

OO

((L⊗ A)∨(t))t

OO

0 // L⊗ A // E ⊗ A //

OO

(L⊗ A)∨(t) //

OO

0

0 // L⊗ A // Ẽ //

OO

(L⊗ A)∨ //

OO

0

0

OO

0

OO

The third row of this diagram exhibits Ẽ as an extension of the degree zero line bundle

(L⊗A)∨ by L⊗A and so the bundle Ẽ goes to the point corresponding to the S-equivalence

class [(L⊗ A)⊕ (L⊗ A)∨] ∈ Kum ⊂ X0.

Hence the map prX0
◦ζ : C → X0 factors as

C
prX0

◦ζ
//

� _

��

X0

Jac0(C) // Kum
?�

OO
(41)

Here the left vertical map C ↪→ Jac0(C) is given by (A, t) 7→ A⊗L, i.e. is the translation by

L of the defining embedding of C in Jac0(C). The bottom horizontal map Jac0(C)→ Kum

is the quotient of Jac0(C) by (−1), and the composition Jac0(C) → Kum → X0
∼= P3 is

given by the linear system |2Θp|, with Θp being the theta divisor

Θp =
{
α ∈ Jac0(C)

∣∣ h0(C, α(p)) ≥ 1
}
.
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Remark 7.3. Strictly speaking the moduli spaceX0 is isomorphic to P(H0(Jac0(C),O(2Θp))),

rather than P(H0(Jac0(C),O(2Θp))
∨). Indeed, by [NR69] the identification

X0 = P(H0(Jac0(C),O(2Θp)))

is given by the map V 7→ DV ∈ |2Θp|, where DV = {α ∈ Jac0(C) | h0(C, V ⊗ α(p)) }. To

conclude that the map Jac0(C)→ X0 is indeed given by the linear system |2Θp| we use the

classical fact [Hud05, Dol20, Keu97] that the embedding of the Kummer surface in P3 is

projectively self-dual.

Suppose x ∈ C is a fixed point, and AJx : C → Jac0(C), t 7→ O(t − x) is the x-based

Abel-Jacobi map. Suppose κ ∈ Spin(C) is a theta characteristic and let

Θκ = {α ∈ Jac0(C) |h0(C, α ⊗ κ) ≥ 1 } be the associated theta divisor on Jac0(C). By

Rieman’s theorem [GH94] we have that AJ∗xO(Θκ) = κ(x). In particular, since OC(p) is a

theta characteristic we get that

AJ∗pO(Θp) ∼= OC(2p) = ωC .

If we denote the natural embedding of C in Jac0(C) by ıC : C ↪→ Jac0(C), (A, t) 7→ A, then

we can write the left vertical map in the diagram (41) as the composition

tL ◦ ıC : C ↪→ Jac0(C), where for a line bundle L on C we use

tL := L⊗ (−) : Jack(C)→ Jack+degL(C)

to denote the map of tensoring by L. With this notation we now have a commutative diagram

C
sq //

� _

tL◦ıC
��

C
� _

tL⊗2◦AJp
��

Jac0(C)
mult2

// Jac0(C)

(42)

But mult∗2O(Θp) = O(4Θp), and so we get

(tL ◦ ıC)∗O(4Θp) = sq∗ ◦ AJ∗p ◦ t∗L⊗2O(Θp)

= sq∗
(
L⊗−2 ⊗ AJ∗pO(Θp)

)
= sq∗

(
L⊗−2(2p)

)
.
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But by (41) we have

(prX0
◦ζ)∗OX0(−2) = (tL ◦ ıC)∗O(−4Θp),

and hence

(prX0
◦ζ)∗OX0(−2) = sq∗

(
L⊗2(−2p)

)
. (43)

Next we need to compute ζ∗ωPE
. By adjunction we have

ζ∗ωPE
= ωC ⊗ ζ∗OPE

(−ζ).

Using the fact that ζ : C → PE = P(sq∗E) corresponds to the subbundle sq∗L we compute

ζ∗OPE
(ζ) = Nζ/PE

= HomOC
(sq∗L, sq∗(E/L))

= sq∗(L∨ ⊗ L∨(p))

= sq∗
(
L⊗−2(p)

)
.

Hence

ζ∗ωPE
= ωC ⊗ sq∗

(
L⊗2(−p)

)
= (sq∗OC(2p))⊗ sq∗

(
L⊗2(−p)

)
= sq∗

(
L⊗2(p)

)
. (44)

Substituting (43) and (44) in the the identity

ζ∗ωPE
= (prX0

◦ζ)∗OX0(−2)⊗M

we get

sq∗
(
L⊗2(p)

)
= sq∗

(
L⊗2(−p)

)
⊗M,

that is M = sq∗OC(3p) = sq∗ωC(p).

Since ωC = sq∗ωC we therefore get that

ωq = p∗OX1(−1)⊗ q∗ (OX0(2) ⊠ π̂∗sq∗OC(p))

and so we get a slightly simpler version of (39), namely:

(
P2 × Ĉ 99K H

)∗
ωq =

(sum∗ (P3 99K X1)
∗OX1(−1))⊗ ((P2 99K X0)

∗OX0(2) ⊠ π̂∗sq∗OC(p)) .

(45)
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Finally, pulling (45) by ε : Ĥab → P2× Ĉ and using the commutativity of the main diagram

(35) we get

g∗ωq =
(
pab
)∗
f ∗
1OX1(−1)⊗

(
qab
)∗

(f ∗
0OX0(2) ⊠ π̂∗sq∗OC(p)) (46)

This is exactly what we will need to abelianize and check the (X1 to X0) direction of the

Hecke property. For understanding the abelianization of the (X0 to X1) direction we also

need to rewrite (46) in terms of the maps in the second correspondence diagram in (33).

This is straighforward. Substituting M = sq∗ωC(p) in (40) gives the simplified identity

(
P3 × Ĉ 99K H

)∗
ωb =

(diff∗ (P2 99K X0)
∗OX0(−2))⊗ ((P3 99K X1)

∗OX1(1) ⊠ π̂∗sq∗OC(p)) .

(47)

Finally, pulling back (47) via the map (sum, id)◦ε : Ĥ → P3×Ĉ and using the commutativity

of the companion diagram (36) we get

g∗ωb =
(
dab
)∗
f ∗
0OX0(−2)⊗

(
bab
)∗

(f ∗
1OX1(1) ⊠ π̂∗sq∗OC(p)) (48)

7.4 The Hecke property via abelianization

Throughout this section we will fix a base point p̃ ∈ C̃ such that π(p̃) = p. Now suppose

(C̃ ⊂ T∨C,N ) is the spectral data for (E, θ), i.e. (E, θ) = (π∗N , π∗(λ⊗(−))). Then N ∈ P2

and it determines two natural line bundles

L0 ∈ Pic0(P2), and L1 ∈ Pic0(P3),

where L1 = t∗−p̃L0, and L0 is the appropriately defined Fourier-Mukai transform of the

skyscraper sheaf ON on P2. Explicitly, consider the abelian subvariety P ⊂ Jac0(C̃) defined

by

P =
{
L ∈ Jac0(C̃) |Nmπ(L) = OC

}
.

This abelian subvariety comes with a natural polarization ξ → P defined by pulling back

the canonical theta line bundle on Jac4(C̃) via the natural map

P ⊂ Jac0(C̃)→ Jac4(C̃), L 7→ L⊗OC̃(2π∗p).
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Explicitly ξ is defined as ξ = OP (Ξ2π∗p), where Ξ2π∗p is the Prym theta divisor

Ξ2π∗p :=
{
L ∈ P

∣∣∣ h0(C̃, L(2π∗p)) ≥ 1
}

. The line bundle ξ has polarization type (1, 2, 2)

and the kernel of the associated polarization homomorphism is isomorphic to J[2] [BNR89].

Concretely, the polarization homomorphism ϕξ to the dual abelain variety P∨ = Pic0(P) is

defined by

ϕξ : P → P∨, L 7→ t∗Lξ ⊗ ξ−1.

It is a surjective homomorphism of abelian varieties and kerϕξ = π∗J[2].

Since P and P∨ are dual abelian varieties we have a canonical normalized Poincaré line

bundle
PPoinc −→ P × P∨

characterized by the conditions

PPoinc|P×{L } ∼= L , for all L ∈ P∨, and

PPoinc|{O
C̃
}×P∨ ∼= OP∨ .

Let FM : Db(P)
∼=−→ Db(P∨), F 7→ p2∗

(
p∗1F ⊗ PPoinc

)
denote the Fourier-Mukai transform

with kernel PPoinc. For any L ∈ P we have

FM(OL) = PPoinc|{L}×P∨

which is a line bundle of degree zero on P∨.

With this notation we can now define the line bundles on P2, and P3 which become part

of the modular spectral data for the Hecke eigensheaf.

Definition 7.4. For any N ∈ P2 define degree zero line bundles on P, P2, and P3 by setting

L := ϕ∗
ξFM

(
ON (−π∗p)

)
∈ Pic0(P),

L0 := t∗O
C̃
(−π∗p)L ∈ Pic0(P2),

L1 := t∗O
C̃
(−p̃−π∗p)L ∈ Pic0(P3).

Note: By construction The line bundles L, L0, and L1 all depend on the Higgs bundle

(E, θ) or more precisely on the corresponding spectral data (C̃ ⊂ T∨C,N ). We suppress

the explicit dependence on N in the labeling of these line bundles to avoid cluttering the

notation.

We can describe these line bundles explicitly in terms of ξ.
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Lemma 7.5. L = t∗N (−π∗(p))ξ ⊗ ξ−1.

Proof. The Poincaré line bundle PPoinc is built explicitly starting from the bi-extension line

bundle

Q → P ×P , Q = m∗ξ ⊗ p∗1ξ−1 ⊗ p∗2ξ−1,

where m : P × P → P is the group operation on the abelian variety P .

Indeed, the translation action of J[2] on the second copy of P in P × P lifts to an action

on Q. Indeed, since ξ is invariant under translation by elements in J[2] , it follows that

Q is invariant under the translation action by elements of J[2] × J[2] ⊂ P × P . But the

extension class defining the theta group of Q is given by [Mum08, BL04b] a pairing eQ

which is the exponentiation of the first Chern class of Q. By definition the first Chern class

of Q restricts to zero on each of the two summands H1(P ,Z) ⊕ H1(P ,Z) in the Künneth

decomposition of the first homology of P × P . Hence eQ restricts to the trivial character

on each of the two factors in J[2] × J[2]. Thus the theta group of Q splits over J[2] which

implies that Q is equivariant under the the translation action of {OC̃} × J[2], as claimed.

Note that by definition the restriction of Q to {OC̃} × P is canonically trivial and we can

use this trivializatio to normalize the {OC̃} × J[2]-action on Q by requiring that J[2] acts

tautologically on OP = Q|{O
C̃
}×P .

Using this normalized equivariant structure on Q we can descend Q to a biextension line

bundle

Q → P ×P∨

on the quotient P × (P/J[2]) ∼= P × P∨. If L ∈ P∨ we have that

Q|P×{L }
∼= Q|P×{α},

where α ∈ P is any point, s.t. ϕξ(α) = L . But then by the definition of Q we have

QP×{α} = t∗αξ ⊗ ξ−1 = ϕξ(α) = L .

Hence

Q|P×{L }
∼= L , for all L ∈ P∨.

Also, by our normalization of the equivariant structure, Q|{OCtilde}×P∨ is the descent of OP =

Q|{O
C̃
}×P with respect to the tautological J[2]-action. Hence Q|{O

C̃
}×P∨

∼= OP∨ . This shows
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that

Q ∼= PPoinc,

and so

Q ∼= (id×ϕξ)
∗ (PPoinc) .

This implies that

L = ϕ∗
ξ

(PPoinc|{N (−π∗p)}×P∨
)

=
(
(id×ϕξ)

∗ (PPoinc))|{N (−π∗p)}×P

= Q|{N (−π∗p)}×P

= t∗N (−π∗p)ξ × ξ−1.

This completes the proof of the lemma.

Recall next that our candidate Hecke eigensheaf for the eigenvalue (E, θ) was a tame parabolic

Higgs bundle (F0,•,Φ0) ⊔ (F1,•,Φ1) on X0 ⊔ X1 which was constructed from the modular

spectral covers

f0 : Y0 → X0, and f1 : Y1 → X1

by setting

(F0,0,Φ0) = (f0∗L0, f0∗ (α0 ⊗ (−))) ,

(F1,0,Φ1) = (f1∗L1, f1∗ (α1 ⊗ (−))) .

Here

• α0 : Y0 → T∨
X0

(log Wob0) and α1 : Y1 → T∨
X1

(log Wob1) are the tautological maps

(defined away from the preimage of codimension two loci in X0 and X1) from the

modular spectral covers Y0 and Y1 to the logarithmic cotangent bundles of X0 and X1

with poles along the (normal crossings part of the) wobbly divisors.

• The modular spectral line bundles L0 and L1 are given by

L0 = (ε∗0L0)(E 0)⊗ f ∗
0OX0(2), and

L1 = ε∗1L1 ⊗ f ∗
1OX1(1)

and E 0 and E 1 denote the exceptional divisors of the blowup maps ε0 : Y0 → P2 and

ε1 : Y1 → P3.
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• (F0,0,Φ0) and (F1,0,Φ1) are equipped with parabolic structures along Wob0 and Wob1

respectively.

In sections 9 and 8 we used these constructions for (Fi,0,Φi) together with the formula for

the L2 Dolbeault pushforward of parabolic Higgs bundles from [DPS16] and its refinements

proven in Proposition 12.7 to rewrite the Hecke condition

q∗p
∗ (F1,•,Φ1) = (F0,•,Φ0) ⊠ sq∗(E, θ),

b∗d
∗ (F0,•,Φ0) = (F1,•,Φ1) ⊠ sq∗(E, θ)

(49)

as a condition on the modular spectral data (Y0,L0) and (Y1,L1). Namely, chasing the

maps in the basic diagram (35) we get that the (X1 to X0) direction of the Hecke eigensheaf

property (49) is equivalent to the (Y1 to Y0) abelianized Hecke condition

(pab)∗
(
ε∗1L1⊗f ∗

1OX1(1)
)
⊗ (g∗ωq) (Exc0 + Exc1)

= (qab)∗ [(ε∗0L0(E 0)⊗ f ∗
0OX0(2)) ⊠ ŝq∗N ] ,

(50)

where (50) is understood as an isomorphism of line bundles on Ĥab which holds away from

the qab-pullback of any codimension two subvariety in Y0 × Ĉ. In particular it suffices to

prove that (50) holds modulo multiples of the divisor Exc1.

Similarly, by Proposition 12.7, the analysis of the contribution from the singularities of

the horizontal divisor to be carried out in section 10.2, and the companion diagram (36) we

get that the (X0 to X1) direction of the Hecke eigensheaf property (49) is equivalent to the

(Y0 to Y1) abelianized Hecke condition

(dab)∗
(
ε∗0L0(E 0)⊗f ∗

0OX0(2)
)
⊗ g∗ωb

= (bab)∗ [(ε∗1L1 ⊗ f ∗
1OX1(1)) ⊠ ŝq∗N ] .

(51)

Again (51) should be understood as an equality of line bundles on Ĥab away from the bab-

pullback of any codimension two subvariety in Y1× Ĉ. In particular, it suffices to check that

(51) holds modulo integral combinations of the components of the divisor Exc0.

Substituting the formula (46) into (50) and (48) we see that the (Y1 to Y0) abelianized

Hecke condition (50) reduces to checking that(
(pab)∗ε∗1L1

)
(Exc0+Exc1) = (qab)∗ [ε∗0L0(E 0) ⊠ ŝq∗(N (−π∗p))] , modulo Z·Exc1. (52)
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Similarly the (Y0 to Y1) abelianized Hecke condition (48) reduces to showing that

(dab)∗ (ε∗0L0(E 0)) = (bab)∗ [(ε∗1L1) ⊠ ŝq∗(N (−π∗p))] , modulo
∑

κ∈Spin(C)

Z ·Exc0,κ. (53)

But in section 7.2 we saw that

(qab)∗
[
OY0(E 0) ⊠OĈ

]
= (qab)∗OP2×Ĉ(E 0 × Ĉ) = OĤab(Exc0 + Exc1),

and that

(dab)∗OY0(E 0) = OĤab(Exc0).

This shows that full exceptional divisor content cancels in both equations (52) and (53) and

so these become equations on line bundles on P2 × Ĉ and P3 × Ĉ respectively. Concretely

we are reduced to checking that

sum∗L1 = L0 ⊠ ŝq∗(N (−π∗p)) in Pic(P2 × Ĉ). (54a)

diff∗L0 = L1 ⊠ ŝq∗(N (−π∗p)) in Pic(P3 × Ĉ). (54b)

Since (sum, id) and (diff, id) are inverse isomorphisms, (54a) and (54b) are clearly equaivalent.

Therefore, to verify both the (Y1 to Y0) and (Y0 to Y1) abelianized Hecke conditions we only

need the following

Proposition 7.6. For any N ∈ P2 the corresponding modular spectral line bundles L0 and

L1 satisfy the identity sum∗L1 = L0 ⊠ ŝq∗(N (−π∗p)) in Pic(P2 × Ĉ).

Proof. Let us first compute sum∗L1. For this it will be convenient to express sum∗L1 as a

pullback of a line bundle on P × P . We have a commutative diagram

P2 × Ĉ sum //

(t−π∗p)×ȷ
��

P3

t−p̃−π∗p
��

P × P m
// P

where ȷ : Ĉ → P is given by (A, t̃) 7→ π∗A−1(t̃ − p̃), and m : P × P → P is the group law

on the Prym, i.e. (L1, L2) 7→ L1 ⊗ L2.

Since by definition L1 = t∗−p̃−π∗pL we get that

sum∗L1 = ((t−π∗p)× ȷ)∗m∗L.
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Also

L0 = t∗−π∗pL = ((t−π∗p)× ȷ)∗ p∗1L,

and so it suffices to understand the line bundle

m∗L⊗ p∗1L−1

on the abelian variety P × P . By Lemma 7.5 we have L = t∗N (−π∗(p))ξ ⊗ ξ−1. To simplify

notation write a = N (−π∗p) ∈ P . Thus we would like to understand the line bundle

m∗(t∗aξ ⊗ ξ−1)⊗ p∗1(t∗aξ ⊗ ξ−1).

To simplify notation consider the a-translated biextension line bundle aQ on P ×P defined

by
aQ = m∗t∗aξ ⊗ p∗1t∗aξ−1 ⊗ p∗2t∗aξ−1.

With this notation we now have

m∗t∗aξ ⊗ p∗1t∗aξ−1 = aQ⊗ p∗2t∗aξ, and

m∗ξ−1 ⊗ p∗1ξ = Q−1 ⊗ p∗2ξ−1.

In particular we get

m∗L⊗ p∗1L−1 = (aQ⊗Q)⊗ p∗2(t∗aξ ⊗ θ−1) = (aQ⊗Q)⊗ p∗2L.

On the other hand, for any b ∈ P we have

aQ|{b}×P = t∗a+bξ ⊗ t∗aξ
−1 = t∗a

(
t∗bξ ⊗ ξ−1

)
.

But t∗bξ ⊗ ξ−1 ∈ Pic0(P), and so is translation invariant. Hence

aQ|{b}×P ∼= t∗bξ ⊗ ξ−1 = Q|{b}×P .

Similarly we have that aQ|P×{b} ∼= Q|P×{b}. So by the see-saw principle we have aQ ∼= Q
and hence

m∗L⊗ p∗1L−1 = p∗2L.

This implies that

sum∗L1 ⊗ p∗1L−1
0 = ((t−π∗p)× ȷ)∗ p∗2L = pr∗

Ĉ
ȷ∗L (55)

and the proposition reduced to the following
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Lemma 7.7. ȷ∗L = ŝq∗ (N (−π∗p)).

Proof. First observe that ȷ∗L is a pullback of a line bundle on C̃ via the map ŝq : Ĉ → C̃.

Indeed, by definition

L = ϕ∗
ξ

(PPoinc|{N (−π∗pw)}×P∨
)
.

On the other hand, the map

ϕξ ◦ ȷ : Ĉ −→ P∨

is given by

(ϕξ ◦ ȷ)(A, t̃) = ϕξ(π
∗A−1(t̃− p̃)).

But ȷ : Ĉ → P is J[2] equivariant for the Galois action of J[2] on the source Ĉ and the

translation action of J[2] = π∗J[2] = kerϕξ ⊂ P . Indeed we have

ȷ
(
a · (A, t̃)

)
= ȷ(A⊗ a, t̃) = π∗(A⊗ a)−1(t̃− p̃) = π∗A−1 ⊗ π∗a(t̃− p̃) = π∗a⊗ ȷ((A, t̃)).

Hence

(ϕξ ◦ ȷ)
(
a · (A, t̃)

)
= (ϕξ ◦ ȷ)(A, t̃),

and so the map ϕξ ◦ ȷ factors through Ĉ/J[2] = C̃. In other words we have a comutative

triangle

Ĉ
ϕξ◦ȷ //

ŝq ��

P∨

C̃

ψ

??

for a well defiined map ψ : C̃ → P∨.

In particular

ȷ∗L = ȷ∗ϕ∗
ξ

(PPoinc{N (−π∗p)}×P∨
)

= ŝq∗ψ∗ (PPoinc{N (−π∗p)}×P∨
)
.

So the question reduces to computing ψ∗ (PPoinc{N (−π∗p)}×P∨
)
. This calls for a better un-

derstanding of the map ψ which is a version of the Abel-Prym map.

We have an addition map

add : Jac0(C)× P −→ Jac0(C̃), (A,L) 7→ π∗A⊗ L,

which is a surjective homomorphism of abelian varieties with kernel isomorphic to J[2],

embedded in Jac0(C)× P by the map a 7→ (a, π∗a). Next note that we have a natural map

π̂ × ȷ : Ĉ −→, (A, t̃) 7→
(
A, π∗A−1(t̃− p̃)

)
.
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This map is clearly J[2]-equivariant and so the composition Ĉ
π̂×ȷ−→ Jac0(C)×P add−→ Jac0(C̃)

will factor as

Ĉ

ŝq
��

π̂×ȷ // Jac0(C)× P add // Jac0(C̃)

C̃

AJp̃

44

where AJp̃ is the p̃-based Abel-Jacobi map AJp̃ : C̃ → Jac0(C̃), t̃ 7→ OC̃(t̃− p̃).

Consider the theta line bundle θ̃ on Jac0(C̃) defined by the theta characteristicOC̃(2π∗p) ∈
Spin(C̃). In other words

θ̃ = OJac0(C̃)(Θ̃2π∗p), where Θ̃2π∗p =
{
L ∈ Jac0(C̃)

∣∣∣ h0(C̃, L(2π∗p)) ≥ 1
}
.

Recall that we used θ̃ to define the line bundle ξ on P , i.e. we had ξ = θ̃|P . Also, θ̃ is a

principal polarization on Jac0(C̃) which defines a surjective group homomorphism

qθ̃ : Jac0(C̃)→ P∨, L 7→
(
t∗Lθ̃ ⊗ θ̃

−1
)
|P
,

which fits in the commutative diagram

Ĉ

id
��

π̂×ȷ // Jac0(C)× P

prP

��

sum // Jac0(C̃)

q
θ̃

��

Ĉ ȷ
// P

ϕξ
// P∨

Therefore

ϕξ ◦ ȷ = qθ̃ ◦ sum ◦ (π̂ × ȷ) = qθ̃ ◦ AJp̃ ◦ ŝq.

This implies that the map ψ : C̃ → P∨ factors as

C̃
ψ //

AJp̃ ""

P∨

Jac0(C̃)

q
θ̃

;;

and so we need to compute pullbacks by AJp̃ and qθ̃.

But for any α ∈ P and any A ∈ P∨ we have that the fiber of the Poincare line bundle
PPoinc at the point (α,A ) ∈ P×P∨ is canonically isomorphic to the fiber of the line bundle
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A ∈ P∨ = Pic0(P) at α ∈ P . Hence for any L ∈ Jac0(C̃) we have equality of fibers(
q∗
θ̃

(PPoinc|{α}×P∨
))

)L = PPoinc(α,q
θ̃
(L))

=
(
qθ̃(L)

)
α

=
(
t∗Lθ̃ ⊗ θ̃

−1
)
α
.

By the see-saw principle this equality of fibers implies that we have an isomorphism

q∗
θ̃

(PPoinc|{α}×P∨
) ∼= Q̃|{α}×Jac0(C̃)

of line bundles on Jac0(C̃), where Q̃ → Jac0(C̃) × Jac0(C̃) is the biextension line bundle

given by

Q̃ = m∗θ̃ ⊗ p∗1θ̃
−1
⊗ p∗2θ̃

−1
.

By definition, the pullback of Q̃|{α}×Jac0(C̃) by the Abel-Jacobi map AJp̃ : C̃ → Jac0(C̃) is

the line bundle on C̃ whose fiber at a point t̃ ∈ C̃ is equal to the line αt̃ ⊗ α−1
p̃ . Thus

AJ∗p̃

(
Q̃|{α}×Jac0(C̃)

)
= α⊗ α−1

p̃
∼= α.

All together this gives an isomorphism

ψ∗ (PPoinc|{N (−π∗p)}×P∨
)

= AJ∗p̃q
∗
θ̃

(PPoinc|{N (−π∗p)}×P∨
)

= AJ∗p̃

(
Q̃|{N (−π∗p)}×Jac0(C̃)

)
∼= N (−π∗p),

and hence ȷ∗L = ŝq∗N (−π∗p) as claimed. This proves the lemma.

The previous lemma together with the identity (55) now implies that sum∗L1 = L0 ⊠

ŝq∗N (−π∗p) which completes the proof of the proposition.

7.5 Disjointness statements

Lemma 7.8. The projection map H → X0 × X1 × C is an isomorphism onto its image,

which is smooth.

Proof. If a = (A, t) ∈ C and a stable bundle E1 ∈ X1 are fixed, the fiber of H over

(a,E1) is the Hecke line consisting of all the E0 obtained by Hecke transformations along 1-

dimensional quotients of (E1⊗A)(t). This is a P1 mapping to a line in P3. We get a morphism
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X1×C → Grass(2, 4) to the Grassmanian of lines in P3. Since the source is smooth, this map

is a regular function. The pullback of the universal fibration over Grass(2, 4) is a smooth

P1-bundle over X1 × C. A point on one of the lines determines uniquely the sheaf E0 and

the map ζ, so H is isomorphic to this P1-bundle.

Recall that Pm denotes the Prym variety of degree m line bundles L on C̃ such that the norm

NmC̃/C(L) of the associated divisor down to C is linearly equivalent to mp. This condition

is equivalent to stating that det(π∗L) ∼= OC((m− 2)p) since π∗(OC̃) = ω−1
C = OC(−2p). In

particular, P2 is the Prym variety of degree 2 line bundles L on C̃ such that det(π∗L) ∼= OC ,

and P3 is the Prym variety of degree 3 line bundles L on C̃ such that det(π∗L) ∼= OC(p).

We have the maps ε0 : Y0 → P2 and ε1 : Y1 → P3, that are respectively blowing up of 16

points or a curve Ĉ ⊂ P3. We also have P1 the Prym variety of degree 1 line bundles on C̃

whose norm is OC(p). Subtraction gives a map

m3,2 : P3 × P2 → P1.

On the other hand, we have a shifted Abel-Jacobi map

j : Ĉ → P1

defined by j(A, t̃) := OC̃(t̃)⊗ π∗(A−1). Note that if L = OC̃(t̃)⊗ π∗(A−1) and π(t̃) = t, then

NmC̃/C(L) = A⊗−2(t) = OC(t− (t− p)) = OC(p)

as required.

Using the product of the blowup maps and m3,2 gives a composed map

Y1 × Y0
ε1×ε0 // P3 × P2

m3,2 // P1.

The abelianized Hecke maps to the fiber product

Ĥab → (Y1 × Y0)×P1 Ĉ.

If we fix a point â ∈ Ĉ, and consider the restriction of Ĥab to the subvariety (Y1×Y0)×P1 {â}
we get a correspondence

Ĥab(â)

pab

||

qab

""
Y1 Y0
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The map Ĥab(â)→ Y1 is the blow-up of Y1 along 16 lines contained in the exceptional divisor

E 1
∼= Ĉ × P1 of the map ε1 : Y1 → P3. Similarly the map Ĥab(â)→ Y0 is the blow-up of Y0

along a curve isomorphic to Ĉ which intersects transversally at a single point each of the 16

plane components E 0,κ
∼= P2 of the exceptional divisor E 0 = ⊔κ∈Spin(C)E 0,κ.

Consider the maps r0 = id×f0 : Y1×Y0 → Y1×X0 and r1 = f1× id : Y1×Y0 → X1×Y0.
With this notation we have

Theorem 7.9. Fix a point â = (A, t̃) ∈ Ĉ and let τ â = (A, τ(t̃)) denote its conjugate under

the covering involution of the double cover π̂ : Ĉ → C. Assume that â is general in Ĉ. Then

the image in X0 of the intersection

r0

(
Ĥab(â)

)
∩ r0

(
Ĥab(τ â)

)
⊂ Y1 ×X0

has dimension at most 1.

Proof. Suppose we are given two points in Ĥab that map to the points (y0, y1, â) and

(y′0, y
′
1, τ â) in (Y0 × Y1) ×P1 Ĉ. We assume that these points further map to the same

point (x0, x1, a) of H, and that y1 = y′1. We would like to conclude x0 lies in a dimension

≤ 1 subset of X0. Here this dimension is measured for a given fixed â.

Suppose first that the point y1 = y′1 lies in the exceptional divisor E 1 ⊂ Y1. This part of

the exceptional locus in Ĥab(â) projects to a curve in Y0 and so to a curve in X0, so we may

ignore this case.

We may therefore assume that y1 = y′1 corresponds to a line bundle L on C̃ whose

direct image is a stable vector bundle V = π∗L of determinant detV = OC(p). The Hecke

transformations corresponding to the abelianized Hecke at â and τ â are along the lines Lt̃

and Lτ(t̃) in Vt corresponding to the two different points t̃ and τ(t̃) of the spectral curve C̃.

Thus Lt̃, Lτ(t̃ ⊂ Vt correspond to distinct points of the Hecke line P1 = P((V ⊗A)t), so they

are distinct points in H(a) and hence distinct points in X0. This contradicts the hypothesis,

which completes the proof starting with y1 = y′1.

Corollary 7.10. Suppose ℓ is a general line in X0 and let Hℓ = q−1(ℓ) ⊂ H(a) be the

restriction of H(a) to ℓ. Then the restrictions Ĥab(â)ℓ and Ĥab(τ â)ℓ over ℓ ⊂ X0 are

disjoint in the spectral surface Σ→ Hℓ that is the pullback

Σ := Hℓ ×X1 Y1.
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Proof. By Theorem 7.9, the image in X0 of the intersection of the two abelianized Hecke

spaces inside Y1 ×X0, is at most a curve. Thus, a general line does not meet it, and we get

the required disjointness property.

For the Hecke transform in the direction from X0 to X1, the following lemma is used.

Lemma 7.11. For a general point x0 ∈ Kum of the Kummer in X0, the image Ĥab(â) →
H(a) intersects the Hecke fiber over x0 only at the point on the K3 surface where the two

lines intersect, corresponding to the Hecke transform of a polystable bundle.

Proof. Choose one of the four points y0 ∈ Y0 over x0, and let L be the corresponding line

bundle on C̃. Let E := π∗(L). We claim that E is polystable. Since x0 ∈ Kum we know that

E is strictly semistable, i.e. there is a degree 0 line bundle U with U ↪→ E. We would like

to show that there is also a nonzero map U∨ → E.

By adjunction the inclusion U ⊂ E on C corresponds to a map π∗U ↪→ L of rank one

locally free sheaves on C̃. The latter map will have cokernel which is a torsion sheaf of length

two since L has degree 2. We can therefore write

L = π∗U ⊗OC̃(t̃1 + t̃2).

Let t1, t2 ∈ C be the image points of t̃1, t̃2. Let t′1 and t′2 be their conjugates by the hyperel-

liptic involution ιC . The norm of L down to C is ωC , yielding the formula

U⊗2 ∼= ωC(−t1 − t2).

In particular,

U∨ ∼= U ⊗OC(t1 + t2 − 2p).

Thus

π∗(U∨) ∼= π∗(U)⊗OC̃(t̃1 + t̃2 + τ t̃1 + τ t̃2 − 2p̃− 2τ p̃).

To get a map π∗(U∨)→ L we therefore need a section of OC̃(2p̃ + 2τ p̃− τ t̃1 − τ t̃2).
Recall that C̃ is also a hyperelliptic curve, whose hyperelliptic involution σ is a lift of the

hyperelliptic involution ιC of C. The fixed points of σ are the 12 inverse image points of the

Weierstrass points of C. In particular, 2p̃ and 2τ p̃ are linearly equivalent divisors coming

from P1 by pullback along the hyperelliptic map C̃ → P1. Therefore

OC̃(2p̃− τ t̃i) ∼= OC̃(στ t̃i) ∼= OC̃(2τ p̃− τ t̃i).
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Thus

OC̃(2p̃ + 2τ p̃− τ t̃1 − τ t̃2) ∼= OC̃(στ t̃1 + στ t̃2)

is effective. This gives the required nonzero section so there is a nonzero map π∗(U∨) → L

corresponding by adjunction to U∨ → E. We get a map U ⊕ U∨ → E that, for general U ,

has to be an isomorphism. Thus E is polystable. Now, a Hecke transformation of E that

becomes a stable bundle has to be by a diagonal line, corresponding to the stated point of

H(a).

Theorem 7.12. Fix a point â = (A, t̃) ∈ Ĉ and its conjugate τ â = (A, τ(t̃)). Assume that â

is general in Ĉ. Then, up to a subset whose image in X1 has dimension ≤ 1, the intersection

r1

(
Ĥab(â)

)
∩ r1

(
Ĥab(τ â)

)
⊂ X1 × Y0

consists of the set of points of the form (x1, y0) such that y0 is a point of Y0 lying over the

Kummer variety, and x1 is a point in X1 that is in the image of the K3 surface in H(a).

Proof. This will follow the same lines as the proof of Theorem 7.9 and we keep the same

notations. However, instead of supposing that y1 = y′1, we suppose now that y0 = y′0. If y0

is a point of one of the 16 exceptional divisors E 0,κ ⊂ Y0 lying over the trope planes, these

project down to lines in the wobbly locus of X1 so as before we can ignore this case.

If y0 corresponds to a line bundle L on C̃ whose direct image E = π∗L is a stable bundle,

then by the same argument as in the proof of Theorem 7.9, the two points of the abelianized

Hecke correspond to Hecke transformations at different points of the spectral curve, so they

are distinct in the Hecke curve P1 = P((E ⊗ A)t) that maps to a conic in X1. Thus, they

map to distinct points in X1 and so this case can not happen.

We are left with the case that the point x0 = f0(y0) is a point x0 ∈ Kum of the Kummer

variety. We may assume that x0 is general in the Kummer variety, as points on a divisor

of the Kummer will lead to subsets of X1 of dimension ≤ 1. By Lemma 7.11, the point

(x1, x0) on H(a) lies on the Kummer K3 surface, so x1 is in the image of the K3 surface in

X1. We get the stated divisor as the image of the intersection of the two abelianized Hecke

pieces.
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Corollary 7.13. Suppose ℓ is a general line in X1 and let Hℓ = p−1(ℓ) ⊂ H(a) be the

restriction of H(a) to ℓ. Let

Σ := Hℓ ×X1 Y1

be the spectral surface of the pullback Higgs sheaf over Hℓ. Then the restrictions Ĥab(ã)ℓ and

Ĥab(τ ã)ℓ over ℓ ⊂ X1 are curves in Σ that meet at each of the double points of Σ lying over

one of the two nodes of the curve to be denoted T ∪N in Section 8.

Proof. Consider the image K(a) ⊂ X1 of the Kummer K3 surface inside H(a). The line ℓ

intersects K(a) in two points. This may be seen from the discussion of Section 8 where the

two points are the images in ℓ of p and q, or alternatively in Remark 11.3 where K(a) is

viewed as the intersection of X1 with an additional quadric that depends on a.

Suppose (x1, y0) is an intersection point in Σ of the two curves, that means that x1 ∈ ℓ
and this point is in the intersection of the two abelianized Hecke pieces. We have seen that

this means that y0 lies over a point of the Kummer surface, and indeed that y0 corresponds

to a line bundle L ∈ P@ such that π∗L ∼= U ⊕ U∨ for some line bundle U ∈ Jac0(C) with

L = π∗U ⊗OC̃(t̃1 + t̃2).

But â = (A, t̃) with π(t̃) = t and A⊗2 = OC(t − p), and so the point x1 corresponds to a

bundle V that fits in an exact sequence

0→ U ⊗ A−1 → V → U∨ ⊗ A−1 ⊗OC(t)→ 0.

Assuming that x0 is a general point of the Kummer surface, then we are given two sub-line

bundles of degree 0 in the same Hecke transformation, namely U ⊗ A−1 and U−1 ⊗ A−1. It

means that these two agree as sub-lines in the fiber Vt.

Suppose we now vary the point in a family x1(z) and thus the bundle V (z). Starting with

a line that is not multiple as one of the four lines through x1(0), and extend it to a family

of lines locally at x1(z); follow this line, making the Hecke transformation at the resulting

sub-line of V (z)t. This gives a locally well-defined section of the Hecke correspondence that

maps into the Kummer surface in X0. We see in this way that if two distinct lines through

x1 (neither of which is doubled in the set of four) have the property that they agree in Vt,

then the family of intersections of the Hecke lines with the Kummer surface has two distinct

branches.

This applies to our previous situation. In Section 8.1 we will see that the family of

intersections of the Hecke lines with the Kummer surface is a reducible curve T ∪N inside
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Hℓ. We have said that at our intersection point (x1, y0) we are given two distinct sub-lines of

the bundle V (the point x1) such that the Hecke transformations at a agree. Our argument

then says that (x1, x0) is a point in Hℓ that is a double point of the curve T ∪N . This

shows that it is one of the two points we have identified, over which Σ has four ordinary

double points.

We notice that there are four points y0 over x0, and this will give intersection points in

the four ordinary double points of Σ lying over the given point of Hℓ.

Remark 7.14. In the Hecke transformation from X0 to X1, the restriction of the resulting

rank 16 Higgs bundle on a general line ℓ ⊂ X1 is the direct sum of two rank 8 Higgs

bundles isomorphic to the restrictions of our constructed Higgs bundle to ℓ. The discussion

of Section 8 will show that the contributions from the two branches of the critical locus

became equivalent to direct images of line bundles on the the disjoint unions of the two

branches, via the mechanism of the blow-up of the double points of Σ and the correction

due to a line bundle on the exceptional locus.

7.6 Pullbacks of the wobbly locus in the abelianized Hecke

We have two composed maps

Ĥab pab−→ Y1
f1−→ X1

and

Ĥab dab−→ Y0
f0−→ X0.

We would like to describe the inverse images of the wobbly loci Wob1, Wob0 under these.

For f1 : Y1 → X1 recall that E 1 ⊂ Y1 is the exceptional divisor of the blowup ε1 : Y1 → P3

(see section 3.2). Then

(f1)
−1(Wob1) = 2E 1 + Residual1.

Here Residual1 is a 4-sheeted cover of Wob1, because f1 has degree 8, while E 1 is a double

cover of Wob1. By definition Residual1 parametrizes line bundles in the Prym that push

forward to wobbly bundles.

Look at the map pab : Ĥab → Y1. Birationally this is the Abel-Jacobi map: P2 × Ĉ → P3,

sending a pair (L, ŷ = (ỹ, (A, y))) to L⊗ π∗A−1(ỹ). The generic fiber of pab is Ĉ. Over the
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generic point of the exceptional divisor E 1 = Ĉ ×P1, the fiber becomes the union of Ĉ with

16 surfaces, each an F1.

We want to pull back this divisor by the Abel-Jacobi map. Recall from the discussion in

Section 7.2 that the map Ĥab → Y1× Ĉ is a blowing-up along 16 disjoint subvarieties P1× Ĉ
in E 1 × Ĉ. In other words, the variety Ĥab is the blowup of Y1 × Ĉ along the 16 surfaces,

all contained in E 1 × Ĉ = P1 × Ĉ × Ĉ. The 16 surfaces are

P1 × Ĉ ×C̃ Ĉ = ⊔κ∈Spin(C)P1 × Ĉ ⊂ P1 × Ĉ × Ĉ.

When we pull back our divisor (f1)
−1(Wob1) = 2E 1 +Residual1 by pab, we may first just

take its product with Ĉ and then do the blowing-up. Not much happens over Residual1 × Ĉ
(we get its strict transform R̂esidual1), while the pullback of E 1 × Ĉ is Exc1 plus 16 new

components Exc0,κ. This proves the following:

Lemma 7.15. The pullback of Wob1 by the composed map f1 ◦ pab is

Exc1 ∪ (
⋃

κ∈Spin(C)

Exc0,κ) ∪ R̂esidual1.

Turn now to the pullback of Wob0 in Y0 and Ĥab. For the map f0 : Y0 → X0 and the

exceptional divisor E 0 ⊂ Y0 we get

(f0)
−1(Wob0) = 2E 0 + Residual0 +K

Here K is the full inverse image of the Kummer surface Kum ⊂ Y0. It is irreducible, in fact

it is dominated by the second symmetric product of Ĉ.

Left over, Residual0 is a 6-sheeted cover of ∪κTropeκ, because f0 has degree 8, while E 0

is birational to ∪κTropeκ. In particular, Residual0 is a union of 16 pieces corresponding to

the 16 trope planes (we are not saying here that these pieces are necessarily irreducible but

of course that is strongly suspected).

Consider dab : Ĥab → Y0. Here Ĥab is the blowup of Y0 × Ĉ along the surface Ĉ × Ĉ ⊂
Y0 × Ĉ. The exceptional divisor for this blowup is Exc1. The pullback of Residual0 is the

strict transform R̂esidual0 of the divisor Residual0 × Ĉ. For E 0 = ⊔κE 0,κ, the pullback of

each component consists of the strict transform of Exc0,κ.
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Lemma 7.16. The pullback of Wob0 by the composed map f0 ◦ pab is(⋃
κ

Exc0,κ

)
∪Exc1 ∪ K̂ ∪ R̂esidual0.

Proof. We claim that the surface Ĉ × Ĉ is contained in the extra component K × Ĉ. We

have a commutative diagram

Ĥab → Y0 × Ĉ
↓ ↓
H → X0 × C

.

If we take a general point (V, ŷ) ∈ Ĉ × Ĉ ⊂ Y0 × Ĉ then the inverse image of (V, ŷ) in

Ĥab is a P1. We want to say that this P1 maps to a positive dimensional subvariety in

H. By construction the image of this P1 ⊂ Ĥab to Y1 is one of the rulings of the divisor

Ĉ × P1 = E 1 ⊂ Y1. In particular if we map the P1 ⊂ Ĥab all the way down to X1, then

the image is one of the lines in Wob1, i.e. is positive dimensional. But the map Ĥab → X1

factors through H. Hence the image of P1 ⊂ Ĥab in H will be a P1 as well. Note also

that the image P1 ⊂ H is contained in a fiber of the map q : H → X0 × C. But the only

components of fibers of q that map to lines in X1 ⊂ P5 are components of fiber over points

of the Kummer (note that by assumption our P1 maps to a general point in C in particular

not a preimage of a Weierstrass point of C).

This shows that the locus to be blown up is contained in K× Ĉ. Therefore, the pullback

of K in Ĥab is the union of the strict transform K̂, and the exceptional divisor Exc1. The

pullbacks of the other pieces of (f0)
−1(Wob0) yield the other pieces of the stated decompo-

sition.

Theorem 7.17. The intersection of the two pullbacks of the wobbly loci up to codimension

1 in Ĥab consists of just the exceptional pieces

(f0 ◦ pab)−1(Wob0) ∩ (f1 ◦ pab)−1(Wob1) = Exc1 ∪ (
⋃
κ

Exc0,κ).

Proof. Using the previous lemmas, it means we need to look at the intersection[
(
⋃
κ

Exc0,κ) ∪Exc1 ∪ K̂ ∪ R̂esidual0

]
∩

[
Exc1 ∪ (

⋃
κ

Exc0,κ) ∪ R̂esidual1

]
.
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We need to show that R̂esidual1 does not have any irreducible components in common with

K̂ ∪ R̂esidual0.

Choose a = (A, t) ∈ C with a lifting â = (A, t̃) and look at the fiber over â. Here, the

subvarieties have dimension 2 and we want to show (for general a) that they do not share

any 2-dimensional components.

In view of the decomposition of the fiber R̂esidual0(a) into 16 pieces that move around un-

der the monodromy operation when we move a, whereas on the other hand R̂esidual1(a) can’t

have more than 4 irreducible components since it is a 4-sheeted covering of the irreducible

Wob1, we see that R̂esidual0 and R̂esidual1 can not share irreducible components. Thus, we

are reduced to the question of showing that R̂esidual1 and K̂ do not share any components.

Now, by Lemma 7.11, the image of Ĥab(ã) in H(a) only intersects the Hecke fibers

over the Kummer Kum, in the intersection points of the two lines. But this collection of

points maps to the Kummer K3 surface inside X1 that isn’t the same as Wob1. Thus, the

intersection R̂esidual1 ∩ K̂ does not have any 2-dimensional pieces. This completes the proof

of the theorem.

Corollary 7.18. Inside the big Hecke correspondence H, the intersection of the two pullbacks

of the wobbly loci with the abelianized Hecke is, as for its 3-dimensional pieces:

p−1(Wob1) ∩ d−1(Wob0) ∩ g(Ĥab) = g(Exc0 ∪Exc1).

Proof. This is the image by g : Ĥab → H of the statement in the previous theorem.

Recall that for each a ∈ Ĉ, the piece g(Exc0)(a) in the fiber H(a) contracts to a lower-

dimensional subvariety (in this case the union of 16 lines in the wobbly locus) under the

projection to X1. And similarly, the piece g(Exc1)(a) contracts to a lower-dimensional

subvariety (a birational copy of the curve C in Kum) under the projection to X0.

The piece g(Exc0)(a) mapping to X0 consists of 16 planes over the trope planes, which

are the ramification of the horizontal divisor in the Hecke correspondence that contribute to

the singularities of the Hecke transformed system from X1 to X0. The singularities over the

Kummer surface come from the degenerations of Hecke conics to pairs of lines.

On the other hand, the piece g(Exc1)(a) mapping to X1 is the ramification of the inverse

image of the Kummer surface in the Hecke correspondence, giving the singularities of the

Hecke transformed system from X0 to X1.
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In the next chapters we will be testing the Hecke transforms by restricting over lines in

the target spaces, so the ramification locations contributing to singularities will show up as

intersected with the inverse images of the lines in the Hecke correspondence.

8 Hecke transformation from X0 to X1

We recall the standard diagrams. The big Hecke correspondence fits into a diagram of

the form

H
d

��

b

##

X0 X1 × C.

Fix a point a = (A, t) ∈ C where A⊗2 = OC(t − p) and consider the Hecke correspondence

H(a) fitting into the diagram

H(a)

d

}}
b

""

X0 X1.

The objective is to pull-back the constructed Higgs bundle from X0 and take the higher

direct image along b to X1.

In order to simplify the measurement of the result, fix a general line ℓ ⊂ X1. Let H(a)ℓ

be the inverse image of ℓ in the Hecke variety H(a). This is a Hirzebruch surface F1, which

is a P1-bundle over ℓ ∼= P1.

Let P ⊂ X0 be the image of the map from H(a)ℓ to X0. This is a plane P ∼= P2 ⊂ P3.

The map d : H(a)ℓ → P is blowing up a point p ∈ P . This point is a general point contained

in the Kummer Kum ⊂ X0. There is also a point q ∈ P ∩ Kum where P is tangent to Kum.

In particular p and q are not on the trope planes.

Let T ⊂ H(a)ℓ be the strict transform of Kum∩P , and let N ⊂ H(a)ℓ be the exceptional

divisor. It is the unique section of the F1 surface that has self-intersection −1.

We have that T ∩ N = p′ is a single point in H(a)ℓ. The point q corresponds to a

unique point q′ ∈ H(a)ℓ where the curve T has a node. The distinction in notation here is

that p ∈ P is a point of the plane inside X0, while p′ is one of the points in the exceptional
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divisor above p, namely the intersection point of T and N ; it also corresponds to the tangent

direction of the Hecke line at p or equivalently the tangent direction of P ∩ Kum at p. The

points q and q′ are basically identical since there is no blowing-up, we just use the notation

q′ rather than q for uniformity.

f1

T

N

p’

q’

P1

Hal

Figure 1: The Hirzebruch surface H(a)ℓ

Let Y1,ℓ ⊂ Y1 be the inverse image of ℓ. This is a smooth curve in view of the moving

properties of the family of lines ℓ, indeed, locally this family looks like the family of complete

intersections of two moving divisors in X1.

8.1 The abelianized Hecke as a critical locus

The big abelianized Hecke fits into a diagram of the form

Ĥab

dab

~~

bab

##

Y0 Y1 × Ĉ.
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The inverse image in Ĉ of a ∈ C consists of two points that we will note â and τ â. We

obtain two abelianized Hecke varieties Ĥab(â) and Ĥab(τ â). Denote their disjoint union by

Ĥab(â, τ â) := Ĥab(â) ⊔ Ĥab(τ â).

The map Ĥab(â) → Y1 is the blow-up along 16 lines contained in the wobbly locus, as was

discussed in Section 7.2.

A general line ℓ ⊂ X1 does not meet those lines. Thus, if we let Ĥab(â)ℓ denote the

inverse image of ℓ in Ĥab(â), the projection induces an isomorphism

Ĥab(â)ℓ
∼=→ Y1,ℓ.

The same holds for the other piece Ĥab(τ â)ℓ.

The curve Ĥab(â)ℓ has degree 8 over ℓ. The full curve of degree 16 over ℓ is

Ĥab(â, τ â)ℓ = Ĥab(â)ℓ ⊔ Ĥab(τ â)ℓ.

The 16 exceptional divisors in Ĥab(â)ℓ contract to the 16 exceptional planes in Y0. It follows

that the image of Ĥab(â, τ â)ℓ in Y0 does not meet those.

Let Y0,P := Y0 ×X0 P , and set

Σ := Y0,P ×P H(a)ℓ.

This is the spectral variety for the Higgs bundle (F0,•,Φ0)H(a)ℓ
which is (F0,•,Φ0) pulled

back to H(a)ℓ via the map d : H(a)ℓ → X0. In particular Σ has degree 8 over H(a)ℓ. We

have a lifting

Ĥab(â, τ â)ℓ → Σ.

Proposition 8.1. The map Ĥab(â, τ â)ℓ → Σ identifies the abelianized Hecke as the upper

critical locus (see Proposition 12.1)

Ĥab(â, τ â)ℓ ∼= C̃rit
(
H(a)ℓ/ℓ, (F0,•,Φ0)H(a)ℓ

)
away from the points p′ and q′.

Proof. Suppose we are given a point of Σ. It corresponds to a point of Y0 together with a

Hecke operation leading to a Hecke transformed bundle which is a point of ℓ ⊂ X1.
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If the point of Y0 is on an exceptional divisor, it means that the point of Σ is a ramification

point of Σ over the horizontal divisor in H(a)ℓ. The residues of the Higgs field Φ0 are

nilpotent, so their Jordan types must be constant along the parts of the horizontal divisor

that are etale over ℓ, and this implies that ramification points of Σ over this subset of the

horizontal divisor can not be in the relative critical locus (we will see this argument again in

the next subsection). The points p′ and q′, as well as the ramification points of the horizontal

divisor, are contained in the image of Ĥab(â, τ â)ℓ and also in the relative critical locus.

We claim that the upper critical locus is smooth at the ramification points of the hor-

izontal divisor, i.e. at points where T ramifies over ℓ. In local coordinates x, t where the

map to ℓ is given by t, we can write T as x2 − t = 0, and Σ is x2 − t = w2. Thus x,w

are coordinates on Σ and t = x2 − w2. Write α as adx + bdw. The vertical direction over

the ramification point is the w-axis, and the fact that the Jordan form of the residue of

the Higgs field is constant along smooth points of Wob1 (our ramification is such a smooth

point) implies that α is nonzero on the vertical direction, as was pointed out in Lemma 8.3.

This says that b(0) ̸= 0. Now, the relative differentials are obtained by setting dt = 0 so

xdx = wdw. Thus αrel is written as

αrel = (a+ (x/w)b)dx

and the condition αrel = 0 may be written as wa + xb = 0. As b(0) ̸= 0, the linear term

wa(0) + xb(0) is nonzero, so this defines a smooth curve which is the local branch of the

relative critical locus at this point of Σ.

This shows that the relative critical locus is smooth at ramification points of T /ℓ, so a

set-theoretical identification between the two subvarieties (neither of which has embedded

points) is an isomorphism.

Over the points p′ and q′, we will see that the relative critical locus has two branches in

each of the four nodes of Σ over one of these points, and the abelianized Hecke is isomorphic

to the normalization.

In view of the previous paragraphs, we can now assume that the point of Y0 is not on an

exceptional divisor, so it corresponds to a line bundle L of degree 2 on C̃ whose norm to C is

ωC . The corresponding vector bundle on C is E = π∗L. Our Hecke transformation is given

by a pair (A, x) where x ∈ C and A⊗2 = OC(x− p). The Hecke transformation is centered

at a line V ⊂ Ex and we let E ′ be the kernel of the map E → Ex/V . This is a bundle of

degree −1 with determinant OC(−x). Then E ′⊗A(p) has degree 1 and determinant OC(p)

so it is a point in X1.
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In turn we have a line V ′ ⊂ E ′(x)x and the kernel of E ′ → E ′(x)x/V
′ is E. The line

V ′ corresponds to a line in E ′ ⊗A(p) and the opposite Hecke transform involving tensoring

again with a square-root, gets us back to E. The Hecke line through the point [E] consists of

all the bundles obtained as kernels of E ′ → E ′(x)/W where W is another line W ⊂ E ′(x)x.

Letting W be an infinitesimal deformation of V ′ we get a tangent vector to X0 at the point

[E], represented by a class η ∈ H1(End0(E)). We’ll give an expression for this class using

an exact sequence, below.

The tautological 1-form on Y0 is a section of f ∗
0T

∨
X0

At the point [L] ∈ Y0 corresponding

to the line bundle L that projects to [E] ∈ X0, α([L]) ∈
(
f ∗
0T

∨
X0

)
[L]

= T∨
X0,[E] can be paired

with a tangent vector of the form η. The condition that we are at a point of the upper

critical locus means that the value of the pairing is zero.

Our point on Y0 actually represents a Higgs bundle over C, because Y0 was the blow-up

of P2 ⊂ Higgs0. The underlying bundle is E (since we are assuming that we are not over

the wobbly locus), and the Higgs field θ : E → E⊗ωC is induced by the tautological 1-form

of C̃. In these terms, the pairing is just the pairing between θ ∈ H0(End0(E) ⊗ ωC) and

η ∈ H1(End0(E)). The upper critical locus condition is that this pairing is 0.

Let us now look more closely at the deformation class η. The deformation of V ′ is given

by an element of Hom(V ′, E ′(x)x/V
′). Tensor

0→ E → E ′(x)→ E ′(x)x/V
′ → 0

with E∨ to get

0→ End(E)→ E∨ ⊗ E ′(x)→ E∨
x ⊗ E ′(x)x/V

′ → 0.

Note that Ex → V ′ so (V ′)∨ → E∨
x . Compose with the connecting map for the previous

exact sequence as follows:

(V ′)∨ ⊗ (E ′(x)x/V
′)→ E∨

x ⊗ (E ′(x)x/V
′)→ H1(End(E)).

The image of an element of Hom(V ′, (E(x)x/V
′)) is the deformation class of E generated

by doing the Hecke operation back using the infinitesimally close W . The determinant of

the new bundle is the same as that of E, so the deformation class lies in the trace-free part

H1(End0(E)).

The exact sequence for the fiber of the Hecke transformation is

0→ E ′
x/V

′(−x)→ Ex → V ′ → 0.
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The exact sequence

0→ End(E)→ E∗ ⊗ E ′(x)→ E∨
x ⊗ (E ′(x)x/V

′)→ 0.

has as dual, taking Ext1(−, ωC):

0→ E ⊗ (E ′)∨(−x)⊗ ωC → End(E)⊗ ωC → Ext1(E∨
x ⊗ (E ′(x)x/V

′), ωC)→ 0.

We have

Ext1(E∨
x ⊗ (E ′(x)x/V

′), ωC) = Hom(OC , E∨
x ⊗ (E ′(x)x/V

′))∨ = Hom((E ′(x)x/V
′), Ex).

This maps to Hom(E ′(x)x/V
′, V ′). Use the residue identification ωC(x)x ∼= C and hence

V ′ ⊗ ωC(x) ∼= V ′, to say that

Hom(E ′(x)x/V
′, V ′) ∼= Hom(E ′(x)x/V

′, V ′ ⊗ ωC(x)) ∼= Hom(E ′
x/V

′(−x), V ′ ⊗ ωC).

The previous map now becomes

Ext1(E∨
x ⊗ (E ′(x)x/V

′), ωC)→ Hom(E ′
x/V

′(−x), V ′ ⊗ ωC).

Altogether, the second map in the dual exact sequence becomes

End(E)⊗ ωC → Hom(E ′
x/V

′(−x), V ′ ⊗ ωC),

and this is just the evaluation map evaluating a Higgs field on the subspace E ′
x/V

′(−x) ⊂ Ex

and projecting the answer to the quotent V ′ tensored with ωC .

The Serre dual of the map (V ′)∨ ⊗ (E ′(x)x/V
′) → H1(End(E)) is the action of the

previous map on global sections:

H0(End(E)⊗ ωC)→ Hom(E ′
x/V

′(−x), V ′ ⊗ ωC),

To say that this vanishes for a Higgs field θ : E → E ⊗ ωC is equivalent to saying that the

filtration with subspace E ′
x/V

′(−x) ⊂ Ex and quotient Ex → V ′ is respected by the Higgs

field.

This is now the same thing as saying that our original Hecke transformation was in the

abelianized Hecke.
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Lemma 8.2. For a general ℓ, Ĥab(â, τ â)ℓ does not intersect the inverse images in H(a)ℓ of

the 32 points in P given by the intersection of P with the trope conics.

Proof. Recall that Ĥab(â)ℓ → Y0 is the blow-up along a curve isomorphic to Ĉ, this curve

intersecting the planes of the exceptional locus in Y0 in a finite set. The trope conics are

conics in these planes, so their inverse image in Ĥab(â)ℓ has dimension 1. This projects to

a dimension 1 subset of X1, so a general line ℓ does not intersect that. The same holds for

the other piece. So, Ĥab(â, τ â) intersected with the pullbacks of the trope conics, intersected

with the pullback of ℓ, will be empty.

8.2 Description of the configuration

We look more closely at the details of the configuration inside and above H(a)ℓ. Inside

Σ, there are 16 lines Lκ,Σ ⊂ Σ lying over the (strict transforms in H(a)ℓ of the) intersections

P ∩Tropeκ of P with the trope planes, on which Σ/H(a)ℓ has a simple ramification. Lemma

8.2 says that the curve Ĥab(â, τ â)ℓ does not meet these Lκ,Σ.

Over general points of T ∪N ⊂ H(a)ℓ the ramification of Σ consists of four sheets each

of which is a simple ramification. We also know that Σ has four ordinary double points over

each of p′ and q′. There are probably other singularities for example over the intersection

of P with the trope conics, however the curve Ĥab(â, τ â)ℓ does not touch those.

There is a spectral line bundle L0 on Y0, which pulls back to a line bundle LΣ on Σ, such

that EH(a)ℓ
is the pushforward of LΣ from Σ to H(a)ℓ. The Higgs field of EH(a)ℓ

is given by a

holomorphic 1-form α on the smooth locus of Σ. It projects to a section of Ω1
H(a)ℓ/ℓ

(logD)|Σ
where the divisor D is the union of T , N and the strict transforms in H(a)ℓ of the 16 trope

lines P ∩ Tropeκ.

Along a point where T ∪N is horizontal over ℓ, the residue of the Higgs field consists of

a sum of four nonzero nilpotent transformations, since the Jordan type of the residue has to

stay fixed along the divisor because it corresponds to monodromy. Furthermore, over N at

least, the inverse image of N in Σ is a union of four lines along which the map has simple

ramification. Thus, the form α is nonvanishing in the transverse direction to these lines

so as a section of Ω1
H(a)ℓ/ℓ

(logD)|Σ it is nonvanishing along these lines except at the points

over p′. On the other hand, the curve Ĥab(â, τ â)ℓ is the vanishing locus of the section of

Ω1
H(a)ℓ/ℓ

(logD)|Σ. It follows that Ĥab(â, τ â)ℓ ⊂ Σ does not intersect the four lines over N
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except at points over p′. In sum, the image of Ĥab(â, τ â)ℓ in H(a)ℓ only intersects N at p′.

Similar considerations show that this also holds for the horizontal part of T − {p′,q′}.
We would like to know how many branches of Ĥab(â, τ â)ℓ pass through the point p′. We

will see by the local calculations below that each double point of Σ over p′ corresponds to

two branches of the polar curve of zeros of the relative Higgs field. This says that the full

curve Ĥab(â, τ â)ℓ has 2 branches in each of the four double points, thus it has 8 branches

over p′. A monodromy argument says that these have to be evenly distributed, so Ĥab(â)ℓ

has 4 branches passing through p′. The local argument will also show that they intersect N
transversally. Thus, if we denote by [Ĥab(â)ℓ] the image of this curve in H(a)ℓ, we have

[Ĥab(â)ℓ] ·N = 4.

We will discuss later the distribution of these 4 branches among the 4 double points of Σ.

We next consider intersection numbers inside the F1 surface H(a)ℓ. Let fib denote a

general fiber of b : H(a)ℓ → ℓ. Then the divisors fib and N generate the Picard group of

H(a)ℓ, with fib2 = 0, N 2 = −1 and fib ·N = 1.

The curve Ĥab(â)ℓ has degree 8 over ℓ, so

[Ĥab(â)ℓ] · fib = 8.

The intersection numbers with N and fib uniquely determine the class of Ĥab(â)ℓ inside

H(a)ℓ:

[Ĥab(ã)ℓ] ∼ 8N + 12fib.

On the other hand, we also have that T has degree 3 over ℓ since the intersection with a fiber

is all the points in that line intersected the Kummer, except the point p′ which corresponds

to the point of N intersected that fiber. We have T · fib = 3 and T ·N = 1 so

T ∼ 3N + 4fib.

Combining these we get

[Ĥab(â)ℓ] · T = (8N + 12fib)(3N + 4fib) = 36 + 32− 24 = 44.

We already know the intersections over the point p′, there are 4 branches. Also over q′ there

will similarly be 4 branches, but q′ is a double point of T (whereas the double point of D at

p′ involved both T and N ). Thus, the intersection counts for 8 points over q′. This leaves

32 intersection points over the ramification points of T /ℓ. We note that there are 8 such
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points, mapping to the 8 points in ℓ where ℓ ⊂ X1 intersects Wob1. We get an intersection

number of 4 at each ramification point (a monodromy argument shows that they need to be

evenly distributed). This will come from two tacnodes between the curve Ĥab(â)ℓ and the

divisor T , in accordance with our calculations for the local contribution of the direct image

at a simple ramification point of the horizontal divisor.

The curve Ĥab(â)ℓ has to meet the ramified locus of Y0 over Kum in two of the four

sheets, as each one will contribute a tacnode and from the above discussion there should

not be more than 2 tacnodes. The curve Ĥab(τ â)ℓ meets the ramified locus in the other two

sheets. On the other hand, for the nodal points we’ll see that Ĥab(â)ℓ has one branch in

each sheet and Ĥab(τ â)ℓ has the other branch.

For each of the direct summands of the direct image Higgs bundle, we will get two

ramification points of the spectral variety over each point of ℓ∩Wob1. This agrees with the

ramification pattern of Y1 → X1 over Wob1.

We need to verify the part of Hypothesis 3.16 about points of type 3.11.1(d), namely the

ramification points of T over ℓ.

Lemma 8.3. For a general line ℓ, the value of the spectral 1-form α on the vertical direction

in the tangent space of Y0 at any of the ramification points of T /ℓ, is nonzero.

Proof. As ℓ varies, each of these ramification points varies and constitutes a general point

of Kum. So it suffices to note that the value of α on the vertical direction is nonzero. This

is because the nilpotent residue of the Higgs field is nonzero along Kum, which in turn is a

consequence of the Bogomolov-Gieseker inequality as explained in the proof of Lemma 8.9

below.

8.3 Apparent singularities

The discriminant of (H(a)ℓ,T ∪N ) relative to ℓ consists of the following kinds of points:

• images of simple ramification points of T over ℓ, these are the points of ℓ ∩Wob1 and

we expect singularities of the local system at these points;

• images of points where the Hecke line goes through a trope conic— by Lemma 8.2

these points are not contained in the lower critical locus, so by Proposition 12.2 they

do not contribute singularities of the higher direct image local system; and
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• images of the points p′ and q′ where T ∪ N has a node—we’ll see for topological

reasons below that these do not contribute singularities, and indeed the Dolbeault

higher direct image consideration will also show that.

The following lemma gives the topological proof for the third part.

Lemma 8.4. Suppose given a point where the horizontal divisor has a simple normal crossing

with both branches étale over the base, and suppose that the monodromy transformations

around each branch are direct sums of identical size 2 unipotent Jordan blocks. Then such a

point does not contribute to the monodromy of the higher direct image local system.

Proof. This description characterizes the nontrivial local rank 2 pieces of the local system

upstairs. However, we also obtain the same type of situation if we start with a unipotent

rank 2 local system having singularities along a horizontal divisor that is simply ramified

over the base, then pull back to a simply ramified double cover of the base. We have seen in

subsection 12.4.3 that the monodromy for a simply ramified horizontal divisor with unipotent

local system, is a transformation of order 2. Therefore, its pullback by a ramified double

cover has trivial monodromy transformation.

Even though the topological monodromy transformation for such a point is trivial, we

still need to use the description of [DPS16] to get the description of the spectral line bundle

for the higher direct image at such a point, since the map is singular.

Corollary 8.5. The singularities of the higher direct image local system over ℓ are located

at the points of ℓ ∩Wob1.

Remark 8.6. In the situation of Lemma 8.4, if we had monodromy over the nodal horizontal

divisor decomposing into size 2 blocks with a reflection instead of a nilpotent monodromy

transformations, then the higher direct image would have the square of a nilpotent transfor-

mation (subsection 12.4.1), so again a nontrivial nilpotent transformation. Applied to the

Hecke situation, this means that if we do the Hecke transformation starting with a local
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system with parabolic weights 1/2 over the Kummer, we will get singularities at the images

of p′ and q′ in ℓ. These are probably the intersection of ℓ with a singular K3 surface inside

X1, the image of the K3 inside the Hecke variety, and which is the intersection of X1 with

another quadric in P5.

8.3.1 General position arguments

Let us now look locally at the point p′. The horizontal divisor T ∪N has a node there,

and the spectral variety Σ decomposes as a union of four ordinary double points.

The point q′ is a place where T has a node, with both branches being étale over the base

ℓ. This corresponds to a point where the plane P is tangent to Kum. Again, Σ decomposes

into 4 pieces, and each piece restricted to the tangent plane gives an ordinary double point.

In order to apply the construction of Theorems 3.17 and 12.12, we need the following

result.

Theorem 8.7. The points p′ and q′ are points of type 3.11.1(e) in the classification of

Subsection 3.11.

Proof. The geometric picture shows that the inverse image of p′ resp. q′ in Σ decomposes

into four ordinary double points. Recall that over a general point of Kum, the covering

Y0 → X0 decomposes into four local pieces each of which is a double cover simply ramified

over the local piece of Kum. Each of these four pieces leads to a simple double point in the

fiber of Σ, either over p′ or over q′.

Over p′, we are restricting to a transverse plane where it is again a smooth double cover

ramified over a smooth curve, then blowing up the origin. The point p′ corresponds to the

place where the exceptional divisor N meets the strict transform T of Kum, and the double

cover gives there an ordinary double point.

Over q′, we have a plane that is tangent to Kum with nondegenerate second fundamental

form, such that the two branches of the intersection between the plane and Kum correspond

to the two branches of T at q′. The restriction of the local double cover to the tangent plane

is again an ordinary double point.

To complete the verification of the conditions required for the classification of our points

in the category “type 3.11.1(e)”, we need to show that the relative critical locus has two

branches at each node of Σ, with the branches having distinct tangent vectors in the tangent

cone of Σ.
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A degree and monodromy calculation shows that the relative critical locus, that we have

identified also with Ĥab(â, τ â)ℓ, has two branches at each node of Σ. We need to show that

they are smooth with distinct tangent vectors. This statement amounts to a general position

argument concerning the relationship between the local geometry at a general point of Kum,

and the tautological 1-form on the covering Y0/X0.

The cases of p′ and q′ are different although similar. The basic idea is to find three (or

more) directions in a plane that come from the geometry of the moduli spaces, independent

of the point in the Hitchin base; then the tautological 1-form is a fourth direction. If the

cross-ratio between these directions did not move, it means that the data coming from the

tautological 1-form would be constant, and we try to get a contradiction. That will show

that the cross-ratio is general for general points, which in turn gives the required general

position property.

The proofs for p′ and q′ will be completed in detail in the following subsections.

Let YKum ⊂ Y0 be the reduced inverse image of Kum in Y0. We saw in Proposition 5.12

that YKum → Kum is a 4-sheeted covering with an explicit description.

Let HKum be the set of points in the Hecke correspondence H(a) which are intersection

points of two lines in the Hecke fiber over points of Kum. Thus, HKum is the Kummer K3-

surface obtained by blowing up the 16 nodes of Kum, with a map HKum → Kum that is an

isomorphism outside of the nodes. We obtain a map HKum → X1 that we’ll view as a rational

map ν : Kum 99K X1, whose image is the Kummer K3 surface in X1 [Bea96, Dol20, GH94,

Hud05, Keu97].

Lemma 8.8. Suppose x ∈ Kum, not a node. Let z := ν(x) ∈ X1 be the image of the point

of HKum lying over x. Let Vx ⊂ X0 be the Hecke line over z. Then Vx is tangent to Kum at

x.

Proof. Let d−1(z) ⊂ H(â) be the inverse image, which is a P1 mapping isomorphically to

the Hecke line Vx. If x′ ∈ HKum ⊂ H(â) is the point over x, so that z = d(x′), then d−1(z)

passes through x′. The divisor b−1(Kum) ⊂ H(â) is, locally near x′, a union of two branches

each of which is a part of the P1-bundle over the Jacobian of C. The curve d−1(z) meets

each of the branches, so its intersection with the divisor b−1(Kum) has multiplicity ≥ 2. This

intersection number is the same as the local intersection number of Vx with Kum at x. The

fact that it is ≥ 2 means that the line Vx is tangent to Kum at x.
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The inverse image of Kum in Y0 is 2YKum as a divisor, since the map Y0 → X0 is fully

simply ramified along YKum. At points where YKum/Kum is etale, there is a specified tangent

direction to Y , normal to YKum, namely the directions that map to zero in the tangent space

of X0. Call this subsheaf

N v ↪→ T (Y0)|YKum .

Lemma 8.9. The restriction of the spectral 1-form α of Y0 to N v is nonzero.

Proof. If it were zero everywhere, this would imply that the Higgs field on the Higgs bundle

π∗(L0) does not have singularities over Kum. Recall from Corollary 5.11 that for an appro-

priate choice of L0, the second Chern character violates the Bogomolov-Gieseker inequality.

But, if there were no singularities of the Higgs field along Kum, then the Higgs field would

be logarithmic along just the trope part of the wobbly divisor. From Corollary 5.5, the

trope part of the wobbly divisor has normal crossings up to codimension 2. Since the spec-

tral variety Y is irreducible, the Higgs bundle is stable. This would contradict Mochizuki’s

Bogomolov-Gieseker inequality [Moc06]. Therefore, the restriction of α to N v is nonzero.

In fact, it is nonzero at all the points where it is well-defined over the smooth locus of

Kum minus the trope conics, because the residue of the Higgs field has to have constant

Jordan type along the smooth points of the wobbly divisor.

Lemma 8.10. Consider the subspace ker(α) ∩ T (YKum) varying as a function of the point

in YKum. Over a general point x ∈ Kum, then the projections of these subspaces to Tx(Kum)

vary as a function of the point in the Hitchin base.

Proof. If the subspaces depend only on C and x ∈ Kum then, in particular, their values on

different sheets of YKum would be the same. We’ll see that this is not the case.

Points of YKum are represented by (L, ũ + ṽ) where ũ, ṽ ∈ C̃ are points lying over their

images denoted u, v ∈ C, and L⊗2 = OC(u + v − 2p). The restriction of α to YKum is given

by adding the values of the tautological form on C̃ evaluated on ũ and ṽ. Specialize near a

point where ũ is not a ramification of C̃/C but ṽ is a ramification point. As v moves around

the branch point, ṽ changes branches and the tautological form α changes sign when viewed

as a dual element of Tv(C). Then, α is the sum of a fixed part namely the tautological form

at ũ, plus a part that changes sign namely the value at ṽ. Thus, the directions of ker(α)

over these two points in different sheets of YKum are different.
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8.3.2 Arguments for p′

Look first at the point p′. View it as a general point p ∈ Kum ⊂ X0. The Hecke fiber

over x has two lines that meet in a point, and the image of this point in X1 is a point z

where the two lines meet. The line ℓ in our picture is one of these two. Going back, the line

ℓ corresponds to a plane P ⊂ X0, transverse to Kum at p and tangent to it at q. On the

other hand, the Hecke fiber over z is a line in X0, and this line is tangent to P ∩ Kum at

p. Indeed, after blowing up the Hecke line and the strict transform of Kum both meet the

exceptional divisor N at the same point, meaning that the Hecke line was tangent to Kum

before blowing up.

The double cover YP → P ramified along Kum has a point y over p, and its tangent space

at y is a 2-dimensional space containing the following subspaces: the vertical space N v(y) of

the ramification; the tangent space Ty(YP,Kum) of the ramification divisor YP,Kum := YP∩YKum;

and the two directions of the pullback of the Hecke line Vp which pulls back to a pair of

crossed lines in the double cover since it is tangent to Kum (Lemma 8.8). The cross-ratio of

these four points is fixed, because the 4 directions are symmetric for the involution of the

double cover. Furthermore, Lemma 8.9 implies that the restriction of the spectral 1-form to

YP is nonzero. It therefore defines a 1-dimensional subspace A ⊂ Ty(YP ).

Proposition 8.11. For general global parameters C, C̃, as the point p moves around in

Kum, the subspace A moves with respect to the framing of Ty(YP ) given by the four previously

discussed directions.

Proof. Proceed by contradiction: suppose that the subspace A has a fixed direction with

respect to the framing. We first show that it must then be the direction Ty(YP,Kum. By

Lemma 8.9, A is not the direction N v(y). It seems likely that the two directions coming

from Vp should interchange under a global symmetry or monodromy operation, and if A

were in a fixed direction it would have to be invariant under that operation, which would

imply that it is the direction Ty(YP,Kum. However, we have not been able to specify such an

interchange operation. So, instead, let us calculate at a special point.

Recall from Proposition 5.12 that the points of YKum are represented by (L, ũ+ ṽ) where

ũ, ṽ ∈ C̃ are points lying over their images denoted u, v ∈ C, and L⊗2 = OC(u + v − 2p).

Specialize near a point on Kum where both u and v are (different) branch points of C̃/C.

This corresponds to a place where two other pieces of the movable ramification locus of Y/X
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meet the ramification over Kum. Both ũ and ṽ then branch. We can write this in local

coordinates y1, y2, y3 for Y over coordinates x1, x2, x3 for X, such that x1 = 0 is the equation

of Kum, y1 = 0 is the equation of YKum, and the map is given by xi = y2i . The spectral

1-form along YKum is obtained from the tautological 1-form on C̃ by adding the values at ũ

and ṽ. The tautological 1-form on C̃ looks locally like z2dz if z is the coordinate on C̃. We

can therefore write the leading term as

α = a(y)d(y1) + y22d(y2) + y23d(y3).

Since α comes from a linear form on the abelian variety, it does not vanish at any point,

thus a(0) has to be nonzero.

Consider a point x = (x1, x2, x3) near to p = (0, 0, 0). The Hecke line Vx becomes, in

these coordinates, a curve tangent to (x1 = 0). Let us write it (again looking at the highest

order term) as

(x1, x2, x3) = (b1t
2, ϵ2 + b2t, ϵ3 + b3t)

for some coefficients b1 ̸= 0 and (b2, b3) ̸= (0, 0), and small (ϵ2, ϵ3). Note that as (ϵ2, ϵ3) →
(0, 0), the second order term b1t

2 approaches a nonzero limit ((0, 0, 0) being itself a point of

Kum that is general with respect to C although not necessarily with respect to C̃).

Specifying a lifting of (0, ϵ2, ϵ3) in Y i.e. extracting ϵ
1/2
2 and ϵ

1/2
3 , the curve lifts into Y in

two branches corresponding to ±b1/21 . One of these branches is

(y1, y2, y3) =
(
b
1/2
1 t, ϵ

1/2
2 (1 + b2t/2ϵ2 + . . .), ϵ

1/2
3 (1 + b3t/2ϵ3 + . . .)

)
.

Its tangent vector is (b
1/2
1 , b2ϵ

−1/2
2 /2, b3ϵ

−1/2
3 /2).

The vertical tangent vector is (1, 0, 0). We use the middle direction to normalize the

horizontal tangent vector with respect to the vertical one, in other words the middle vector

should be the sum of the same multiple of the vertical and normalized horizontal vectors.

The multiple is b
1/2
1 , so the normalized horizontal vector is(

0, b
−1/2
1 b2ϵ

−1/2
2 /2, b

−1/2
1 b3ϵ

−1/2
3 /2

)
.

The values of α on the vertical tangent vector is a(0). On the normalized horizontal vector,

evaluating at the point (y1, y2, y3) = (0, ϵ
1/2
2 , ϵ

1/2
2 ), it is

α(0, ϵ
1/2
2 , ϵ

1/2
2 ) ·

(
0, b

−1/2
1 b2ϵ

−1/2
2 /2, b

−1/2
1 b3ϵ

−1/2
3 /2

)
= b

−1/2
1 b2ϵ

1/2
2 /2 + b

−1/2
1 b3ϵ

1/2
3 /2.

This approaches 0 as (ϵ2, ϵ3)→ (0, 0). This tells us that the kernel line A of α on T (YP )

approaches the horizontal direction as we approach the special point.
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This shows that if A is some fixed direction with respect to the framing, it must be the

horizontal direction. Let’s now take up that possibility. In that case, it means that the line

Ty(YP,Kum) is always in the kernel of α. In particular, the restriction of α to YKum has this

fixed foliation as a kernel. But Lemma 8.10 says that this does not happen, completing the

contradiction.

The local piece of Σ corresponds to a locally defined rank 2 Higgs bundle on X0. It comes

originally from a rank 2 piece of F0 whose spectral variety is a double cover of X0 simply

ramified at the point of Kum. We’ll use the Higgs bundle to calculate the lower critical locus,

knowing that it is the image of the upper critical locus so if we separate the two branches of

the lower critical locus that will separate them upstairs too.

Use a coordinate system (x, t) on P ⊂ X0 with P ∩ Kum given by t = 0. The double

cover looks locally like t = w2. We can write the form α as

α = (a+(x, t) + wa−(x, t))dx+ (b+(x, t) + wb−(x, t))dw

= (a+(x, t) + wa−(x, t))dx+ (wb+(x, t) + tb−(x, t))(dt/t).

Locally we assume that the line bundle is trivial L0 = OP . Then the direct image down to

P , which is the rank 2 piece of our Higgs bundle F0|P , has basis 1, w. In these terms, the

form α leads to a Higgs field in matrix form, with coefficients being functions of (x, t):

φ =

(
a+dx+ b−dt ta−dx+ b+dt

a−dx+ b+(dt/t) a+dx+ tb−dt

)
.

We next blow up the point (0, 0) with coordinates (x, v) with t = xv. This gives dt =

vdx+ xdv. The Higgs field becomes

φ =

(
(a+ + vb−)dx+ xb−dv (xva− + vb+)dx+ xb+dv

a−dx+ b+(dx/x+ dv/v) (a+ + vb−)dx+ x2vb−dv

)
.

This is the formula for the Higgs field on H(a)ℓ. We may assume that the map H(a)ℓ → ℓ is

given by the function u− v, so for the relative differentials it induces the relation dx = dv.

The relative Higgs field becomes

φH(a)ℓ/ℓ
=

(
(a+ + vb− + xb−)dv (xva− + vb+ + xb+)dv

(a− + b+/x+ b+/v)dv (a+ + vb− + x2vb−)dv

)
.
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The support of the cokernel of this matrix is given by its determinant

det(φH(a)ℓ/ℓ
) = (a+ +vb− +xb−)(a+ +vb− +x2vb−)− (xva− +(x+v)b+)(a− +((x+v)/xv)b+)

= (xv)−1
[
xv(a+)2 − (x+ v)2(b+)2 + . . .

]
where the next terms have degree ≥ 3 in x, v. The vanishing locus, away from the axes, is

therefore given to first order by the equation

(b+)2x2 + (2(b+)2 − (a+)2)xv + (b+)2v2 = 0.

Dividing by (b+)2 and setting c := (a+/b+)2 this becomes

x2 + (2− c)xv + v2.

Its discriminant is (2− c)2 − 4 = c2 − 4c so if c ̸= 0, 4, in other words the quotient is not 0,

−2 or 2, then there are two branches.

Corollary 8.12. If p was a general point on Kum then the quotient a+(0, 0)/b+(0, 0) is

general.

Proof. This restates the result of Proposition 8.11.

Therefore, at a general point on Kum, the upper critical locus has two branches meeting

the exceptional divisor at two distinct points. This completes the proof of Theorem 8.7 for

the point p′.

8.3.3 Arguments for q′

At the point q = q′ the plane P is tangent to Kum. Introduce coordinates x, y for the

plane and z in the transverse direction so that Kum is given by z = 0 and the plane is given

by z = xy. The covering Y has coordinates x, y, w with w2 = z, and YKum has equation

w = 0.

We may scale the coordinates such that the map from the plane to the line ℓ is given by

t = x− y. Notice that the fibers of the map are not tangent to the two principal directions

of P ∩Kum, as we have seen above that the two branches of T at the point q′ are etale over

ℓ.
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Write the spectral differential form on Y as

α = a(x, y, w)dx+ b(x, y, w)dy + c(x, y, w)dw.

We have c(0, 0, 0) ̸= 0 by Lemma 8.9. Also, α does not vanish identically on YKum, by Lemma

8.10, and the kernel of α is not generically given by any construction depending only on C

(such as the lines x = 0, y = 0 or x = y in our coordinate system). Thus, at our general

point we can assume that a(0), b(0), a(0) + b(0) are nonzero.

Proceed now with the calculation of the directions of the upper critical locus. The

covering Σ has equation w2 = xy mapping to the plane P with coordinates x, y. Blow up

the origin in the x, y plane, so we introduce a coordinate v with y = xv. The exceptional

divisor is x = 0 and v is the coordinate along it. Now the form is α = adx+b(xdv+vdx)+cdw

and Σ has equation w2 = x2v. This normalizes to two branches w = xv1/2 and w = −xv1/2.
Let u = v1/2 be the coordinate at a general point of the covering of the exceptional divisor,

so we have w = xu (there are two branches as u,−u go to the same point v). We have v = u2

so dv = 2udu. We have y = xu2.

This normalization is smooth over u ̸= 0 (actually everywhere) and the form becomes

α = adx+ b(2xudu+ u2dx) + c(xdu+ udx).

The mapping function from the plane to the line is t = x − y so dt = dx − dy. Relative

differentials are obtained by working modulo dt, identifying

dx ∼ dy = 2xudu+ u2dx.

Modulo dt we get

dx =
2xu

1− u2
du.

Thus
αrel

du
= a

2xu

1− u2
+ b

(
2xu+

2xu3

1− u2

)
+ c

(
x+

2xu2

1− u2

)
.

The zeros of αrel are given by the equation

a · 2xu+ b · (2xu− 2xu3 + 2xu3) + c · (x− xu2 + 2xu2)

= (a+ b)(2xu) + c(x+ xu2).

One can factor x out of this expression.
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We notice that a(0) + b(0) is the value of α on the tangent direction of the Hecke line

t = 0, and c(0) is the value of α in the vertical direction. In our current coordinate system,

the unit vectors of these directions are normalized to be related by the lines described in the

previous subsection: the Hecke line is y = x, z = x2 and its two lifts are y = x,w = ±x.

Therefore, curiously enough, we are now in the same general position setting as in the

previous subsection. Proposition 8.11 implies that the ratio (a(0) + b(0))/c(0) moves as a

function of the point, so we may assume that it is general. The factored expression for the

zeros of the relative 1-form αrel/xdu along the exceptional curve becomes

1 +
a(0) + b(0)

c(0)
u+ u2 = 0.

There are two distinct points u in the exceptional divisor corresponding to limits of zeros of

αrel. This gives two branches of the upper critical locus with distinct tangent vectors in the

nodal point of our local piece of Σ.

This completes the proof of the q′ part of Theorem 8.7.

8.4 Spectral line bundle for the higher direct image

Recall the spectral line bundle, on Y0 or Y1, is the line bundle L0 or L1 whose direct

image down to X0 or X1 respectively is the level 0 piece of the parabolic Higgs bundles

(F0,•,Φ0) or (F1,•,Φ1) respectively. For X0 the parabolic Higgs bundle has trivial parabolic

structure (away from the codimension 2 tacnode points). On X1 the parabolic structure has

levels 0 and −1/2, so this definition of spectral line bundle involves a choice.

We would like to calculate the spectral line bundle U on Ĥab(â, τ â)ℓ corresponding to the

higher direct image of the pullback Higgs bundle F0,H(aℓ
down to ℓ, in terms of the spectral

line bundle L0 over Y0 and its restriction Lℓ to Ĥab(â, τ â)ℓ.

For this, we use the statement of Theorem 3.17, in particular the part proven in Theorem

12.12. The previous discussion shows that the points p′ and q′ are of type 3.11.1(e), and the

remaining points are covered by the other parts of the classification in Subsection 3.11. To

use the theorem in the presence of the points p′, q′, we should take the answer

U = Lℓ ⊗ ωH(a)ℓ/ℓ
.

The normalization of the relative critical locus separates the two branches at each of the

nodes. By Theorem 7.12 and Corollary 7.13, the two components of the abelianized Hecke
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are disjoint away from p′,q′, so the normalization that was denoted by G in Subsection 3.11

is the same as the disjoint union

G = Ĥab(â, τ â)ℓ = Ĥab(â)ℓ ⊔ Ĥab(τ â)ℓ.

The prescription of Theorem 3.17 gives a parabolic sheaf F ′
· such that

F ′
0 = f∗(U|G)

and F ′
−1/2 is the standard subsheaf coming from the ramification points of f : G → ℓ over

ℓ∩Wob1. Theorem 3.17 says that F ′
· is a parabolic subsheaf of the parabolic Higgs bundle F·

we are looking for. On the other hand, we know from general principles that F· has parabolic

degree 0. Also, F and F ′ agree except possibly over the points f(p′), f(q′) ∈ ℓ and these are

different from the points where there is a parabolic structure.

So, if we can show that the parabolic degree of F ′
· is zero, this will imply that F· = F ′

·

and we get the computation of F·. The degree will be calculated in the next subsection.

8.5 Degree calculation

Recall our notation that inside Y0 that E 0 denotes the exceptional divisor of the blow-up

ε0 : Y0 → P2, and F 0 denotes the inverse image of the hyperplane class of X0.

Lemma 8.13. For the relative canonical class over the degree 1 moduli space, we have

ωH(a)/X1
= OX0(−2)|H(a) ⊗OX1(1)|H(a).

If Ξ denotes the theta divisor on the Prym, or its pullbacks to Y0, Y1 or Ĥab(â, τ â)ℓ, we have

F 0 = Ξ − E 0 and F 1 = 2Ξ − E 1. We note that Ξ3 = 24, concording with the calculations

in Propositions 4.8 and 5.8.

Proof. The canonical bundle ωH(a) restricts to OP1(−2) on the fibers of the projection to X1

and to OP1(2) on the fibers of the projection to X0. It means that it restricts to the pullback

of OX0(2) on the Hecke lines over points of X1, and to the pullback of OX1(1) on the Hecke

conics over points of X0. The Picard group of H(a) is generated by these two things, and

the pullbacks restrict to trivial bundles on their own Hecke fibers, so we conclude

ωH(a) = OX0(−2)|H(a) ⊗OX1(−1)|H(a).
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On the other hand, as X1 is an intersection of two quadrics in P5, its canonical class is

OX1(−6 + 2 + 2) = OX1(−2). We conclude the stated formula.

For the last parts, we note that the linear system |Ξ| that produces the rational map

P2 99K P3 has base points on the 16 points that we blow-up to get Y0 so on the resulting

map on the blow-up, we subtract E 0. The 6-dimensional subsystem (anti-invariant part) of

|2Ξ| that provides the rational map P3 99K P5 has Ĉ as base locus so we subtract E 1. For

the verification, the formulas of Propositions 5.8 and 4.8 give

(F 0 + E 0)
3 = 24 and (F 1 + E 1)

3 = 192

compatible with Ξ3 = 24.

Recall that Exc0 and Exc1 are the exceptional divisors in Ĥab. We could denote their

restrictions over the point â = (A, t̃) ∈ Ĉ by Exc0(â) and Exc1(â). Those are thus the

divisors in Ĥab(â)ℓ that are strict transforms of the divisors E 0 and E 1.

We get that

E 0|Ĥab(â)ℓ
= Exc0(â)

whereas

E 1|Ĥab(â)ℓ
= Exc0(â) + Exc1(â)

because starting from Y1 we blow up lines contained in E 1 to get Ĥab(â)ℓ. This gives

F 0|Ĥab(â)ℓ
= 2Ξ−Exc0(â)

and

F 1|Ĥab(â)ℓ
= 4Ξ−Exc0(ã)−Exc1(ã).

This gives for the relative differentials

ωH(a)/X1
|Ĥab(â)ℓ

= O(−2F 0|Ĥab(â)ℓ
+ F 1|Ĥab(â)ℓ

)

= O(Exc0(â)−Exc1(â)).

Recall that—up to tensoring with degree 0 line bundles (ε∗0L0) resp. (ε∗1L1)—the spectral

line bundle on Y0 is L0 = OY0(2F 0+E 0) and the spectral line bundle on Y1 is L1 = OY1(F 1).

It follows that up to numerical equivalence

L0|Ĥab(â)ℓ
= O(4Ξ−Exc0(â))
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and

L1|Ĥab(â)ℓ
= O(4Ξ−Exc0(â)−Exc1(â)).

Proposition 8.14. Define the line bundle U over Ĥab(â, τ â)ℓ as the pullback of the spectral

line bundle L0 on Y0, tensored with ωH(a)ℓ/ℓ
. Then U is the spectral line bundle for the L2

Dolbeault higher direct image Higgs bundle on ℓ. Over each of the two pieces of Ĥab(â, τ â)ℓ,

U is isomorphic to the restriction of the spectral line bundle that we construct for X1, from

Y1 to Ĥab(â)ℓ (respectively Ĥab(τ â)ℓ).

Proof. It will be convenient to prove the second part first. Let us use the expressions for

the spectral line bundles that we are constructing on Y0 and Y1, as calculated prior to the

statement of the proposition. We get

U|Ĥab(â)ℓ
= L0 ⊗ ωH(â)ℓ/ℓ

|Ĥab(â)ℓ

= OĤab(â)ℓ
((4Ξ−Exc0(â)) + (Exc0(â)−Exc1(â)))

= OĤab(â)ℓ
(4Ξ−Exc1(â)).

We would like to compare this with the spectral line bundle coming from Y1 which is, as we

have seen above,

L1|Ĥab(â)ℓ
= OĤab(â)ℓ

(4Ξ−Exc0(â)−Exc1(â)).

These two differ by Exc0(â). However, remember that we are looking at the restriction over

a line ℓ ⊂ X1. The divisor components of Exc0(â) are obtained by blowing up 16 disjoint

P1’s in Y1. These P1’s are sixteen fibers of E 1 = Ĉ × P1, so they map to 16 lines in the

wobbly locus Wob1 ⊂ X1. A general line ℓ will miss these. Thus, as restricted over ℓ, the

two expressions are the same.

The same discussion holds on Ĥab(τ â)ℓ. Thus, L1|G ∼= U|G.

Let F· denote the L2 Dolbeault pushforward (on ℓ) with its parabolic structure, and let

F ′
· be the parabolic bundle on ℓ whose spectral line bundle is U over G. The parabolic degree

of F· is zero since it corresponds to a harmonic bundle.

The spectral line bundle L1 pushes forward to a parabolic Higgs bundle with first

parabolic Chern class equal to 0, over X1 and hence over a line ℓ ⊂ X1. The parabolic

structure here is also the standard one coming from the ramification over Wob1. As we have

identified the two line bundles L1|G and U|G, and since the parabolic structures are standard

coming from ramification points of G over ℓ ∩Wob1, it follows that the parabolic degree of

F ′
· is zero. Thus, F· = F ′

· . We conclude that U is the spectral line bundle for F·.
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8.6 Restriction to a line

We have been considering the local system corresponding to the parabolic Higgs bundle

(F1,•,Φ1) via the non-abelian Hodge and Riemann-Hilbert correspondences. So far we fo-

cused on the restriction of this local system to a general line ℓ ⊂ X1. We show in this subsec-

tion that knowing this restriction suffices in order to identify the local system on X1−Wob1.

Throughout the subsection, ℓ denotes a general line in X1. Let ℓ◦ := ℓ− (ℓ ∩Wob1).

Lemma 8.15. The local system on ℓ◦ constructed in Section 4, is irreducible.

Proof. It suffices to show that the spectral covering is irreducible. Recall from Lemma 4.15

that the spectral covering has the following description. The line ℓ has a natural trigonal

covering k : C → ℓ whose fiber over x ∈ ℓ is identified with the set of three lines through x

that are different from ℓ. The 8 branch points are the points of ℓ ∩Wob1.

We have the spectral cover C̃/C. For a point x ∈ ℓ we can make the following set with

8 elements: it is the set of liftings of the subset k−1(x) to a subset of three elements of C̃.

This family determines a covering of ℓ of degree 8, and that is the same as Y1 ×X1 ℓ→ ℓ.

For ℓ general, the set of 4 branch points of C̃/C maps to a subset of 4 distinct points in

ℓ. Indeed, the set of four branch points is the inverse image of a general pair of points in

P1 under the hyperelliptic map hC : C → P1, and a general trigonal map C → P1 does not

identify opposite points under the hyperelliptic involution on C, so the images of the four

branch points are distinct. Thus, as x moves around in ℓ◦, we can change individually the

parity of any one of the liftings of the three points. This shows that the monodromy action

on the 8 points is transitive, so Y1 ×X1 ℓ is irreducible. That was the spectral covering of

the Higgs bundle on ℓ corresponding to the restricted local system, so the local system is

irreducible.

Proposition 8.16. Suppose V and V ′ are two local systems on X1 −Wob1, such that

V |ℓ◦ ∼= V ′|ℓ◦

and such that this local system on ℓ◦ is irreducible. Then V ∼= V ′.
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Proof. Let ρ : π1(X1 −Wob1, o)→ GLN(C) and ρ′π1(X1 −Wob1, o)→ GLN(C) denote the

monodromy representations of V and V ′ with respect to a basepoint o ∈ ℓ◦ chosen in ℓ◦. Let

ζ : π1(ℓ
circ, o)→ GLN(C) denote the monodromy representation of V |ℓ◦ and V ′|ℓ◦ , assuming

we choose framings making these representations the same.

Suppose a ∈ π1(X1−Wob1, o). Then ρ(a) and ρ′(a) are morphisms of representations of

π1(ℓ
◦, o) between ζ and its conjugate ζa. Since ζ is irreducible, these two morphisms differ

by a scalar. This gives a rank 1 character χ : π1(X1 −Wob1, o)→ C× such that ρ⊗ χ ∼= ρ′,

and χ is trivial on π1(ℓ
◦, o).

To finish the proof, we need to note that χ is trivial. This is because the map

H1(ℓ
◦,Z)→ H1(X1 −Wob1,Z) (56)

is surjective. Indeed, this follows from the following

Claim 8.17. The fist homology group H1(X1−Wob1,Z) is cyclic and generated by the linking

loop in X1 going around some smooth point of Wob1.

Proof. Note first that the statement of the claim makes sense since any two linking loops

at smooth points of Wob1 are conjugate in π1(X1 − Wob1) and hence are homologous.

This follows immediately since Wob1 is irreducible and hence the smooth locus of Wob1

is connected. Using the tubular neighborhood theorem we can view the linking loops as two

different fibers of the circle bundle in the normal bundle NWobsmooth
1 /X1

and hence they are

homotopy equivalent up to a conjugation via a path connecting the two points in Wobsmooth
1

over which these circle fibers sit.

Next recall that if M is a connected, oriented, not necessarily compact, C∞-manifold

and if Z ⊂ M is a connected, oriented C∞ submanifold of dimension d, which is closed in

the Eucledian topology, then Z defines a d-dimensional cohomology class [Z] ∈ Hd(M ;Z).

Indeed, let Z ⊂ T ⊂M be a tubular neighborhood of Z. Then for every k we have canonical

identifications Hk(M,M − Z;Z) = Hk(T, ∂T;Z) (by excision) and also Hk(T, ∂T;Z) =

Hk−d(Z;Z) (by the Thom isomorphism theorem). In particular we get that

Hd((M,M − Z;Z) = Hd(T, ∂T;Z) = H0(Z;Z) = Z,

where the last equality holds since Z is connected. But from the long exact cohomology

sequence of the pair (M,M − Z) we have a canonical map

Hd(M,M − Z;Z)→ Hd(M ;Z) (57)
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and we define [Z] ∈ Hd(M ;Z) to be the image of 1 ∈ Z = Hd(M,M −Z;Z) under the map

(57). The cap product

[Z] ∩ (−) : Hk(M ;Z)→ Hk−d(Z;Z)→ Hk−d(M ;Z)

fits in the classical tube exact sequence in homology

· · · // Hk−d+1(Z;Z)
tubeZ/M // Hk(M − Z;Z) // Hk(M ;Z)

[Z]∩(−) // Hk−d(Z;Z) // · · · ,

where the middle map is induced from the inclusion M −Z ⊂M and the tube map tubeZ/M

sends a (k − d + 1)-cycle A in Z to the k-cycle in M − Z which is the total space of the

Sd−1-bundle ∂T|A ⊂ ∂T ⊂M − Z.

Taking this into account, consider Z ⊂M to be the C∞ manifolds underlying the smooth

complex varietties (Wob1−Sing(Wob1)) ⊂ (X1−Sing(Wob1)). Thus Z and M are oriented,

Z is of real codimension 2, and since X1 and Wob1 are irreducible, both Z and M are

connected. Furthermore M − Z = X1 −Wob1 as topoloical spaces and so the piece of the

tube sequence corresponding to k = 1 reads

· · · // H0(Z;Z)
tubeZ/M // H1(X1 −Wob1;Z) // H1(M ;Z)

[Z]∩(−) // 0 // · · · .

Since Sing(Wob1) is a compact subvariety of complex codimension 2 in X1 we have that

H1(M ;Z) = H1(X1 −Wob1;Z) = H1(X1;Z) = 0. Therefoe

tubeZ/M : H0(Z : Z)→ H1(X1 −Wob1;Z)

is surjective. But the H0(Z;Z) = Z is generated by the class of of a point in Z, and by the

definition of tubeZ/M for any point pt ∈ Z, we have that tubeZ/M(pt) is the class of the circle

in X1 −Wob1 linking to Z = Wob1 − Sing(Wob1) this point. This proves the claim.

Finally, observe that a general line ℓ will intersect Wob1 transversally at a set of 8 smooth

points, and so any simple loop in ℓ that goes once around a point x ∈ ℓ ∩Wob1 will be a

a loop in X1 that links to Wob1 at x. Thus the image of H1(ℓ
◦,Z) in H1(X1 −Wob1,Z)

contains a linking loop and so the map (56) is surjective. This implies that χ is trivial, and

hence V ∼= V ′ which completes the proof of the proposition.

Apply this now to the Hecke transform, a rank 16 local system on X1 −Wob1.
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Lemma 8.18. The rank 16 Hecke transform local system on X1 −Wob1 decomposes as a

direct sum of two rank 8 local systems which are isomorphic, when restricted to a general

line, to the local system constructed in Section 4.

Proof. The arguments of this section show that the restriction of the rank 16 local system to

a general line decomposes as a direct sum of two copies of the rank 8 local system constructed

in Section 4. Furthermore, such a decomposition can be obtained by considering the two

pieces Ĥab(â) and Ĥab(τ â). We obtain a family of decompositions over the lines, with the

property that when two lines intersect the decompositions correspond. Now, a complete

intersection of X1 with two general hyperplanes is an elliptic curve that can degenerate into

a cycle of 4 lines Z = ℓ1 ∪ ℓ2 ∪ ℓ3 ∪ ℓ4. We get the decomposition on each of these lines

and the decompositions coincide on the intersection points. This gives a decomposition of

the rank 16 local system over the singular curve Z, into two pieces of rank 8. The map

π1(Z−Z∩Wob1)→ π1(X1−Wob1) is surjective, so we get a decomposition of local systems

on X1 −Wob1.

Corollary 8.19. The rank 16 Hecke transform local system on X1−Wob1 decomposes as a

direct sum of two rank 8 local systems which are isomorphic to the local system constructed

in Section 4.

Proof. The lemma gives the decomposition, and the pieces restrict to a general line to the

given rank 8 local system. By Lemma 8.15 and Proposition 8.16, the pieces of the decom-

position are globally isomorphic to the rank 8 local system constructed in Section 4.

9 Hecke transformation from X1 to X0

The standard diagram for the direction of the Hecke transformation (X1 → X0) shows

the big Hecke correspondence fitting into

H
p

��

q

##

X1 X0 × C.
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Fix a point a = (A, t) ∈ C where A⊗2 = OC(t − p) and consider the Hecke correspondence

H(a) with its diagram

H(a)

p

}}

q

""

X1 X0.

The objective in this section is to pull-back the constructed Higgs bundle from X1 to H(a)

and take the higher direct image along q to X0.

The big abelianized Hecke fits into a diagram of the form

Ĥab

pab

~~

qab

##

Y1 Y0 × Ĉ.

The two points â and τ â over a ∈ C give two abelianized Hecke varieties Ĥab(â) and Ĥab(τ â).

These are the same as the varieties with the same notation in the previous section, and recall

that their disjoint union is denoted by

Ĥab(â, τ â) := Ĥab(â) ⊔ Ĥab(τ â).

The map Ĥab(â) → Y1 is the blow-up along 16 lines contained in the wobbly locus, while

the map Ĥab(â)→ Y0 is the blow-up along a curve isomorphic to Ĉ (and that will be called

by the same name) inside Y0.

9.1 Restriction to a line

As before, fix a general line ℓ ⊂ X0. Let H(a)ℓ be the inverse image of ℓ in the Hecke

variety H(a). As ℓ is general, it does not meet the image in X0 of the curve Ĉ ⊂ Y0, so if

Ĥab(â)ℓ denotes the inverse image of ℓ in Ĥab(â), the projection induces an isomorphism

Ĥab(â)ℓ
∼=→ Y0,ℓ.

The same holds for the other piece Ĥab(τ â)ℓ.
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Recall from Corollary 7.10 that for ℓ general, the images of Ĥab(â)ℓ and Ĥab(τ â)ℓ are

disjoint in the spectral variety

Σ := Y1 ×X1 H(a)ℓ → H(a)ℓ.

Thus, we may treat each piece separately. We will look mainly at Ĥab(â)ℓ with the under-

standing that the arguments for Ĥab(τ â)ℓ are the same.

Lemma 9.1. The Hecke correspondence H(a)ℓ over ℓ maps by a closed immersion onto a

hyperplane section that we will denote by Hℓ ⊂ X1. The image of Ĥab(â)ℓ is a curve of genus

25. The map

ϕ : Ĥab(â)ℓ → ℓ

has degree 8. It has: 16 ramification points over the intersection points of ℓ with the trope

planes, and 4 ramification points over each of the 4 intersection points in ℓ∩Kum. It has 32

other ’movable’ ramification points not mapping to points in the wobbly Wob0, so there are

altogether 64 branch points.

Proof. Recall that one of the quadrics in the pencil is identified with the Grassmanian of lines

in P3, embedded in P5 by the Plücker coordinates. The line ℓ itself corresponds to a vector in

v(ℓ) ∈
∧2C4. The condition for another line m ⊂ P3 to meet ℓ is that its vector v(m)

∧2C4

satisfies v(m) ∧ v(ℓ) = 0 in
∧4C4 ∼= C. This is a linear condition on v(m) so it corresponds

to a hyperplane in P6. The image of H(a)ℓ in X1 corresponds to the subset of points in X1

whose corresponding line meets ℓ, in other words it is this hyperplane intersected with X1.

This yields the hyperplane section Hℓ.

Since ℓ is general, its inverse image in Ĥab(â) is the same as its inverse image in Y0 because

the abelianized Hecke is the blow-up of Y0 on a subset that maps to a curve in X0 that will

be missed by a general ℓ. Now, we may proceed to calculate the normal bundle of this curve

in Y0. It is the pullback of the normal bundle of ℓ in P3 which is to say O(1)⊕O(1), so that

has degree 2 on ℓ. Its pullback has degree 16. Now, Y0 is the blow-up of an abelian variety

at 16 points; the exceptional divisors map to the trope planes so our general ℓ meets each

of the exceptional divisors once. The canonical bundle of Y0 is twice the exceptional divisor,

so it has degree 32. The canonical bundle of our curve is the canonical of Y0 restricted to

the curve, plus a divisor of degree 16, so it has degree 32 + 16 = 48. Therefore, the image of

Ĥab(â)ℓ in Hℓ has genus 25.
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The ramification of this curve over ℓ is just the restriction to ℓ of the ramification of

Y0/X0. We know that has fixed pieces including a simple ramification over each trope plane,

plus four simple ramifications over general points of Kum. The remaining ramification points

are really movable, as was noted in Lemma 5.13 (see also Corollary 4.23 for the corresponding

statement in the other direction).

The ramification points of the horizontal divisor lie over points of (
⋃
κ Tropeκ) ∩ ℓ. They

come from 16 lines inside Wob1, and correspond to the first 16 ramification points mentioned

in Lemma 9.1. The locations of these lines in Wob1 depend on the choice of point a = (A, t)

used to make the Hecke correspondence.

We note that the modular spectral covering Σ has two ramification points over each

general point of the wobbly locus, so these 16 points correspond to 32 points in the full

abelianized Hecke. They are distrubuted as 16 in each of the two pieces Ĥab(â)ℓ and Ĥab(τ â)ℓ.

Remark 9.2. The horizontal divisor in Hℓ is Wob1 ∩ Hℓ. It has nodes and cusps coming

from the nodes and cusps of Wob1. However, for a general ℓ these do not meet the image

of Ĥab(â)ℓ. In particular, they are not going to contribute singularities to the higher direct

image – this is another version of the “apparent singularities” encountered in the previous

chapter.

The proof of this statement is that the nodal and cuspidal loci of the wobbly locus Wob1 are

curves; they pull back to curves in Y1. The centers of the blow-up Ĥab(â) are the 16 lines in

Wob1 that get blown up to form Exc0,κ. These are transverse to both the nodal and cuspidal

loci. Therefore, the pullbacks of the nodal and cuspidal loci in Ĥab(â) are 1-dimensional.

Their 1-dimensional images in X0 do not meet a general line ℓ so Ĥab(â)ℓ does not meet the

nodal and cuspidal loci of W 1 and we get the statement of the remark.

Among the hypotheses of Subsection 3.11 is the following statement.
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Lemma 9.3. For a general line ℓ, the intersection of the plane Hℓ with any of the 16 lines in

Wob1 that provide ramification of the Hecke correspondence, is a general point on that line.

At such a point, the value of the spectral 1-form α on the vertical direction in the tangent

space of Y1, at either of the two ramification points of Y1/X1 over this point, is nonzero.

Proof. For the first part, we note that one of these 16 lines in Wob1 gets blown up to an

F1-surface, that then maps to the corresponding trope plane in X0 = P3. The exceptional

divisor blows down to a point, that we will call the origin, in the trope plane (corresponding

to the intersection in Y0 of the plane with the Ĉ curve). The location of the intersection of

Hℓ with the line corresponds to the slope of the line from this origin to the intersection point

of ℓ with the trope plane. For ℓ general, this direction is a general point of the line.

Inside P2, the curve Ĉ passes through 16 points that are blown up to get Y0. The

identification P2
∼= P3 depends on a. Instead of blowing up the points, we blow up the curve

Ĉ ⊂ P3 to get Y1, and this generates 16 lines inside E 1 ⊂ Y1. Let v denote one of these

lines. The normal bundle of v in Y1 is O ⊕ O(−1), with the O direction being the normal

bundle of v in E 1.

Let us look at how this maps to the normal bundle of the image line v ⊂ Wob1. The

normal bundle of a line in P5 is O(1)⊕4, and to get the normal bundle of the line in the

intersection of two quadrics we take the kernel of a map O(1)⊕4 → O(2)⊕2. For a typical

line, this kernel will be O⊕2.

However, for a line in the wobbly locus, that we recall counts twice in the set of four lines

through each point of X1, we claim that the kernel is O(−1) ⊕O(1). This may be seen by

recalling that the lines in the wobbly locus are the tangent lines to the copy of C that forms

the cuspical locus of Wob1, and when we move to first order along this C the tangent line

undergoes a deformation that vanishes at that point in the normal direction. Thus, these

first order deformations are sections of the normal bundle that vanish. But, the bundle O⊕2

does not have any nonzero sections that vanish somewhere. The only other possibility is the

bundle O(−1)⊕O(1) since it has to be a subbundle of O(1)⊕4. This proves the claim.

As we move in the curve C, the line moves in Wob1 so the normal direction has sections,

and it has to be the O(1) subbundle. The map O → O(1) has a zero at the points where

the line v crosses the cuspidal locus of Wob1. However, by looking at the local picture of the

covering Y1 → X1 near such a cuspidal locus, we can see that the map from the full tangent

space of Y1 into the tangent space of X1 has image of dimension 2, so the map from the full

normal bundle of v ⊂ Y1 to the O(1) piece in the normal bundle of v ⊂ X1 is surjective. We
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conclude that the bundle of vertical directions, which is the kernel of this map

O ⊕O(−1)→ O(1),

is O(−2) sitting in O⊕O(−1) as a saturated subbundle. In particular it is not contained in

any subbundle of the form O(−1). The map from this bundle of vertical normal directions,

into the space of normal directions at the original point of P3, therefore does not have image

in a plane. Thus, the tautological 1-form, that is a nonzero linear form on the tangent space

of P3, does not vanish on the vertical normal direction at a general point of v. This proves

the second part of the lemma, in view of the generality statement of the first part.

Recall that the fiber of q : H(a)ℓ → ℓ over a general point ℓ is a smooth conic, but over

points of the Kummer it degenerates to a union of two lines.

Lemma 9.4. The branch points of Ĥab(â)ℓ lying over points of the Kummer, all map to

points of the Kummer K3 surface HKum ⊂ H(â), that is to say in H(a)ℓ they map to points

where the two lines in the fiber meet.

Proof. The reasoning for this is as follows: the horizontal divisor in H(a)ℓ is the intersection

of H(a)ℓ (considered as a hyperplane Hℓ in X1) with the wobbly Wob1. But, the lines in

the fibers over points of the Kummer, represent general lines in X1 since ℓ intersects the

Kummer in general points. A general line in X1 will intersect Wob1 transversally.

We note that it is necessary to have four Jordan blocks of size two in the monodromy of

the Hecke-transformed local system (the rank 8 piece corresponding to our chosen branch of

Hab out of two, that we are hoping is our chosen flat bundle of rank 8 on X0) at each point

of the Kummer. Otherwise, the Hecke transform back in the other direction from X0 to X1

will not have the right rank.

So, these all have to come from simple ramification points of Ĥab(â)ℓ over the Kummer

points. However, if those ramification points were to occur on smooth points of the lines,

that wouldn’t contribute anything to the monodromy in the direct image (i.e. the residue

of the Higgs field) since the map is not singular at those locations. This heuristic argument

suggests that Ĥab(â)ℓ should have four points over each point where a fiber of ϕ breaks into

two lines.
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This can be shown in terms of bundles. Suppose L ∈ P2 is a line bundle on C̃ whose

direct image V = π∗L is stable with trivial determinant, so it is a point in X0, and suppose

that V contains a line subbundle U of degree 0. Then we claim that V also contains U−1.

To see this, we note that the group Z/2×Z/2 acts on C̃, as may be seen for example by

expressing

C̃ = C ×P1 P1

as a fiber product with the double cover P1 → P1 ramified at two points (so the ramification

of C̃/C is the preimage in C of those two points of P1). Explicitly the non-trivial elements

of Z/2 × Z/2 are given by the covering involution τ : C̃ → C̃ for thr map π : C̃ → C, the

covering involution σ : C̃ → C̃ for the hyperelliptic map hC̃ : C̃ → P1, and their composition

ρ = τ ◦ σ.

Now, note that by construction the group element ρ ∈ Z/2 × Z/2 acts trivially on the

Prym of C̃/C but acts by −1 on Jac(C). Applying ρ to the map π∗(U)→ L we obtain a map

π∗(U−1) → L and hence by adjunction we get an injective map U−1 → V . This will give

by degree considerations V = U ⊕ U−1. In the Hecke correspondence this will correspond

to a point at the intersection of the two P1 components of the fiber of q over V (we recall

that the affine parts of the two lines themselves were bundles that were semistable but not

polystable).

We can also note that L ∼= π∗(U)⊗OC̃(a+ b) for an effective degree 2 divisor a+ b on C̃,

amd that the image divisor π(a) + π(b) is fixed by the determinant condition for V . Thus,

there are four choices of (a, b) lifting this divisor to C̃. We get the four claimed branches of

Ĥab(â)ℓ going through a crossing point in H(a)ℓ.

Proposition 9.5. The map Ĥab(â, τ â)ℓ → Σ identifies the abelianized Hecke as the upper

critical locus (see Proposition 12.1)

Ĥab(â, τ â)ℓ ∼= C̃rit
(
H(a)ℓ/ℓ,

(
F0,H(a)ℓ

,Φ0

))
.

These are smooth curves in Σ that decompose into a disjoint union of two pieces correspond-

ing to â and τ â.

Proof. This is similar to the proof of Proposition 8.1, using Lemma 9.3 for smoothness of

the upper critical locus at ramification points of the horizontal divisor.
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For other points, we note that the abelianized Hecke is identified with Y0 outside of

Exc1(â), but Exc1(â) has image equal to a curve in X0 that does not intersect a general

ℓ (as will be pointed out again in Lemma 9.6 below). Thus, the inverse image of a general

line is smooth in this open subset of the abelianized Hecke. This shows that Ĥab(â, τ â)ℓ is

smooth away from the ramification points of the horizontal divisor.

The pointwise identification between the abelianized Hecke and the upper critical locus,

whose proof is the same as for Proposition 8.1, therefore gives an identification of subschemes

(again, neither of them has embedded points). We have seen that one or the other is smooth

at every point, so the are both smooth. Disjointness of the two pieces comes from Corollary

7.10 .

We next turn to the calculation of the direct image. Suppose given a spectral line bundle

L1 over Y1 whose direct image to X1 corresponds to our parabolic Higgs bundle. Recall that

this means, more precisely, that f1∗(L1) is the parabolic level 0 piece of the Higgs bundle,

with parabolic level 1/2 piece equal to f1∗(L1(E 1)).

The direct image formula for the holomorphic Dolbeault complex leads to a line bundle

over Ĥab(â)ℓ. At points where Ĥab(â)ℓ goes through the crossing points of the fibers over

Kummer points, the contribution is just L1|Ĥab(â)ℓ
⊗ ωH(a)ℓ/ℓ

, since the horizontal divisor

does not intervene. Recall that ωH(a)ℓ/ℓ
may also be viewed as the quotient of the forms with

logarithmic singularities along the fiber, modulo logarithmic forms from the base.

In the notations of Subsection 3.11, the present situation is covered by the situation

there, and there are no points of type 3.11.1(e). Indeed we are in the “parabolic” case where

there is a parabolic structure with weights 0, 1/2 on the source space, and such points are

not allowed as the horizontal divisor does not have nodes.

The direct image calculations were summarized in Theorem 3.17 and proven in Theo-

rem 12.10 based on Proposition 12.7. Near a point q where the horizontal divisor (which is

Wob1 ∩Hℓ) has a ramification over a point of a trope plane, the curve Ĥab(â)ℓ also passes

through that point, and the contribution for the direct image is

L1|Ĥab(â)ℓ
⊗ ωHℓ/ℓ(q).

This formula would also hold near a point q where the upper critical locus intersects the

ramification divisor Ram ⊂ Σ over points where the horizontal divisor is étale over the base.
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Indeed, the proof of Theorem 12.10 included a discussion of that possibility. The ramification

divisor is the same as the pullback of E 1 to Σ. However, in fact, these kinds of points do

not occur:

Lemma 9.6. For general ℓ, the curve Ĥab(ã)ℓ viewed inside Y1, only meets the divisor E 1

at points q where the horizontal divisor has a ramification over a point of a trope plane

intersected with ℓ.

Proof. The pullback of E 1 to Ĥab(â) is the sum Exc0(â) ∪ Exc1(â) of the strict transform

Exc1(â) and the exceptional divisors over the 16 lines that form Exc0(â). However, Exc1(â)

is contracted and maps to a curve inside Y0, hence also in X0. A general line does not meet

this curve. Thus, taking the inverse image of a general line ℓ inside Ĥab(â) and project-

ing back to Y1, gives a curve that only meets E 1 at points of the 16 lines that generate

ramification over a trope plane.

Either using this lemma, or in any case by the remark of the preceding paragraph, the

contribution to the higher direct image coming from points near E 1 is the restriction to the

curve G of

L1(E 1)|Ĥab(â)ℓ
⊗ ωHℓ/ℓ.

This globalizes to other points of Ĥab(â)ℓ. For the points lying over the Kummer, notice that

the relative dualizing sheaf is the same as the relative sheaf of logarithmic differentials that

enters into the higher direct image calculations, so the spectral line bundle is obtained by

taking L1 and tensoring with ωHℓ/ℓ near these points. Since these points are not on E 1 (as

follows from Lemma 9.4), the contributions for those points are given by the same expression.

Putting these all together, we obtain the computation of the spectral line bundle:

Proposition 9.7. Taking the Hecke transform and restricting to the line ℓ, the spectral line

bundle on Ĥab(â)ℓ is the line bundle

L1(E 1)|Ĥab(â)ℓ
⊗ ωHℓ/ℓ.
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The same holds for the spectral line bundle on Ĥab(τ â)ℓ, and these two are disjoint in Σ, so

this expression gives the spectral line bundle over the disjoint union Ĥab(â, τ â)ℓ.

9.2 Calculation of the pushforward

Calculate in the same way as at the end of the previous chapter. Recall that if we write

Ξ for the theta divisor on the Prym, or its pullbacks to Y0, Y1 or Ĥab(â, τ â)ℓ, we have

F 0 = 2Ξ−E 0 and F 1 = 4Ξ−E 1. Also

E 0|Ĥab(â) = Exc0(â)

whereas

E 1|Ĥab(â) = Exc0(â) + Exc1(â),

and

F 0|Ĥab(â) = 2Ξ−Exc0(â)

F 1|Ĥab(â) = 4Ξ−Exc0(â)−Exc1(â).

Lemma 9.8. For the relative canonical class over the degree 0 moduli space, we have

ωH(a)/X0
= OX0(2)|H(a) ⊗OX1(−1)|H(a)

and this pulls back to OĤab(â)(Exc1(â)−Exc0(â)).

Proof. As in Lemma 8.13,

ωH(a) = OX0(−2)|H(a) ⊗OX1(−1)|H(a).

On the other hand, ωX0 = OX0(−4), giving the first formula. Then

ωH(a)/X0
|Ĥab(â) = O(2F 0|Ĥab(â) − F 1|Ĥab(â))

= O(2(2Θ−Exc0(â))− (4Ξ−Exc0(â)−Exc1(â))) = O(Exc1(â)−Exc0(â)).
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Recall that the spectral line bundle on Y0 is L0 = OY0(2F 0 + E 0) and the spectral line

bundle on Y1 is L1 = OY1(F 1). As before, we get

L0|Ĥab(â) = O(4Ξ−Exc0(â))

and

L1|Ĥab(â) = O(4Ξ−Exc0(â)−Exc1(â)).

From Proposition 9.7, the spectral line bundle of the Hecke transform restricted over ℓ is the

bundle

L1⊗OY1(E 1)|Ĥab(â)ℓ
⊗ ωHℓ/ℓ

= OĤab(â)ℓ
(4Ξ−Exc0(â)−Exc1(â))⊗OĤab(â)ℓ

(Exc0(â) + Exc1(â))

⊗OHab(Exc1(â)−Exc0(â))|Ĥab(â)ℓ

= OĤab(â)ℓ
(4Ξ + Exc1(â)−Exc0(â)).

This compares with the spectral line bundle coming from Y0 which is OĤab(â)ℓ
(4Ξ−Exc0(â)).

As before, the divisor E 1 is the exceptional divisor of blowing-up Y1 along a copy of the

curve Ĉ. The image of the curve in P3 does not intersect a general line ℓ so Exc1(â) does

not intersect Ĥab(â)ℓ. Thus, the spectral line bundle of the Hecke transform coincides with

the spectral line bundle coming from Y0 on Ĥab(â)ℓ.

Proposition 9.9. Define the line bundle U over Ĥab(â, τ â)ℓ as the pullback of L1(E 1) on

Y1, tensored with ωHℓ/ℓ. Then U is the spectral line bundle for the L2 Dolbeault higher

direct image Higgs bundle on ℓ. Over each of the two pieces of Ĥab(â, τ â)ℓ, U is isomorphic

to the restriction of the spectral line bundle that we construct for X0, from Y0 to Ĥab(â)ℓ

(respectively Ĥab(τ â)ℓ).

Proof. The above calculations show this, it is also described in Section 7. Notice that the

proof in this direction is significantly less complicated than in the previous section since we

do not need to deal with the points of type 3.11.1(e).
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10 The big Hecke correspondences

In this section we will consider the “big” Hecke correspondences fitting into a diagram

of the form, for the (X1 → X0) direction:

H
p

��

q

""

X1 X0 × C

or similarly in the opposite direction (X0 → X1) pictured below. We would like to show

that the local system obtained by pulling back our local system from (X1,Wob1) then taking

R1q∗, is an exterior tensor product of our local system on (X0,Wob0) by the initially given

rank two local system on C, pulled back to C.

The main part of the proof on the spectral data was given in Subsection 7.4. The objective

of this section is to prove some complementary statements designed to deal with possible

apparent singularities of the higher direct image operation. For this, we introduce the notion

of effective discriminant divisor, this is the part of the discriminant divisor on which

the higher direct image local system really does have singularities.

10.1 From X1 to X0

For the moment we will work in the direction from X1 to X0 as pictured in the previous

diagram. Let ∆ ⊂ X0 × C be the discriminant divisor of the map q with respect to the

pair (H, p−1Wob1). This includes points in X0 × C over which the map q is not smooth,

and points over which the horizontal divisor p−1Wob1 is not étale. The singularities of the

R1q∗ local system are a priori contained in ∆. Let ∆eff be the effective singular divisor,

namely the divisor over which the local system has singularities. Thus ∆eff ⊂ ∆.

From the previous section we know the following statement:

Proposition 10.1. If a is a general point of C then along the fiber X0 × {a}, the singular

divisor ∆eff consists of just Wob0 ⊂ X0.

This proposition readily implies the following:
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Corollary 10.2. The effective singular divisor consists of Wob0 × C, possibly union with a

finite number of fibers of the form X0 × {ai} for points ai ∈ C.

Proof. In general a divisor such as ∆eff in a product X0 × C decomposes as

∆eff = ∆vert
eff + ∆horiz

eff + ∆mov
eff

where ∆vert
eff is a sum of vertical components X0 × {ai}, ∆horiz

eff is a sum of divisors of the

form Di × C, and ∆mov
eff is given by a moving family of divisors parametrized by C. Over a

general point of C, the intersection of these divisors with the fiber will be: for ∆vert
eff , empty;

for ∆horiz
eff , the union of the Di; and for ∆mov

eff , a divisor that moves as a function of the point.

The proposition says that these all consist of just Wob0 ⊂ X0, not moving as a function

of the point of C. It follows that ∆mov
eff = ∅ and ∆horiz

eff = Wob0 × C. There remains the

possibility of a nonempty ∆vert
eff .

In order to rule out the possibility of having a vertical piece in ∆eff we’ll just rule that out

for the full discriminant divisor.

Proposition 10.3. The discriminant ∆ of the map q from (H, p−1Wob1) to X0 × C does

not contain any vertical pieces of the form X0 × {a}.

Proof. We need to show that for any point a ∈ C, the full fiber X0 × {a} is not contained

in the discriminant.

The point a ∈ C corresponds to a pair a = (A, t) where A is a line bundle of degree 0

and t ∈ C such that A⊗2(p) = OC(t) (recall that p is our fixed Weierstrass point). We need

to show that for a general point F ∈ X0, the Hecke curve corresponding to (F , (A, t)) is

smooth and intersects Wob1 transversally.

A general F is stable. A bundle obtained by a Hecke transformation is the kernel in

0→ E → F ⊗ A(p)→ Ct → 0

where the quotient corresponds to a rank 1 quotient of the fiber (F ⊗A(p))t over the point

t. If F is stable of degree 0 then its maximal degree line subbundles have degree −1, so any

line subbundle of E must have degree ≤ 0. Thus, E is stable. The Hecke curve is therefore

isomorphic to the space of such rank 1 quotients, so it is P1 and is hence smooth.
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A little more precisely, let Hs ⊂ H be the moduli space of line bundles B ∈ C paired with

inclusions E ⊂ F ⊗ A(p) of colength 1 such that E and F are stable. Let Xs
0 ⊂ X0 denote

the open subset of stable bundles. By the previous paragraph, Hs
is the inverse image in H

of Xs
0 ×C. The projection from here to X0×C is a P1-bundle over the open subset Xs

0 ×C.

This was also verified synthetically in section 2.4.

Thus, H is smooth over Xs
0 × C. This shows that for any a = (A, t) and for a general

F the Hecke curve over (F , a) is smooth. Next, we would like to understand its intersection

with p−1Wob1. Recall that E ∈ Wob1 if and only if there exists a line subbundle B ⊂ E of

degree 0 such that B⊗2(p) is effective. If E is a Hecke transformation of (F , (A, t)) and B is

such a line subbundle then we get an injection B ↪→ F ⊗ A(p) or equivalently

L := B ⊗ A∨(−p) ↪→ F .

Here L is a line bundle of degree −1. If F is stable of degree 0, that is the maximal degree of

a locally free subsheaf, in particular L ⊂ F is a saturated locally free subsheaf, i.e. a strict

subbundle.

In the other direction, given a degree −1 subbundle L ⊂ F there is a unique rank 1

quotient over the point t such that B = L ⊗ A(p) maps into the kernel of F ⊗ A(p) → Ct.

Note that

B⊗2(p) = L⊗2 ⊗ A⊗2(3p) = L⊗2(2p + t).

This makes an isomorphism between the set of intersection points of the Hecke curve with

Wob1, and the set of solutions L of the pair of conditions

(1) h0(L∨ ⊗F) > 0

(2) h0(L⊗2(2p + t)) > 0.

We will look at the solutions as a subset of Jac−1(C) the Jacobian of line bundles of degree

−1 on C. Solutions of Condition (1) form a divisor DF in the linear system |2Θ|. Indeed,

DF is the Narasimhan-Ramanan point corresponding to F [NR69]. We have

Jac−1 // P3 = P
(
H0(Jac−1(C),O(2Θ)∨

)
∪ ∪
DF // HF
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where the P3 = P
(
H0(Jac−1(C),O(2Θ)∨

)
here is the dual of X0 = P

(
H0(Jac−1(C),O(2Θ)

)
and HF is the hyperplane corresponding to the point F ∈ X0. The top map is the mapping

given by |2Θ| that is basepoint-free [Mum07a, BL04b].

The second Condition (2) corresponds to the pullback of C ↪→ Jac1 by the composed

map

Jac−1(C)
(−)⊗2

// Jac−2(C)
(−)⊗O(2p+t) // Jac1(C).

Let C
t ⊂ Jac−1 denote this pullback curve.

Solutions of both conditions together correspond to the intersection of these two sub-

spaces. It corresponds to mapping C
t → P3 by the composed map

C
t → Jac−1 → P3

and then pulling back a hyperplane section HF . If F is a general point of X0 then this is a

general hyperplane section.

The map C
t → P3 is nonconstant, so the pullback of a general hyperplane section is

reduced, consisting of a collection of distinct points. The number of points is the degree of

the map, which we claim is 16. To prove that, note that our arguments below will show that

it can not be > 16 otherwise the scheme-theoretical intersection of the Hecke curve, a conic,

with Wob1 would be too big. The degree is the intersection number of the pushforward of

2Θ by the squaring map. Let us push forward the original Θ divisor, which is just C ⊂ Jac1.

The square is the set of divisors of the form 2x for x ∈ C, translated back to Jac1 as the set

of divisors of the form 2x− t. We want to know when this is effective, i.e. how many pairs

(x, y) solve 2x− t = y. This may be written as the equation 2x+ y′ = t+ 2p, so it is the set

of ramification points of the trigonal curve associated to the linear system |O(t + 2p)|. We

know that this is 8, that is the intersection of the pushforward of Θ with C has 8 points, so

degree ≥ 8. Thus, the intersection of the pushforward of 2Θ with C has degree ≥ 16. This

completes the proof that the degree of the map C
y → P3 is 16.

Thus, there are 16 distinct solutions L of the two conditions. Each point L yields a line

bundle B = L ⊗ A(p), with (B, s) ∈ C for some s ∈ C, and for distinct L ∈ Jac−1 the line

bundles B are distinct. They correspond therefore to distinct points in C, hence to distinct

points of the normalization of Wob1 that fibers over C. We next note that since our 16

points were obtained by intersecting the image C → P3 with a general hyperplane section,

any pair of two points are general with respect to each other. Pairs of points can be glued

together under the normalization map for Wob1, but this generality condition implies that
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our 16 solutions L, leading to 16 line bundles A, can not contain pairs of points that are

glued together. This shows that they give 16 distinct points in Wob1.

Now, the scheme theoretic intersection of a Hecke curve with Wob1 has length 16, so

if there are 16 distinct points then they have to be reduced points in the scheme theoretic

intersection. This implies that p−1Wob1 is unramified, hence etale over a general points of

Xs
0 × C. This completes the proof of the proposition.

Corollary 10.4. The effective singular locus ∆eff of the R1q∗ local system on X0 × C is

Wob0 × C.

Corollary 10.5. The R1q∗ local system of rank 16 on X0 × C decomposes as an exterior

tensor product of the rank 8 local system we have constructed on X0 with a rank 2 local

system on C whose spectral curve is Ĉ → C.

Proof. We have seen that on X0 × {a} the Higgs bundle is a direct sum of two copies of

the rank 8 Higgs bundle we construct over X0. Furthermore, the direct sum consists of two

copies that are preserved by the Higgs field in the C direction, indeed the Higgs field comes

from the section of the sheaf of total differentials on the upper relative critical locus which

is a disjoint union. The two components vary in a covering given by Ĉ → C. Also, the

spectral 1-form is the canonical 1-form over Ĉ. This may be seen by restricting to horizontal

copies of Ĉ inside Y0 × C which map to translates of standard copies of Ĉ in Y1, on which

the spectral 1-form is the canonical one for Ĉ.

It follows that the Higgs bundle is not a direct sum of two copies of a rank 8 Higgs bundle

on X0× Ĉ. In view of the theorem on irreducible representations of product groups, the only

other possibility is that it is an exterior tensor product. The spectral curve of the rank 2

local system on C is Ĉ with embedding given by the canonical 1-form on Ĉ, so this identifies

the spectral curve as a curve in T∨C.
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10.2 From X0 to X1

Consider next the diagram

H
d

��

b

##

X0 X1 × C.

In this case, b is a fibration with fibers P1, so there is no discriminant for the map b. Let

∆ ⊂ X1 × C now denote the discriminant for the horizontal divisor d−1Wob0 over X1 × C.

Here again, let ∆eff ⊂ ∆ denote the effective singularities of the local system R1b∗ of the

pullback by b of the local system we construct over (X0,Wob0).

As before, the effective discriminant decomposes into potentially nonempty pieces as

∆eff = ∆vert
eff + ∆horiz

eff + ∆mov
eff .

Lemma 10.6. We have ∆mov
eff = ∅, and ∆horiz

eff = Wob1 × C.

Proof. We have seen in Section 8 that the effective discriminant in the fiber over a general

point a ∈ C is just Wob1 × {a} ⊂ X1 × {a}.

We would like to rule out the possibility of a component X1×{a} in ∆vert
eff . As before, for

this we show that the full discriminant ∆ itself does not contain any vertical components.

We would like to show that for any point a ∈ C, and for a general F ∈ X0, the Hecke line

associated to (F , a) intersects Wob0 transversally.

Since it is a line in P3, it will be transverse to the trope planes unless it is contained in

one of them. Therefore, we would like to show that the general Hecke line is not contained

in a trope plane, and that it intersects the Kummer in 4 distinct points.

The bundle F is a stable bundle of determinantOC(p). If a = (A, t) withA⊗2(p) = OC(t),

then the bundles in the Hecke line are kernels of the form

0→ E → F ⊗ A→ Ct → 0

noting that the determinant of E is A⊗2(p− t) = OC .

Notice that E is semistable, indeed if it had a subbundle of degree 1 that would give a

degree 1 subbundle of F contradicting stability of F .
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We have that E is in a trope plane if there is a line subbundle B ⊂ E of degree −1 such

that B⊗2(2p) = OC . The 16 trope planes correspond to the 16 solutions of this equation. If

this is the case, it gives

L := B ⊗ A∨ → F .

The set of possible L’s is finite.

If h0(L∨ ⊗ F) ≥ 2 then there is a morphism L⊕2 ↪→ F , with cokernel a nontrivial

skyscraper sheaf. If a point y ∈ C is in the support of this skyscraper shead, then we will

get a map L(y) → F , showing that F ∈ Kum. Thus, for general F there is at most one

map up to scalars from L to F . For similar reasons, the image is a saturated subsheaf of F .

Thus, for a given L there is at most one rank 1 quotient of (F ⊗ A)t whose kernel contains

B = L⊗A. As there are finitely many L, the Hecke transformed bundles E can not all be in

the wobbly locus. This shows that, for a general F , the Hecke line is not contained entirely

in a trope plane.

Let’s now look at the intersection of the trope line with the Kummer. The point of X0

corresponding to the bundle E is a point of the Kummer if E has a subbundle of degree 0.

So we need to consider the possibility that there is a subbundle

B ↪→ E

with A of degree 0. This gives

L := B ⊗ A∨ ↪→ F

with L of degree 0. In that case, note that the inclusion has to be strict, since F can’t

contain a subbundle of degree 1. Then, there is a unique rank 1 quotient of Ft such that

this subbundle corresponds to a subbundle of E .

This reduces to our classical situation: such a subbundle L ⊂ F corresponds to a line in

X1 through F , and we know from section 2 that for a general F there are four distinct lines.

So, for a general F there are four distinct subbundles L ⊂ F of degree 0.

These in turn correspond to points (L⊗ A)⊕ (L⊗ A)−1 of the Kummer.

Lemma 10.7. Suppose a = (A, t) ∈ C is fixed. Choose F ∈ X1 general with respect to a,

and let L1, L2, L3, L4 ⊂ F be the four subbundles of degree 0 corresponding to the four lines

through F . Then the four points (Li ⊗ A)⊕ (Li ⊗ A)−1 of the Kummer are distinct.
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Proof. First the Li are distinct, so Li ⊗ A is not isomorphic to Lj ⊗ A for i ̸= j. We need

to show that Li ⊗ A is not isomorphic to (Lj ⊗ A)−1 for i ̸= j. If they were isomorphic we

would have

Li ⊗ Lj ∼= A⊗−2 = OC(p− t).

Look at a bundle L1 and choose F general along the corresponding line. This L1 is the

first subbundle of F , the other three being line bundles corresponding to points in one of

the fibers of the trigonal covering C → P1. Here, more precisely, if y ∈ C is a point then

L−1
1 (p − y) is the corresponding line, and this for the three points y1, y2, y3 in the fibers of

the trigonal cover over the point F in the line corresponding to L1.

In particular, L1⊗Lj is among a moving family of line bundles, so for a general point on

the line, L1 ⊗ Lj is not equal to the fixed OC(p− t). We conclude that if F is general, and

contained in some line, then none of the other three lines corresponds to the same point of

the Kummer. This holds for all the lines through the general point, concluding the proof of

the lemma.

Fixing a = (A, t) and for a general F ∈ X1 with respect to a, then the Hecke line

corresponding to (F , a) is transverse to the trope planes and meets the Kummer in four

distinct points. We note that the points where the Hecke line meets the Kummer are not on

the trope conics. Indeed, for F general with respect to a, the lines L are general points of

the Jacobian with respect to A that is fixed, so the points of the Kummer are general.

This completes the proof of the following proposition. It gives the same corollaries as in

the degree 0 case.

Proposition 10.8. The discriminant ∆ does not contain any components of the form X1×
{a} for a ∈ C.

Corollary 10.9. The effective singular locus ∆eff of the R1p∗ local system on X1 × C is

Wob1 × C.
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Corollary 10.10. The R1p∗ local system of rank 16 on X1 × C decomposes as an exterior

tensor product of the rank 8 local system we have constructed on X1 with a rank 2 local

system on C whose spectral curve is Ĉ → C.

10.3 Identification of the eigenvalues

Proposition 10.11. The eigenvalue rank 2 local systems on C in Corollaries 10.5 and 10.10

are the same as the original local system Λ associated to the Higgs bundle (E, θ), pulled back

to C.

Proof. We have seen that the spectral curve of the eigenvalue is Ĉ. This is the spectral curve

of (E, θ)|C .

The correspondence of Proposition 7.6, and the analogous statement in the (Y0 → Y1)

direction, tell us that the spectral line bundle on Ĉ is the same as the one for (E, θ)|C , away

from the ramification points of Ĉ/C. Our arguments did not apply to those ramification

points, because the full abelianized Hecke does not decompose into two pieces, rather it is

non-reduced over those points.

The spectral line bundle of the eigenvalue, and the spectral line bundle of (E, θ)|C , are

two line bundles of degree zero that differ possibly by a divisor of degree 0 supported on this

ramification set. But as we move around in the Hitchin base, and in the moduli of genus

2 curves, the set of ramification points is permuted transitively. Thus, the coefficients of

each point in the divisor must be the same. As the divisor has degree 0, this implies that it

vanishes, and we obtain the identification of spectral line bundles.

It remains to identify the spectral 1-forms. In the (Y0 → Y1) direction, the abelianized

Hecke correspondence gives for each point of Y0 a translated map Ĉ → Y1. The spectral

1-form for the eigenvalue Higgs bundle is the pullback of the spectral 1-form on Y1 to a

1-form on Ĉ. This is the same as our original 1-form, the spectral 1-form of (E, θ). The

proof in the (Y1 → Y0) direction is identical.

This completes the identification between spectral data for the eigenvalue Higgs bundle

and (E, θ), so the associated local systems are isomorphic.
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11 Construction of a third kind of local system

In this section we take note of a different but similar construction of a flat parabolic

Higgs bundle over (X0,Wob0). Namely, we use the same spectral covering Y0 → X0, still

putting trivial parabolic structures over the trope planes, but putting a parabolic structure

with levels 0, 1/2 over the Kummer. For this section X denotes X0 and Y denotes Y0.

More precisely, let R ⊂ Y0 be the reduced inverse image of the Kummer surface. Thus

the inverse image of the Kummer is 2R since f : Y → X has four simple ramification points

over each point of the Kummer. As the Kummer has degree 4 we get R ∼ 2F .

Let L be a spectral line bundle over Y . Use this to define a parabolic Higgs bundle

(F•,Φ) by

Fa := f∗(L ), 0 ≤ a < 1/2

Fa := f∗(L (R)), 1/2 ≤ a < 1.

Proposition 11.1. Let L0 be a flat line bundle over P2. If we choose L = (ε∗0L0)⊗OY (E 0+

F 0) then

H2 · chpar
1 (F•) = 0 and H · chpar

2 (F•) = 0.

Furthermore, there is no need for a correction term at the tacnodes, so we get a Higgs bundle

corresponding to a local system on X0 −Wob0.

Proof. The computations are left to the reader using the formulae of Propositions 4.7 and 4.8.

We note that the parabolic structure may be viewed as a bundle on the root stack X0[
1
2
Kum].

Over this root stack, a tacnode of a trope plane with the Kummer pulls back to a normal

crossings. So, over the root stack where the parabolic structure over the Kummer disappears,

we have a logarithmic Higgs field along a normal crossings divisor, so no additional correction

term is needed to chpar
2 .

Remark 11.2. Let X ′ → X be the smooth double cover branched over the Kummer.

This may be viewed as the moduli space for parabolic vector bundles on P1 with parabolic

structure over 6 points (the 6 branch points of C/P1), via the correspondence of Goldman

and Heu-Loray [HL19]. The above parabolic Higgs bundle pulls back to a Higgs bundle with

trivial parabolic structures over X ′. This is probably a Langlands local system over X ′. It

would go outside our current scope to pursue this here.

We think that the resulting local systems on X0−Wob0 should be the ones corresponding

to the PGL2-local systems of degree 1 by the geometric Langlands correspondence between
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those and perverse sheaves over BunSL2 . Notice that since we expect to get a perverse sheaf

on BunSL2 , there isn’t an a priori corresponding perverse sheaf on X1.

Nonetheless, we can take the Hecke transform of this local system over to X1. In this

case, Lemma 8.4 does not apply, see Remark 8.6. The Hecke transformed local system will

therefore have singularities over Wob1 ∪K1 where K1 is another subvariety of X1. It is the

Kummer K3 surface [Bea96, Dol20, GH94, Hud05, Keu97] that, we recall, may be described

as follows: inside the Hecke space we have a K3 surface birational to the Kummer, it is the

set of points where the two lines meet in the Hecke fiber over a point of the Kummer. Then

project this to X1 to get K1.

The intersection of K1 with a general line ℓ ⊂ X1 consists of the two points on ℓ that are

the images of the points p and q appearing in the description of Section 8. In particular K1

has degree 2.

Remark 11.3. Indeed, K1 is the intersection of X1 with a third quadric in P5. It is the K3

surface obtained by resolving the 16 singularities of the Kummer. The embedding K1 ↪→ X1

depends on the point of C over which we make the Hecke transformation, and the third

quadric is identified ?? in the synthetic description with the K3 surface denoted by Σ in

[GH94].

The Hecke transform of our rank 8 local system on X0 −Wob0 is a rank 16 local system

over an open subset of X1×C. This seems to reduce to a direct sum of two copies of a rank

8 local system on X1 −Wob1 −K1 over each point of C.

Calculation of the rank seems to say that the rank 8 local system on X1 −Wob1 − K1

then Hecke transforms back to a local system of rank 24 on an open subset of X0× Ĉ. This

would be supposed to correspond to the Hecke eigensheaf property expected of the perverse

sheaf corresponding to an odd degree PGL2 local system.

We close this topic for now, with the prospect of further discussion elsewhere.

12 Some pushforward calculations

The objective of this section is to arrive at a proof of Theorem 3.17. We’ll do that by

applying the theory of [DPS16] in some specific cases. The situation of Theorem 3.17 is fairly

specific and tailored to our needs for the Hecke transform calculations. We’ll go through some

intermediate steps of varying degrees of generality that might be of independent interest as
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complements to the discussion of [DPS16], for example we extend the general theory of

[DPS16] to the case of morphisms with multiple fibers.

For the most part, the notations in this section will be general, not related to our moduli

spaces of stable bundles on the genus 2 curve.

12.1 The relative critical locus

Suppose f : X → S is a projective morphism from a smooth surface to a smooth curve.

Suppose D ⊂ X is a divisor, and let DH ⊂ D be the union of components that map

surjectively to S. Assume that DH is reduced. Let D◦ be the smooth locus of D and let X◦

be the complement of the singular points of D.

Suppose E· is a parabolic bundle on (X∗, D∗) with a compatible Higgs field φ, and let

Σ∗ → X∗ be the spectral covering of φ. Extend this to a finite covering Σ→ X. As Σ∗ is the

spectral covering of the logarithmic Higgs field φ acting on E0, there is a natural inclusion

Σ∗ ↪→ T ∗(X∗, logD∗).

The tautological section of T ∗(X∗)|Σ∗ restricts to a section of T ∗(X∗/S)|Σ∗ that we’ll call

the relative tautological 1-form denoted αrel.

Define the upper critical locus

C̃rit(X/S, E·, φ)∗ ⊂ Σ∗

to be the zero-scheme of αrel. Define the lower critical locus

Crit(X/S, E·, φ)∗ ⊂ X∗

to be its image in X∗. Denote by C̃rit(X/S, E·, φ) and Crit(X/S, E·, φ) their closures in Σ

and X respectively.

Proposition 12.1. Consider the relative L2-Dolbeault complex

DolL2(X∗/S, E·, φ) over X∗

from [DPS16]. Assume that the (upper or lower) critical locus has dimension 1. Then the

cohomology sheaf of the L2-Dolbeault complex in degree 0 vanishes, and the cohomology sheaf

in degree 1 (i.e. the cokernel) is supported on Crit(X/S, E·, φ)∗.

Assume that Σ is smooth in codimension ≤ 1. There is a dense Zariski subset So ⊂ S

such that, using ()o for the restriction over So, the map C̃rit(X/S, E·, φ)o → So is provided
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with a section of the pullback of T ∗(So) making it into the spectral variety for the higher

direct image Higgs bundle over So.

Proof. See [DPS16]. The differential in the L2-Dolbeault complex is a morphism between

locally free sheaves of the same rank. Thus, the condition that the critical locus has dimension

1 means that this map has maximal rank at the general point of X, in particular it is injective.

This shows the first paragraph of the statement.

For the second part, we may assume that over So, the critical locus is relatively 0-

dimensional, contained in the smooth points of Σ, the map Xo → So is smooth, and the

horizontal divisor is etale. We may also assume that the critical locus does not meet the

horizontal divisor. The Higgs bundle E is the direct image of a spectral line bundle on Σ,

and the cokernel of the Dolbeault complex is the spectral line bundle, tensored with the

relative differentials and then restricted to C̃rit(X/S, E·, φ)o. The higher direct image of the

L2-Dolbeault complex is the usual direct image of this line bundle on the critical locus, down

to So. The spectral embedding of Σ gives a section Σ→ T ∗X. In view of the exact sequence

0→ f ∗T ∗So → T ∗Xo → T ∗(Xo/So)→ 0,

the critical locus being the zero set of the projection Σo → T ∗(Xo/So) is provided with a

map C̃rit(X/S, E·, φ)o → f ∗T ∗So. This gives the tautological differential making the critical

locus into the spectral variety of the higher direct image Higgs bundle [DPS16].

Proposition 12.2. Given a point where the map f is not smooth, or where the horizontal

divisor is not etale over the base, if the point is not in the lower critical locus then it does

not contribute a singularity of the Dolbeault higher direct image Higgs bundle on S.

Proof. When we blow up to resolve the singularities of the map and apply the technique of

[DPS16], such a point could result in an isolated vertical component of the critical locus for

the blown-up map. However, this can’t contribute anything to any of the parabolic levels of

the higher direct image of the L2-Dolbeault complex, since we know that the higher direct

image parabolic Higgs bundle has level pieces that are locally free over S, in particular they

can’t have sections supported over a finite set in S.

12.2 Vertical divisors with multiple components

We would like to frame an extended pushforward setup.
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Let f : X → S be a projective morphism, with S a curve and X a smooth surface. We

have a point o ∈ S, the discriminant of f is {o}. Suppose that DV = f−1(o) is a simple

normal crossings divisor, possibly non-reduced. Write the components as D1, . . . , Dr with

multiplicities m1, . . . ,mr.

Suppose given DH a smooth divisor that is transversal to DV , not going through a node

of DV . Thus, D = DH +DV is a normal crossings divisor.

At points where DH intersects a component of DV that has multiplicity > 1, the map

DH → S will be ramified, with order of ramification equal to the multiplicity of DV at that

point.

Suppose given a logarithmic parabolic Higgs bundle (E·, φ) on E with respect to the

reduced divisor Dr := Dred. We assume the usual hypothesis on φ (parabolic with nilpotent

graded parts of the residue).

Let E0 be the bundle obtained by assigning parabolic levels 0 along all components. The

Higgs field is

φ : E0 → E0 ⊗ Ω1
X(logDr).

The residue of φ along DH induces a weight filtration on E|DH
. We denote by WiE the

subsheaf of E of sections that restrict to sections of E|DH
that are in Wi(E|DH

).

The weight filtration extends over the crossing points as a strict filtration, in the same

way as was discussed in the original case. Locally at a point where the horizontal and vertical

divisors meet we can take a root of the function t and reduce this question to the original

case of reduced vertical divisor.

Define

Ω1
X/S(logD) := Ω1

X(logD)/f ∗Ω1
Y (log o).

This is a line bundle over X.

Caution: This is not the same as the relative dualizing sheaf ωX/S(DH) if any multiplicities

of DV are > 1. The relation between these two is given by

ωX/S(DH) = Ω1
X/S(logD)⊗OX(D −Dr).

The projection of φ to a Higgs field with coefficients in the vertical cotangent bundle

provides a map

φ : WiE0 → Wi−2E0 ⊗ Ω1
X/S(logD).

Theorem 12.3. Define the relative Dolbeault complex, in parabolic level 0, to be

Dol(E0, φ) =
[
W0E0

φ−→ W−2E0 ⊗ Ω1
X/S(logD)

]
.
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This is quasi-isomorphic to the modified relative Dolbeault complex

Dol′(E0, φ) =
[
W1E0

φ−→ W−1E0 ⊗ Ω1
X/S(logD)

]
.

Define

F i
0 := Rif∗Dol0 ∼= Rif∗Dol

′
0.

Then F i
0 is the parabolic level 0 piece of the parabolic Higgs bundle on S corresponding to the

i-th higher direct image local system of the local system corresponding to (E·, φ).

In order to get the other parabolic level pieces of F· we proceed as follows. Consider the

parabolic line bundle OS(a · o) that has a jump at parabolic level −a.

We get a pullback parabolic bundle OX(a ·DV ) := f ∗OS(a · o). We can tensor this with

E· to get the parabolic Higgs bundle

(E(a ·DV ), φ).

One should be careful that the component sheaves along components of DV of higher mul-

tiplicity need to be calculated using the correct notions of pullback and tensor product of

parabolic bundles.

Then we can also form the complexes

Dol(E(a ·DV )0, φ) and Dol′(E(a ·DV )0, φ)

in the same way as before:

Dol(E(a ·DV )0, φ) =
[
W0E(a ·DV )0

φ−→ W−2E(a ·DV )0 ⊗ Ω1
X/S(logD)

]
and

Dol′(E(a ·DV )0, φ) =
[
W1E(a ·DV )0

φ−→ W−1E(a ·DV )0 ⊗ Ω1
X/S(logD)

]
and again these are quasi-isomorphic.

Then

F i
a = Rif∗Dol(E(a ·DV )0, φ) ∼= Rif∗Dol

′(E(a ·DV )0, φ)

is the level a piece of the parabolic Higgs bundle on S corresponding to the i-th higher direct

image local system of the local system corresponding to (E·, φ).
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12.3 Proof

For any point p ∈ Di ∩Dj let k(p) be the LCM of the multiplicities mi and mj.

Consider a cover S̃ → S given by t = sn. We assume that for any crossings point p we

have k(p) divides n.

Let X̃ be the normalization of X ×S S̃.

Proposition 12.4. Over any crossing point p, the space X̃ has a singularity of type Am−1

where m = n/k(p). Let X̂ → X̃ be obtained by applying the minimal resolution to each of

these points. Then

f̂ : X̂ → S̃

is a map from a smooth surface to S̃ such that f̂−1(0) is a reduced normal crossings divisor.

This will be seen in subsection 12.3.4 below.

Let G be the cyclic group of symmetries of S̃/S. Let η : X̂ → X be the map. Suppose

given a parabolic Higgs bundle (E,φ) on X with respect to a diviror D incuding DV = f−1(0)

and a horizontal part DH not in our picture.

We have defined above the Dolbeault complex Dol(X/S,E)0 for parabolic level 0 in the

case of multiple components.

On the other hand, let η∗E be the pullback parabolic bundle on X̂. We can also form

the Dolbeault complex upstairs for parabolic level 0 Dol(X̂/S̃, η∗E)0. This is for a case of a

reduced divisor.

Theorem 12.5. With these notations, we have

(Rη∗(Dol(X̂/S̃, η
∗E)0))

G = Dol(X/S,E)0.

This theorem implies Theorem 12.3, using Lemma 12.6 of the next subsection.

12.3.1 A lemma on parabolic structures on S

Suppose given a parabolic bundle F on S, and consider a base change ξ : S̃ → S given

by t = sn. Let G be the cyclic group acting on S̃/S.

Lemma 12.6. We have

ξ∗((ξ
∗F )0)

G ∼= F0.
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Proof. We may assume that F = OS(a · 0) is a parabolic line bundle.

Then

ξ∗F = OS̃(na · 0̃).

Thus

(ξ∗F )0 = OS̃(⌊na⌋ · 0̃).

Let’s write things in terms of modules. We have that

(ξ∗F )0 ↔ s−jk[s], j = ⌊na⌋.

We then think of this as a k[t] module.

The G fixed part is the sum of all the monomials ti = sni that are contained in here.

Being contained in here is equivalent to ni ≥ −⌊na⌋, so in terms of monomials in t we have

the sum of the ti whenever

i ≥ −⌊na⌋/n.

On the other hand, F0 = OS(⌊a⌋ · 0) and this is the sum of monomials ti for i ≥ −⌊a⌋.
Thus, the statement of our lemma is equivalent to saying, for integers i, that

i ≥ −⌊na⌋/n⇔ i ≥ −⌊a⌋.

Changing the sign of i this is equivalent to the statement for all i

i ≤ ⌊na⌋/n⇔ i ≤ ⌊a⌋,

which in turn is equivalent to

⌊⌊na⌋/n⌋ = ⌊a⌋.

Write a = ⌊a⌋+(b/n)+c where 0 ≤ b < n is an integer and 0 ≤ c < 1/n is a real number.

Then

⌊na⌋ = n⌊a⌋+ b

and

⌊⌊na⌋/n⌋ = ⌊n⌊a⌋/n+ b/n⌋ = ⌊a⌋+ ⌊b/n⌋ = ⌊a⌋.
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12.3.2 The local case when n = k(p)

Consider the local picture at a crossings point p for a covering with n = k(p). Let D1 and

D2 denote the divisor components. The coordinates on X are x, y in our local neighborhood,

with D1 defined by x = 0 and D2 defined by y = 0. Let mi be the multiplicity of Di in

f−1(0), so we can assume that f is given by t = xm1ym2 .

Write n = m1a = m2b with a and b relatively prime. Let X̃ → X be the covering of

order ab given in coordinates by

x = ua, y = vb.

The map X̃ → S is given in coordinates by

t = unvn

so it factors through the map X̃ → S̃ given by s = uv.

If d is the GCD of m1 and m2, the normalization of the fiber product

X ×S S̃

consists of the disjoint union of d copies of the above covering X̃.

We can take the relative Dolbeault complex on the normalization of the fiber product,

then take the direct image by an etale map down to X̃, then take the Z/dZ invariants; this

is the same as the relative Dolbeault complex of X̃/S̃.

So, to show the desired property in this case we can consider the direct image from X̃ to

X and take the Z/abZ-invariants.

The pullback of the logarithmic forms on X/S is the same as the logarithmic forms on

X̃/S̃.

Lemma 12.6 applied in each coordinate yields the statement that the parabolic level 0 of

the pullback parabolic bundle, goes under push-forward and taking invariants to the level 0

piece on X. This yields the required statement for X̃ → X.

12.3.3 The local case when the divisor is already reduced

Suppose given f : X → S that locally looks like (x, y) 7→ t = xy.

Consider a covering S̃ → S given by t = sn. Then

X ×S S̃

has a single An−1 surface singularity over the node of f−1(0). Indeed the equation is xy = sn.
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Resolve this by the minimal resolution to get

X̂ → X ×S S̃ → X

↓ ↓ ↓
S̃ = S̃ → S

Claim 1): the fiber of f̂ : X̂ → S̃ over s = 0 is reduced and of the form

X̂0 ∪ E1 ∪ · · · ∪ En−1

where X̂0 is the strict transform of f−1(0) and E1, . . . , En−1 form an An−1 configuration of

(−2) curves. This is a classical statement [Val34], see for example [Bri02].

?? found that reference available on the web without buying a book ?

Claim 2): Let G be the cyclic group of symmetries of S̃/S. Let η : X̂ → X be the map.

Suppose given a parabolic Higgs bundle (E,φ) on X with respect to a diviror D incuding

DV = f−1(0) and a horizontal part DH not in our picture. Form the Dolbeault complex

Dol(X/S,E)0 for parabolic level 0.

On the other hand, let η∗E be the pullback parabolic bundle on X̂. We can also form

the Dolbeault complex upstairs for parabolic level 0 Dol(X̂/S̃, η∗E)0.

We claim that the natural map

Dol(X/S,E)0 → (Rη∗(Dol(X̂/S̃, η
∗E)0))

G

is a quasi-isomorphism.

We prove this in the following way. We show that the map induces an isomorphism on

the G-invariant Rη∗ of each piece of the Dolbeault complex. The statement is local at the

normal crossings point, and in particular it does not concern the horizontal divisor. Thus,

we may decompose E into a direct sum of parabolic line bundles.

A parabolic line bundle is determined by the parabolic levels along the two divisor com-

ponents D1 and D2. Any parabolic levels can occur, as may be seen by considering a toy

example where the fundamental group of the total space is Z× Z.

We can apply the general theory for reduced normal crossings divisors, to both X → S

and to X̂ → S̃. We know in both cases that the higher direct image of the Dolbeault complex

calculates the parabolic bundle, respectively F· and F̂·, corresponding to the higher direct

image local systems. We have seen in Lemma 12.6 that taking the G-invariants of the direct

image of F̂0 from S̃ down to S yields F0. Therefore, the morphism

Dol(X/S,E)0 → (Rη∗(Dol(X̂/S̃, η
∗E)0))

G
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induces a quasi-isomorphism between the higher direct images on S.

But with our current reduction, the Higgs field is zero, so in both cases the higher direct

image of the Dolbeault complex is the direct sum of the higher direct images of the two

pieces. If we denote the component pieces by Dol(X/S,E)i0 for i = 0, 1 we get that

Rf∗Dol(X/S,E)i0 → Rf∗(Rη∗(Dol(X̂/S̃, η
∗E)i0))

G

is an isomorphism for i = 0, 1.

Consider Ci the cone

Dol(X/S,E)i0 → (Rη∗(Dol(X̂/S̃, η
∗E)i0))

G → Ci.

It is a complex concentrated at the crossings point p ∈ X. From the above, we conclude

that

Rf∗(C
i) = 0.

This implies that Ci is quasi-isomorphic to 0. Indeed, the cohomology sheaves of Ci are

coherent sheaves concentrated at p so their higher direct images in strictly positive degrees

vanish. The spectral sequence going from the higher direct images of the cohomology sheaves

to the cohomology of the higher direct image, therefore starts out with only a single line, so

it degenerates right away. If any of the cohomology sheaves were nonzero this would give a

nonzero Rf∗(C
i) contradicting the previous statement; thus, Ci is acyclic.

The cone being acyclic implies that the map

Dol(X/S,E)i0 → (Rη∗(Dol(X̂/S̃, η
∗E)i0))

G

is a quasi-isomorphism.

This holds for the case of a parabolic line bundle with zero Higgs field, and hence for the

case of any parabolic bundle with zero Higgs field.

It is a local statement at the point p, and the spectral sequence for Rη∗ of the Dolbeault

complex in presence of a Higgs field, implies that the map

Dol(X/S,E)0 → (Rη∗(Dol(X̂/S̃, η
∗E)0))

G

is a quasi-isomorphism. This proves Claim 2.
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12.3.4 Combining these cases

Suppose now that we are given a projective map f : X → S such that the vertical

divisor Dv = f−1(0) is simple normal crossings, with smooth components having various

multiplicities mi. Let n be a number divisible by all the mi. Let S̃ → S be a cyclic covering

of degree n fully ramified over 0.

Let X̃ be the normalization of X ×S S̃.

For p ∈ Di ∩Dj, let k(p) denote the LCM of mi and mj. Let n/k(p).

Let Gk := Z/k(p)Z and G′ := Z/(n/k(p))Z. Let X ′ be the intermediate covering of X

of degree k(p), over S ′ → S of degree k(p). The map X ′ → X is a finite covering with X ′

smooth and the fiber of f ′ : X ′ → S ′ has reduced components with normal crossings, as we

saw in subsection 12.3.2. Note that p splits into several points p′, the number is the GCD of

the multiplicities at p.

Then, the map X̃ → X ′ is the covering considered in subsection 12.3.3 of degree n/k(p).

Over each point p′ we obtain a point p̃ ∈ X̃ with an An/k(p)−1 singularity. This shows

Proposition 12.4.

Let X̂ be obtained by taking, at each point p̃, the minimal resolution of the An/k(p)−1

singularity.

Then the map f̂ : X̂ → S̃ has a reduced normal crossings fiber over 0̃.

We show the desired property locally at each point p. The covering S ′ → S and X ′ → X

are covered by the case of subsection 12.3.2. Thus, the map

Dol(X ′/S ′)0 → (Rη′∗Dol(X̂/S̃)0)
G′

is a quasi-isomorphism,

The map X ′ → S ′ has normal crossings fibers, so the covering S̃ → S ′ and upstairs

X̂ → X̃ → X ′ are covered by the already-reduced case of subsection 12.3.3. Therefore

Dol(X/S)0 → (Rηk∗Dol(X
′/S ′)0)

Gk

is a quasi-isomorphism. Putting these together we conclude the desired statement that

Dol(X/S)0 → (Rη∗Dol(X̂/S̃)0)
G

is a quasi-isomorphism.
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12.3.5 Application to the higher direct image

Let F be the parabolic Higgs bundle on S corresponding to the higher direct image

local system from X. Then ξ∗F is the parabolic Higgs bundle on S̃ corresponding to the

higher direct image local system coming from the local system on X̂ that corresponds to the

pullback Higgs bundle η∗E.

On the other hand, since the fiber f̂−1(0̂) is reduced normal crossings and the horizontal

divisor meets it transversally, we know that this is the same as the parabolic bundle on

S̃ corresponding to the higher direct image of the Dolbeault complex Dol(X̂/S̃, η∗E)·. In

particular this gives, for the level 0 pieces, that

(ξ∗F )0 = Rf̂∗Dol(X̂/S̃, η
∗E)0.

Lemma 12.6 says that

F0 = ξ∗((ξ
∗F )0)

G.

=
[
ξ∗

(
Rf̂∗Dol(X̂/S̃, η

∗E)0

)]G
.

We can write

ξ∗

(
Rf̂∗Dol(X̂/S̃, η

∗E)0

)
= Rf∗

(
Rη∗Dol(X̂/S̃, η

∗E)0

)
.

Thus

F0 =
[
Rf∗

(
Rη∗Dol(X̂/S̃, η

∗E)0

)]G
.

We can put the G-invariants inside before taking Rf∗, so this becomes

F0 = Rf∗

[(
Rη∗Dol(X̂/S̃, η

∗E)0

)G]
.

Now the theorem says (
Rη∗Dol(X̂/S̃, η

∗E)0

)G
= Dol(X/S,E)0.

Thus we get

F0 = Rf∗Dol(X/S,E)0.

This is the statement we want.

The similar statement holds with Dol replaced by Dol′.
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12.4 Applications

Consider the following situation: f : X → Y is a map from a surface to a curve, with a

divisor D ⊂ X such that in local coordinates (x, y) with y the coordinate of Y , D is given

by y = x2.

Let E· be a parabolic logarithmic Higgs bundle on X with singularities along D. Al-

though, in the end we need to apply the theory to Higgs bundles of higher rank (8 to be

exact), the local picture involves a piece of rank 2 so we’ll suppose here that E· has rank 2.

We would like to calculate a complex on X that calculates the higher direct image of the

L2 Dolbeault complex on a resolution. For this, let β : X̃ → X be obtained by blowing up

twice, first at the origin and then at the resulting triple intersection point of the exceptional

line with the strict transforms of the fiber and D.

Notationally, call D̃ the strict transform of D in X̃. Let A be the strict transform of the

first exceptional divisor, and B the second exceptional divisor. Thus, D̃ meets B, and A

meets B, and the map f̃ : X̃ → Y has fiber over the origin equal to A+ 2B + D̃.

After the second blowing up, the fiber is a normal crossings divisor, but with nontrivial

mulitplicity 2 on the middle component. The higher direct image statement of Theorem

12.3, for maps whose fibers have nontrivial muliplicity, yields the Dolbeault complex on X̃

that calculates the higher direct image to Y . Then take its higher direct image down to X,

this is the Dolbeault complex on X to be identified.

We’ll consider two cases, both for the local situation when E· has rank 2. One case is for

parabolic levels 0,−1/2, the other is for trivial parabolic structure but a nontrivial nilpotent

residue of the Higgs field along D.

One main idea for doing the calculations is to write the rank 2 bundles as a direct sum

of two rank 1 pieces, even though such a decomposition is not compatible with the Higgs

field. This allows for computation of the pieces in holomorphic Dolbeault complexes, which

are then put back together before inputting the Higgs field.

12.4.1 Parabolic levels 0,−1/2

In this case the level zero piece is a rank 2 bundle E on X, provided with U ⊂ ED of

rank 1. Let Q := ED/U be the quotient line bundle over D.

The parabolic structure is given by E0 = E and Et = ker(E → Q) for −1/2 ≤ t < 0,

then Et = E(−D) for −1 ≤ t < −1/2.

Assume given a logarithmic Higgs field φ that is strictly parabolic for the filtration, so

264



φ : E → E−1/2 ⊗ Ω1
X(logD).

In this case, the direct image F· on Y is going to have trivial parabolic structure so we

just want to calculate F0.

The L2 Dolbeault complex is defined in the usual way of [DPS16] outside of the origin in

X. It has a unique extension to a two-term complex of locally free sheaves, the locally free

extension of the Dolbeault complex expressed as

Dol(E·, X/S)lf :=
[
E0 → E−1/2 ⊗ ωX/S(D)

]
.

Use the notations for the blow-up X̃
β→ X established above, with exceptional divisors

A and B.

Let Ẽ be the pullback of E = E0 to X̃. This isn’t quite the same as the pullback

parabolic bundle. We note that Ẽ is constant on A and B, equal to the vector space EP

with its quotient QP . The parabolic structure along A is just the pullback one, with

EA,0 = Ẽ

and

EA,−1/2 = ker(EA,0 → QP,A)

where QP,A means the vector space QP considered as a trivial bundle on A.

Along B we get extra sections in EB,0, namely at a general point of B,

EB,0 = ker
(
Ẽ(B)→ QP,B(B)

)
.

The parabolic structure is trivial along B, in other words there are no non-integral levels.

This is because the levels 1/2 on both divisors A and D̃ combine together to give a piece

without parabolic structure (it may be seen in greater detail by looking at E· as a direct

sum of two parabolic line bundles).

Let E ′ denote the level 0 piece of the parabolic bundle on X̃. It then has a weight

filtration, with W0E
′ = E ′ and W−2E

′ = ker(E ′ → Q′
D̃

) where Q′ means the quotient

adjusted to be a quotient of E ′.

Applying the general theory we have

D̃ol =
[
E ′ → W−2E

′ ⊗ ΩX̃/S(D̃)
]
.

In our situation where B has multiplicity two, we have

ΩX̃/S = η∗ΩX/S(A+B)
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since it should have degree −1 on A and degree 0 on B, and should agree with the relative

dualizing sheaf except7 along B. Note that A2 = −2 while B2 = −1.

Using the birational transformation β : X̃ → X, we would like to calculate the complex

Rβ∗D̃ol = Rβ∗

[
E ′ → W−2E

′ ⊗ ΩX̃/S(D̃)
]

on X. It will be the same as the previous complex away from the origin, and it will turn out

also that the components are locally free at the origin.

Let βA : XA → X be the first blow up, and denote by

βB : X̃ → XA

the second blowing up. Start by looking at RβB∗ D̃ol as a complex on XA.

The first claim is that along points of A that don’t meet the origin (which may be

identified in XA and X̃), this complex is the same as the pullback of the locally free extension

Dol(E·, X/S)lf .

In degree 0 we have E ′ on the one hand, and the pullback of E on the other hand. These

are the same along points of A.

7For comparison, the calculation of the relative dualizing sheaf is as follows: We have

ωX̃/S = η∗ωX/S(A+ 2B).

To see this, note that we divided by ωS on both sides so we can just do the calculation for the ωX etc.

Suppose we blow up a point in a surface with coordinates x, y, yielding new coordinates u, v with x = uv

and y = v for example. Then

dx ∧ dy = (udv + vdu) ∧ dv = vdu ∧ dv.

This gives

ωXA/S = ηA,∗ωX/S(AXA)

and

ωX̃/S = ηB,∗ωXA/S(B).

However, note that

ηB,∗OXA(AXA) = OX̃(A+B).

Thus we get

ωX̃/S = η∗ωX/S(A+ 2B).

Thus,

ωX̃/S = ΩX̃/S(B).
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In degree 1, noting that our points of A under consideration don’t touch D̃, we have on

the one hand E ′ ⊗ ΩXA/S and on the other hand, the pullback of E−1/2 ⊗ ΩX/S(D). These

are again the same, so that shows the first claim.

The remaining question is what happens over B. In order to calculate the terms of the

complex, let’s suppose that E has rank 1. The rank 2 case with trivial Higgs field is a direct

sum of two parabolic line bundles. This will serve to calculate the two terms of the complex.

Then the Higgs field gives a map between these two and we get the desired higher direct

image. A spectral sequence argument shows the desired quasiisomorphism in the presence

of the Higgs field.

If the line bundle has trivial parabolic structure: then E ′ is the same as Ẽ. The degree

0 piece is Ẽ and the degree 1 piece is

Ẽ(−D̃)⊗ ΩX̃/S(D̃) = Ẽ ⊗ ΩX̃/S

= η∗(E ⊗ ΩX/S)(A+B).

The higher direct image of Ẽ down to XA is EA (the pullback of E to there), and then

the higher direct image down to X is E resp. E ⊗ΩX/S. For these, note that on P1, the H1

of a trivial bundle vanishes; and furthermore, along the blowing-down of an exceptional P1,

the higher direct image of a bundle that is trivial along the exceptional divisor is the same

as the usual pushforward.

Now suppose we have a level −1/2 parabolic structure. This means Et = E for −1/2 ≤
t ≤ 0 and Et = E(−D) for −1 ≤ t < −1/2. Here W0E = E and W−2E = E.

From the parabolic structure we get

E ′ = Ẽ(B).

Thus, the degree 0 piece is Ẽ(B) and the degree 1 piece is Ẽ(B)⊗ ΩX̃/S (here as above the

−D̃ and D̃ cancel).

For the degree 0 piece,

Rη∗Ẽ(B) = E.

This is because the bundle Ẽ(B) restricted to the exceptional B ∼= P1 is of the form OP1(−1)

that has vanishing H1 so the higher direct image is zero, and the direct image is the space

of sections of E by Hartogs’ theorem.

Also note that

η∗OX(D) = ηB,∗OXA(DXA + AXA) = OX̃(D̃ + A+ 2B).
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Thus, for the degree 1 piece we get

W−2E
′ ⊗ ΩX̃/S(D̃) = η∗(E ⊗ ΩX/S)(A+ 2B + D̃).

= η∗(E ⊗ ωX/S(D)).

We first take the RηB∗ from X̃ down to XA. This yields

ηA,∗(E ⊗ ωX/S)(D))

and then taking the direct image down to X gives E ⊗ ωX/S(D).

In conclusion, back to the case when E has rank two so it is a direct sum of line

bundles for the two cases discussed above, if we define the locally free extension Dol-

beault complex Dol(E·, X/S)lf as at the start of this subsection, then the higher direct

image of Dol(E·, X/S)lf from X to S calculates F0. For the line bundle L with parabolic

level 0, E0 = L is the bundle and E−1/2 = L(−D) so E−1/2 ⊗ ωX/S(D) = L ⊗ ωX/S.

For the line bundle L′ with parabolic level −1/2 we have E0 = L′ and E−1/2 = L′ so

E−1/2 ⊗ ωX/S(D) = L′ ⊗ ωX/S(D).

12.4.2 Alternative method

For comparison, we also do the calculations by going to a double cover α : Z → X

ramified over D, with involution σ : Z → Z. Let R ⊂ Z be the upper ramification divisor

mapping isomorphically to D.

The parabolic pullback of E to Z is a bundle that we denote EZ , given by

EZ = ker (α∗(E)(R)→ Q(R)) .

This has a Higgs field without poles. It projects to a relative Higgs field

φZ : EZ → EZ ⊗ ωZ/Y ,

where we recall that ωZ/Y = Ω1
Z(logC)/f ∗

ZΩ1
Y (log 0).

The upstairs Dolbeault complex is

DolZ =
[
EZ → EZ ⊗ ωZ/Y

]
.

This has an action of σ covering the action on Z. We can take the direct image down to X,

and consider the σ-invariant part

(η∗DolZ)+.
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This is a direct summand in the complex of locally free sheaves η∗DolZ so it is itself a complex

of locally free sheaves.

The first term in the complex is just

(η∗EZ)+ = E.

We also note that

ωZ/Y = η∗ωX/Y (R).

Thus, the second term in the complex is

(η∗((η
par,∗(E ⊗ ωX/Y ))(R)).

We have

(ηpar,∗(E)⊗ η∗ωX/Y ))(R) = η∗ωX/Y )⊗ ker (η∗(E)(2R)→ Q(2R))

and when we take the invariant part of the direct image back to X we get

ωX/Y ⊗ ker(E(D)→ Q(D)) = E−1/2 ⊗ ωX/Y (D).

This is the second sheaf in the Dolbeault complex, and it is indeed the reflexive exten-

sion of the sheaf we would get away from the ramification point of D by taking W−2E ⊗
Ω1
X/Y (logD).

So, we conclude in this calculation that the Dolbeault complex on X/Y is just the

reflexive i.e. locally free extension of the one we would get by the usual formula away from

the ramification point.

12.4.3 The nilpotent case

We now consider the case of a Higgs bundle with nontrivial nilpotent residue and no

parabolic structure. We still want to decompose into line bundles. For this, introduce the

notion of weight-filtered bundle, a bundle with weight filtrations (inspired by mixed Hodge

weight filtrations) on the parabolic graded pieces. In this case the parabolic level filtration

is trivial so the parabolic graded piece is just the restriction of the bundle to D. The weight

filtration determines the pieces of the Dolbeault complex, and we can look at a direct sum

decomposition into line bundles.

In our case the “mixed Hodge” weights will be 1 and −1, since the residue of the Higgs

field is a nonzero nilpotent 2×2 matrix so its monodromy weight filtration has those weights.
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For both rank 1 pieces the bundle E ′
0 is the same as Ẽ = η∗E since there was no parabolic

structure.

Let C ⊂ X denote the fiber over the origin of Y , and let C̃ be its strict transform in X̃.

Putting parabolic level −1/2 along the fiber over Y yields

E ′
−1/2 = Ẽ(−A−B − C̃)

Note that E−1 is Ẽ(−A− 2B − C̃), that is just minus the fiber.

Recall that

OX̃(−D̃) = η∗(OX(−D))(A+ 2B).

Also similarly

OX̃(−C̃) = η∗(OX(−C))(A+ 2B).

Consider a line bundle E with mixed weight 1. Then W0E = E(−D) and W−2E =

E(−D) (away from the origin).

In degree 0 our bundle is

W0E
′
0 = η∗(E(−D))(A+ 2B) = ηB,∗((ηA,∗E(−D))(AXA))(B)

since ηB,∗(OXA(AXA) = OX̃(A + B). So the direct image down to XA is locally free and

then the direct image down to X is locally free, and we get

Rη∗W0E
′
0 = E(−D).

For level −1/2 we have

W0E
′
−1/2 = η∗(E(−D))(A+2B−A−B−C̃) = η∗(E(−D))(B−C̃) = η∗(E(−D−C))(A+3B).

In this case, there is an R1η∗ term. Because of that we’ll do a modified version of the

calculation later.

Look now at the degree 1 piece. We have

W−2E
′
0 = η∗(E(−D))(A+ 2B).

Also recall

ΩX̃/Y (D̃) = η∗ΩX/Y (A+B + D̃) = η∗(ΩX/Y (D))(−B).

Putting these together, the degree 1 piece is

W−2E
′
0 ⊗ ΩX̃/Y (D̃) = η∗(E ⊗ ΩX/Y ))(A+B).
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When we push down to XA then to X the result is locally free, equal to

Rη∗W−2E
′
0 ⊗ ΩX̃/Y (D̃) = E ⊗ ΩX/Y ).

For the parabolic level −1/2 piece we have

W−2E
′
−1/2 = η∗(E(−D))(A+ 2B)(−A−B − C̃) = η∗(E(−D))(B − C̃),

so

W−2E
′
−1/2 ⊗ ΩX̃/Y (D̃)

= W−2E
′
−1/2 ⊗ η∗(ΩX/Y (D))(−A− 2B)(A+B) = η∗(E ⊗ ΩX/Y )(−C̃)

= η∗(E ⊗ ΩX/Y (−C))(A+ 2B).

Done differently we note that

W−2E
′
−1/2 ⊗ ΩX̃/Y (D̃) = Ẽ(−A−B − C̃ − D̃)⊗ ΩX̃/Y (D̃)

= Ẽ(−A−B − C̃)⊗ ΩX̃/Y = Ẽ(−A−B − C̃)⊗ η∗(ΩX/Y )(A+B)

= η∗(E ⊗ ΩX/Y (−C))(A+ 2B).

The higher direct image down to X is locally free as seen by doing in two stages, and

Rη∗W−2E
′
−1/2 ⊗ ΩX̃/Y (D̃) = E ⊗ ΩX/Y (−C).

Let’s look at the case of mixed weight −1. In this case W−2E
′ = E ′(−D̃) and W0E = E.

The degree zero piece in parabolic level zero yields just

η∗(E)

and the direct image down to X is just E.

Consider the parabolic level −1/2 piece. Upstairs on X̃ this is

η∗(E)(−A−B − C̃) = η∗(E(−C))(B).

This has direct image E(−C) down on X.

Look now at the degree 1 piece. We have as before

W−2E
′
0 = η∗(E(−D))(A+ 2B).
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Also recall

ΩX̃/Y (D̃) = η∗ΩX/Y (A+B + D̃) = η∗(ΩX/Y (D))(−B).

Putting these together, the degree 1 piece is

W−2E
′
0 ⊗ ΩX̃/Y (D̃) = η∗(E ⊗ ΩX/Y ))(A+B).

As before when we push down to XA then to X the result is locally free, equal to

Rη∗W−2E
′
0 ⊗ ΩX̃/Y (D̃) = E ⊗ ΩX/Y ).

For the parabolic level −1/2 piece we have

W−2E
′
−1/2 = η∗(E(−D))(A+ 2B)(−A−B − C̃) = η∗(E(−D))(B − C̃),

so

W−2E
′
−1/2 ⊗ ΩX̃/Y (D̃) = η∗(E ⊗ ΩX/Y )(−C̃)

= η∗(E ⊗ ΩX/Y (−C))(A+ 2B).

Done differently we note that

W−2E
′
−1/2 ⊗ ΩX̃/Y (D̃) = Ẽ(−A−B − C̃ − D̃)⊗ ΩX̃/Y (D̃)

= Ẽ(−A−B − C̃)⊗ ΩX̃/Y = Ẽ(−A−B − C̃)⊗ η∗(ΩX/Y )(A+B)

= η∗(E ⊗ ΩX/Y (−C))(A+ 2B).

The higher direct image down to X is locally free as seen by doing in two stages, and

Rη∗W−2E
′
−1/2 ⊗ ΩX̃/Y (D̃) = E ⊗ ΩX/Y (−C).

12.4.4 Modified version

Since we had an R1η∗ term, let’s do an alternative version of the calculation. We note

that, in the case where the mixed weighted bundles come from a φ, we could replace W0E

and W−2E by W1E and W−1E. in degrees 0 and 1 respectively. This observation originally

due to Zucker [Zuc79] for L2 Dolbeault complexes of VHS was explained for the present

setting in [DPS16]. So let’s look at those.

Suppose E has mixed weight 1. Then (away from the origin) W1E = E and W−1E =

E(−D). We did this calculation above (for the mixed weight −1 case) and for the degree 0

part we got:

W1E
′
0 = η∗(E) Rη∗W1E

′
0 = E
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and

W1E
′
−1/2 = η∗(E)(−A−B − C̃) = η∗(E(−C))(B)

giving Rη∗W1E
′
−1/2 = E(−C).

For the degree 1 part we got:

W−1E
′
0 ⊗ ΩX̃/Y (D̃) = η∗(E ⊗ ΩX/Y ))(A+B)

so

Rη∗W−1E
′
0 ⊗ ΩX̃/Y (D̃) = E ⊗ ΩX/Y .

At parabolic level −1/2 we have

W−1E
′
−1/2 ⊗ ΩX̃/Y (D̃) = η∗(E ⊗ ΩX/Y (−C))(A+ 2B),

so

Rη∗W−1E
′
−1/2 ⊗ ΩX̃/Y (D̃) = E ⊗ ΩX/Y (−C).

Turn now to the case of mixed weight −1. In this case,

W1E = E, W−1E = E.

For the degree 0 piece the calculation is the same as above:

Rη∗W1E
′
0 = E Rη∗W1E

′
−1/2 = E(−C).

For degree 1 we have

W−1E
′
0 ⊗ ΩX̃/Y (D̃) = η∗(E)⊗ ΩX̃/Y (D̃)

= η∗(E ⊗ ΩX/Y (D))(A+B − A− 2B) = η∗(E ⊗ ΩX/Y (D))(−B).

The higher direct image down to XA is

ηA,∗(E ⊗ ΩX/Y (D))(−pA)

where pA is the point that is blown up the second time. This fits in an exact sequence

0→ ηA,∗(E ⊗ ΩX/Y (D))(−pA)→ ηA,∗(E ⊗ ΩX/Y (D))→ CpA → 0.

Taking the direct image down to X we get a long exact sequence that shows

R1ηA∗ η
A,∗(E ⊗ ΩX/Y (D))(−pA)
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as the cokernel of the map

R0ηA∗ η
A,∗(E ⊗ ΩX/Y (D))→ Cp

induced by the previous map. (with p being the origin). We have

R0ηA∗ η
A,∗(E ⊗ ΩX/Y (D)) = E ⊗ ΩX/Y (D)

and a local section not vanishing at the origin corresponds to a section of ηA,∗(E⊗ΩX/Y (D))

that does not vanish at pA. Therefore, this map is surjective and the cokernel is 0. We get

R1ηA∗ η
A,∗(E ⊗ ΩX/Y (D))(−pA) = 0

and

R0ηA∗ η
A,∗(E ⊗ ΩX/Y (D))(−pA) = E ⊗ ΩX/Y (D)(−p).

We conclude that in the mixed weight −1 case, for parabolic level 0 and in degree 1,

Rη∗W−1E
′
0 ⊗ ΩX̃/Y (D̃) = E ⊗ ΩX/Y (D)(−p).

Look at the case of parabolic level −1/2. Now,

W−1E
′
−1/2 ⊗ ΩX̃/Y (D̃) = η∗(E)⊗ ΩX̃/Y (D̃)(−A−B − C̃)

= η∗(E ⊗ ΩX/Y (D))(A+B − A− 2B − A−B − C̃) = η∗(E ⊗ ΩX/Y (D − C)).

Then

Rη∗W−1E
′
−1/2 ⊗ ΩX̃/Y (D̃) = (E ⊗ ΩX/Y (D − C).

12.4.5 Conclusion for the Dolbeault complexes

Let’s now put this back into the situation of our rank 2 bundle E with no parabolic

structure but a Higgs field whose residue is nilpotent. We’ll denote by WiE the weight

filtered bundles given their reflexive extensions as bundles across the origin.

We get, for the modified Dolbeault complex Dol′ using W1 and W−1:

Dol′0 =
[
W1E −→ W−1E ⊗ ΩX/Y (D) −→ W−1(ED ⊗ . . .)p

]
and

Dol′−1/2 =
[
W1E(−C) −→ W−1E ⊗ ΩX/Y (D − C)

]
.
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We could also write the parabolic level 0 piece as follows. Introduce notation for the

kernel

0→ W−p
−1E → W−1E → W−1(ED)p → 0

then

Dol′0 =
[
W1E −→ W−p

−1E ⊗ ΩX/Y (D)
]
.

We note that, since the divisor D becomes vertical at the point p, the nonzero residue map

of the Higgs field at that point becomes zero when projected into the relative differentials,

so φ does induce a map

W1E
φ−→ W−p

−1E ⊗ ΩX/Y (D)

to be used for the above complex.

12.5 Smooth spectral variety

We now specialize the previous calculations further, to the local situation where our rank

2 Higgs bundle8 is the direct image of a line bundle L on its spectral variety p : Σ → X

where p has degree 2 with simple ramification over the divisor D. Let R ⊂ Σ be the reduced

preimage of D, so it is a smooth divisor in Σ mapping isomorphically to D.

We have

p∗Ω1
X(logD) = Ω1

Σ(logR).

thus we have a map

Ω1
Σ → p∗Ω1

X(logD).

We suppose that the Higgs field on E = p∗L is given by multiplication by a spectral 1-form

viewed as a section α ∈ H0(Σ,Ω1
Σ).

Choose local coordinates x, y on X, such that the map X → S is given by (x, y) 7→ y.

Choose local coordinates (x, z) on Σ such that the map Σ→ X is given by

(x, z) 7→ (x, y) = (x, x2 − z2).

The divisor R is given by z = 0 and D is given by y = x2.

Write

α = a(x, z)dx+ b(x, z)dz.

8Recall that we are working in a local neighborhood—in the applications to Hecke transformations the

spectral variety will have higher degree, decomposing into a disjoint union of local pieces that are either etale

or of the present rank 2 form.
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The projection αΣ/S of α to a section of ωΣ/S is given as follows. The relative differentials

are the reflexive closure of

OΣ⟨dx, dz⟩/⟨d(x+ z)(x− z)⟩

= OΣ⟨du/u, dv/v⟩/⟨du/u+ dv/v⟩

where u = x+ z and v = x− z. Thus we may think of du/u as a generator of ωΣ/S subject

to the relation dv/v = −du/u.

We have

α =
a+ b

2
du+

a− b
2

dv

and

αΣ/S =

[
u
a+ b

2
+ v

a− b
2

]
du

u
.

We assume that a and b take generic nonzero values at the origin.

Then the curve G defined by (αΣ/S = 0) is smooth at the origin.

Also, under this genericity hypothesis the residue of the resulting Higgs field is nontrivially

nilpotent along D.

There are two cases. In the first case, we have a nontrivial parabolic level −1/2, in which

case the parabolic structure is given by the quotient

ED = p∗L|2R → p∗LR

over D. We have E−1/2 = p∗L(−R).

In the second case, we have no parabolic structure but the weight filtration is given by

W−1 = W0 being the kernel of the above map, and W1/W0 is the quotient LR. We have

W−1E = p∗L(−R).

12.5.1 The parabolic case

We now plug in the previous calculations. Consider first the case with parabolic level

−1/2. Then we saw in Subsections 12.4.1 and 12.4.2 that

Dol(E,X/S)0 =
[
E0 → E−1/2 ⊗ ωX/S(D)

]
.

We have E0 = p∗L and E−1/2 = p∗L(−R), whereas

p∗ωX/S(D) ∼= ωΣ/S(R).
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We may therefore write

Dol(E,X/S)0 = p∗

[
L

αΣ/S−→ L⊗ ωΣ/S

]
.

In turn, this complex is quasiisomorphic to the second bundle restricted over the curve G of

zeros of the differential here:

Dol(E,X/S)0
q.i.∼ L⊗ ωΣ/S|G[−1].

Taking the direct image down to S we obtain G as spectral variety (it needs to be checked

that it is the spectral variety of the Higgs field over S) with spectral line bundle being the

restriction of L ⊗ ωΣ/S to G.

Caution: This is a local calculation near the ramification point of the horizontal divisor, and

on branches of the curve G that pass through the ramification point. The formula might be

different at other points where G passes through points of Σ on other branches lying over D.

12.5.2 The nilpotent case

Next consider the case where there is no parabolic structure but the residue of the connec-

tion is a nontrivial nilpotent transformation. The weight filtration is given by the quotient.

In this case, there are two pieces of the Dolbeault complex (modified as in Subsections 12.4.4

and 12.4.5) to consider.

First, we had

Dol(X/S,E)0 =
[
W1E → W−1E ⊗ Ω1

X/S(D)(−p)
]

where the (−p) indicates that we take the kernel of the map to the fiber of the quotient sheaf

over p.

We have W1E = p∗L and W−1E = p∗L(−R). Thus

W−1E ⊗ Ω1
X/S(D)(−p) = p∗(L ⊗ ωΣ/S(−q))

where here

0→ L⊗ ωΣ/S(−q)→ L⊗ ωΣ/S → Cq → 0

is the ideal sheaf kernel of the evaluation at the point q ∈ Σ lying over the origin.

We get

Dol(X/S,E)0 = p∗

[
L

αΣ/S−→ L⊗ ωΣ/S(−q)
]
.
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This is quasi-isomorphic to the second piece restricted over the curve G:

Dol(X/S,E)0
q.i.∼ (L ⊗ ωΣ/S)|G(−q)[−1]

We obtain the following statement:

So, with the above notations in the situation where the original Higgs bundle had trivial

parabolic structure and nilpotent residue, the line bundle on G yielding the level 0 part of

the parabolic bundle is

F0 = g∗(L ⊗ ωΣ/S|G(−q))

where g : G→ S is the covering.

We recall that the level −1/2 Dolbeault complex was the same, but without the −p,
then twisted by −C where C = f−1(0) ⊂ X was the fiber. When we restrict to G the fiber

becomes g−1(0) = 2q so putting these together gives

Dol(X/S,E)−1/2
q.i.∼ (L ⊗ ωΣ/S|G(−2q)[−1])

and hence

F−1/2 = g∗(L ⊗ ωΣ/S|G(−2q)).

Caution: As before, this is only a local calculation near the ramification point of the hor-

izontal divisor, and on branches of the curve G that pass through the ramification point.

Again, the formula might be different at other points where G passes through points of Σ

on other branches lying over D.

12.5.3 Rephrasing

Let’s rephrase the above calculations in terms of the pullback to G ⊂ Σ of the relative

differentials ωX/S. This is useful because, at other points, this is the relevant term.

We have, as was used above,

ωΣ/S(R) = p∗(ωX/S(D)) = (p∗ωX/S)(2R).

This gives

ωΣ/S = (p∗ωX/S)(R).

On the curve G, the divisor R is the same as q. We conclude the following statement.
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Proposition 12.7. Suppose given a Higgs bundle with smooth spectral variety Σ having

simple ramification over a horizontal divisor DH such that DH s smooth but has a simple

ramification over the base S. We have considered two ways of making a parabolic Higgs

bundle with a spectral line bundle L. These result in a higher direct image Higgs bundle F·

whose local expression near this point is as follows.

In the case of parabolic levels 0,−1/2 along DH for the Higgs bundle on X, we get

F0 = g∗(L ⊗ j∗ωX/S(q))

where j : G→ X denotes the composed map. Recall here that L being the spectral line bundle

means that its direct image to X is the level 0 piece of the parabolic structure.

In the case where the parabolic levels along DH are trivial but the residue of the Higgs

field along DH is nilpotent, we get

F0 = g∗(L ⊗ j∗ωX/S)

and

F−1/2 = g∗(L ⊗ j∗ωX/S(−q)).

Remark 12.8. The result of the proposition is local near a singular point. The statement

refers to the way of filling in the structure of the spectral line bundle on the spectral covering

G over S, noting that over a general point of S we have a canonical identification between

the spectral line bundle on G, and the restriction of L to G tensored with ωX/S.

12.6 Globalization

Let’s now look at a global situation. The notations and hypotheses of Subsection 3.11

are heretofore in effect. Thus, f : X → S is a map from a smooth projective surface to a

smooth projective curve, and D ⊂ X is a simple normal crossings divisor, T ⊂ S is a divisor

consisting of a finite set of points t1, . . . , tk, and let K ⊂ X be a closed subset containing

the “other” points of type 3.11.1(f).

Write D = DH + D′
V such that the irreducible components of DH dominate S and the

irreducible components of D′
V map into T . We let DV denote the full inverse image of T .

Assume that f(K) is a finite subset of S.

Suppose that for any point x ∈ X, one of the following holds:

1. x ∈ X−D and f is either smooth at x (type 3.11.1(a))or has a simple normal crossing

(type 3.11.1(b));
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2. x ∈ DH , f is smooth at x and DH is étale over S at x (type 3.11.1(c));

3. x ∈ DH , DH is smooth at x, f is smooth at x, f(x) = ti ∈ T , and f |DH
has a simple

ramification point at x (type 3.11.1(d));

4. or x ∈ K (type 3.11.1(f)).

For the moment, this supposes that there aren’t any points of type 3.11.1(e); those will

be treated in the next subsection.

Notice that D′
V ⊂ K.

Suppose (E,φ) is a parabolic logarithmic Higgs bundle over (X,DH). We assume that

over DH , either the parabolic structure is trivial and φ has nilpotent residue, or it has levels

0,−1/2 and φ is strictly parabolic.

Let p : Σ → X be the spectral covering of (E,φ) with spectral line bundle L over Σ so

that E0 = p∗(L), and spectral 1-form α inducing the Higgs field φ.

We assume that away from the subset K, Σ is smooth and the covering p has at most

simple ramification; let R ⊂ Σ be the reduced inverse image of DH , assume R is smooth and

p has simple ramification along R away from points of K.

Let αΣ/S be the relative spectral form viewed as a section of p∗ωX/S(R). Let G be the

curve of zeros of this form, defined away from K.

We have the following hypothesis: that the closure in X of the image of G does not meet

K. In particular G is proper. Let g : G→ S be the map, factoring as g = f ◦ j through the

morphism j : G→ X. Let L|G be the restriction of L to G.

Let Q := R ∩G be the trace of the reduced divisor R onto the curve G.

We are also assuming that the restriction of the spectral 1-form α to the vertical direction

in Σ over a point of type 3.11.1(d) is nonzero.

Lemma 12.9. The hypothesis that α is nonzero in the vertical direction at implies that G

is transverse to R at points of type 3.11.1(d), so Q is reduced at such points.

Proof. Let’s calculate in coordinates x, t on X, such that t gives the map X → S. Assume

the horizontal divisor is x2 − t = 0 and the covering Σ is w2 = x2 − t. Thus, x and w

give a system of coordinates on Σ. Write α = adx + bdw with a = a(x,w) and b = b(x,w)

holomorphic functions of x,w. The equation t = x2 − w2 tells us that dividing out by dt

is equivalent to setting xdx = wdw. The form dx provides a frame for the sheaf of relative

differentials Ω1
X/S and in terms of this frame,

αrel = (a+ bx/w)dx.
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Thus, the equation for the upper critical locus αrel = 0 becomes

aw + bx = 0.

The hypothesis b(0, 0) ̸= 0 implies that the linear term of this equation at the origin is

nonzero. The ramification divisor R is given by w = 0, that is to say it is the x-axis in this

coordinate system, and b(0, 0) ̸= 0 tells us that the above equation has a simple zero along

the x-axis, so the zero set G is transverse to R.

The following statement gives Theorem 3.17 in the case when there aren’t any points of

type 3.11.1(e).

Theorem 12.10. With all the above hypotheses, in the case of parabolic levels 0,−1/2 we

have

F0 = g∗
(
L|G ⊗ j∗ωX/S ⊗OG(Q)

)
.

In the nilpotent case,

F0 = g∗
(
L|G ⊗ j∗ωX/S

)
and

F−1/2 = g∗
(
L|G ⊗ j∗ωX/S ⊗OG(−Q)

)
.

Proof. In the nilpotent case, G does not intersect R at points distinct from ramification

points, because we know that the map grW1 → grW−1 is an isomorphism at any point of DH

etale over the base. We notice that, at points of G mapping to points of DH but in sheets

of Σ that are étale, the formula is as stated since the term of the Dolbeault complex has

W−1E = E(−DH) and Ω1
X/S(logDH) = ωX/S(DH) locally on Σ at those points.

Also, the divisor consisting of ramification points q is the same as Q = R∩G in this case,

in view of the non-intersection of G with other points of R. Thus, for the nilpotent case our

previous calculations give the required results.

For the parabolic case, there might be points where G intersects R at points where DH

is étale over S. In this case, the component of E−1/2 coming from the local neighborhood in

Σ is p∗(L(−R)) and

p∗Ω1
X/S(logDH) = (p∗ωX/S)(2R)

so the required bundle in the degree 1 term of the Dolbeault complex is

p∗(L ⊗ p∗ωX/S(R)).
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When we restrict to G, we get the line bundle

L|G ⊗ j∗ωX/S ⊗OG(Q)

at these points. At the ramification points of DH , we notice that Q is the same as the

divisor of ramification points q considered above. Therefore, near the ramification points the

required bundle is also

L|G ⊗ j∗ωX/S ⊗OG(Q).

This yields the stated formula.

12.7 Type 3.11.1(e) points

The calculation needs to be extended to cover the points of type 3.11.1(e) in the classi-

fication of Subsection 3.11. Suppose x ∈ X is a point of type 3.11.1(e). Recall this means

the horizontal divisor D has a node at x, with both branches etale over S, and the spectral

variety Σ→ X decomposes into a collection of ordinary double points over x.

Choose a neighborhood x ∈ U ⊂ X, and let UΣ ⊂ Σ be a neighborhood of one of the

double points over x.

Consider the blow-up map b : UX̃ → U ⊂ X. Let Z be the normalization of U Σ̃ :=
UΣ×U UX̃. Notice that Z is the blow-up of UΣ at the double point.

Let D+ and D− be the two branches of the strict transform of D, and let F be the strict

transform of the fiber. Let B ⊂ X̃ be the exceptional divisor and C ⊂ Z its inverse image in

Z. Thus B ∼= P1 and C ∼= P1 with the map C → B a double cover ramified over the points

d+ := D+ ∩B and d− := D− ∩B.

Let D+
Z and D−

Z denote the reduced inverse images of these divisors in Z.

Let L be the spectral line bundle on Σ, with LZ its pull-back to Z. Let E = ϖ∗(L) be

the Higgs bundle on U ⊂ X, with Ẽ := b∗(E) its inverse image on UX̃. Since we’re working

with neighborhoods both downstairs and upstairs, E has rank 2 here.

The assumption on the nilpotent residue of the Higgs field φ means that there is a

decomposition E = E1 ⊕ E−1 into a direct sum of two line bundles, such that the image of

the residue of φ is E−1 over both branches of the divisor D. The pullback decomposes as

Ẽ = Ẽ1 ⊕ Ẽ−1.

Let p : Z → UX̃ denote the map. The bundle Ẽ is obtained from p∗(LZ(−C)) by glueing

together the line bundles on the two branches of Z over general points of B. Since LZ is
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pulled back from a line bundle on Σ, the restriction LZ |B is a trivial line bundle that we’ll

denote LB. The glueing is done using this trivialization, so we have an exact sequence

0→ Ẽ → p∗(LZ)→ (−)→ 0

where the cokernel is also the cokernel in the sequence

0→ LB → p∗(LZ)→ (−)→ 0

over B. The exact sequence of the elementary transformation is

0→ p∗(LZ(−C))→ Ẽ → LB → 0.

Notice now that LB ∼= Ẽ1,B as quotient of Ẽ|B, as it is the trivial subbundle whose values

over the two ramification points correspond to the unramified part.

On the subsheaf given by the weight filtration we get

0→ p∗(LZ(−C −D+
Z −D

−
Z ))→ W−1Ẽ → Ẽ1,B(−d+ − d−)→ 0.

The sheaf of relative logarithmic differentials is

ωX̃/S(log) = b∗ωX/S(D+ +D− +B).

Pulling back to Z gives

p∗ωX̃/S(log) = (bp)∗ωX/S ⊗OZ(2D+
Z + 2D−

Z + C).

Also, ωX̃/S(log)|B ∼= OB(1). We have

p∗(LZ(−C −D+
Z −D

−
Z ))⊗ωX̃/S(log) = p∗(LZ(−C −D+

Z −D
−
Z + 2D+

Z + 2D−
Z +C))⊗ b∗ωX/S

= p∗(LZ(D+
Z +D−

Z ))⊗ b∗ωX/S.

Thus we have an exact sequence

0→ p∗(LZ(D+
Z +D−

Z ))⊗ b∗ωX/S → W−1Ẽ ⊗ ωX̃/S(log)→ Ẽ1,B(−d+ − d−)⊗OB(1)→ 0.

Lemma 12.11. Suppose G ⊂ Σ is a curve that decomposes, near the double point, into a

disjoint union of two smooth branches whose tangent vectors at the double point are distinct.

Then the map on spaces of sections on the neighborhood

Γ(U, p∗(LZ(D+
Z +D−

Z ))⊗ b∗ωX/S)→ (G ∩ UΣ,L|G ⊗ ωX/S|G)

is an isomorphism.

283



Proof. The curve G is isomorphic to its strict transform inside Z. The two branches intersect

C in different points. The line bundle LZ(D+
Z + D−

Z ) is OC(2) on C, so its sections (which

extend to local sections in a neighborhood) span the space of sections over G.

Theorem 12.12. In the presence of points of type 3.11.1(e), let F ′ be the parabolic bundle

defined by

F ′
0 = g∗

(
L|G ⊗ j∗ωX/S

)
and

F ′
−1/2 = g∗

(
L|G ⊗ j∗ωX/S ⊗OG(−Q)

)
,

and let F be the parabolic Higgs bundle corresponding to the higher direct image local system.

Then there is an injective morphism F ′ ↪→ F .

Proof. The expression of the higher direct image Higgs bundle comes from a direct image of

a sheaf supported on the relative critical locus, so it is local over the relative critical locus.

Near a point of type 3.11.1(e), it comes from blowing up once b : X̃ → X. There is a sheaf

G supported on X̃ whose direct image down to S is the local piece of F , and G is supported

on the image of G union the exceptional divisor B. The expression is local on Σ̃ in turn, and

the sheaf G is a quotient of W−1Ẽ ⊗ ωX̃/S(log) (where here E is the piece of the full Higgs

bundle, corresponding to the local piece of Σ). Thus, any sections of W−1Ẽ⊗ωX̃/S(log) over

a neighborhood of B will generate a subsheaf of F .

The exact sequences above give a map from sections of p∗(LZ(D+
Z + D−

Z )) ⊗ b∗ωX/S to

sections of W−1Ẽ ⊗ ωX̃/S(log), and Lemma 12.11 says that these restrict on G to sections

of L|G ⊗ ωX/S|G). Those are the sections that appear in the definitions of F ′
0 and F ′

−1/2

(note that there is no difference in the two parabolic level spaces locally at a point of type

3.11.1(e)).

Let F ′ be the subsheaf of F generated by such sections near the points of type 3.11.1(e),

and equal to F as calculated in Theorem 12.10 elsewhere. This is the stated subsheaf.

Remark 12.13. We’ll apply this statement by calculating the degree of the parabolic sheaf

F ′ given by Theorem 12.12. If it has parabolic degree 0, then since we know that F also

has parabolic degree 0, the map F ′ ↪→ F is an isomorphism, and this will yield the same

calculation as in Theorem 12.10 for the case when there are points of type 3.11.1(e).
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13 Drinfeld’s construction

Drinfeld’s original construction of Hecke eigensheaves was done in [Dri83] and later con-

solidated and extended by Laumon [Lau95], Gaitsgory [Gai97, Gai15] and others.

In order to make a comparison with our above constructions, we’ll give here a preliminary

approach to the interpretation of Drinfeld’s construction in the setting of Higgs bundles.

A main ingredient of Drinfeld’s construction is the following general definition: given a

local system Λ on C, we obtain a local system Λ(⊗m) on the symmetric power Symm(C)

with singularities along the big diagonal.

In the case rk(Λ) = 2, Drinfeld starts with Λ(⊗m) as input and uses Radon transform to

construct a local system on an open subset of a projective space bundle over Bun. The main

theorem of [Dri83] says that it descends from the projective space bundle down to a perverse

sheaf on the moduli stack Bun. Going to the coarse moduli spaces of stable bundles we get

a local system on an open subset of the moduli space of stable bundles. We would like to

calculate the Higgs sheaf associated to the Radon transform and use that to show that the

Higgs sheaves we constructed above are the same as the ones corresponding to Drinfeld’s

perverse sheaf.

Fix a line bundle M on C of sufficiently high degree m. Denote by

P := |M | = PH0(C,M)

the linear system, i.e. the space of divisors x = x1 + . . .+ xm on C such that OC(x1 + . . .+

xm) ∼= M . It is the fiber over the point M of the map on the right here:

P
i
↪→ Symm(C)→ Picm(C)

where we took the opportunity to give the name i to the inclusion.

Serre duality says that

H0(C,M)∗ ∼= H1(C,M∨ ⊗ ωC).

Set

Q := PH1(C,M∨ ⊗ ωC),

so Q is naturally the dual projective space to P . In other words, Q is identified with the

space of hyperplanes in P and vice-versa.

In a certain sense dual to i is a map L : Q → Bun to the moduli stack, or with the

same notation a rational map to the moduli space of stable bundles. This map associates to
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ξ ∈ H1(C,M∨ ⊗ ωC), considered as an extension class i.e. an element of Ext1(M,ωC), the

bundle in the middle of the corresponding extension

0→ ωC → E →M → 0.

It is a point in the moduli stack of rank 2 bundles having determinant M ⊗ ωC . The

appearance of ωC on the left of the extensions we look at is just there to accommodate the

twist in Serre duality.

Let XM⊗ωC
denote the coarse moduli space of semistable rank 2 bundles up to S-

equivalence, having determinant M ⊗ ωC . Thus L may be interpreted (losing some in-

formation) as a rational map L : Q 99K XM⊗ωC
.

The duality between P and Q is reflected in the incidence correspondence

I ⊂ P ×Q, I := {(x, ξ) s.t. x ∈ ξ i.e. ⟨ξ, x⟩ = 0}.

Let p : I → P and q : I → Q be the projections. Thus, p induces an isomorphism between

q−1(ξ) and the hyperplane in P associated to ξ, whereas q induces an isomorphism between

p−1(x) and the hyperplane in Q associated to x.

Let i : P ↪→ Symm(C) be the inclusion. Drinfeld’s basic Radon transform means con-

structing the perverse sheaf

Rad := Rq∗
(
p∗i∗Λ(⊗m)

)
on Q.

Let ∆
(m)
P ⊂ P be the intersection of the big diagonal in Symm(C) with P . This is the

singular set of i∗Λ(⊗m). Thus, the singular set of p∗i∗Λ(⊗m) on I is

DH := p−1(∆(m)).

Let U ⊂ Q be the open set over which DH is a relative normal crossings divisor, that is to

say where all strata of D are etale under the projection q. Then RadU := Rad|U is a local

system over U .

The first main part of the geometric Langlands correspondence for rank 2 bundles, ac-

cording to Drinfeld and Laumon, may be formulated as follows:

Theorem 13.1 (Drinfeld-Laumon [Dri83, Lau95]). There is a Zariski open subset U ′ ⊂ U

such that the map L′ : U ′ → XM⊗ωC
is well-defined, and maps into the complement of the

wobbly locus WobM⊗ωC
⊂ XM⊗ωC

. The restriction of RadU to U ′ denoted RadU ′ is a local

system on U ′, constant on the fibers of L′. It is therefore isomorphic to the pullback of a local
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system E on XM⊗ωC
−WobM⊗ωC

. That local system is a Hecke eigensheaf (in an appropriate

sense taking into account the determinant M ⊗ ωC).

Another proof was given by Gaitsgory in his thesis [Gai97].

13.1 A spectral variety

The perverse sheaf Rad corresponds to a D-module, and by Sabbah’s and Mochizuki’s

theory [Moc07a, Moc07b, Sab05], it has a structure of purely imaginary pure twistor D-

module. Over the open subset U ′ ⊂ Q the fiber at λ = 0 in the twistor line, is a Higgs

bundle. Let

ΣRad,U ′ ⊂ T ∗U ′

be the spectral variety of this Higgs bundle. We would like to express this in terms of the

fiber of the Hitchin fibration.

Consider the moduli space XM⊗ωC
of semistable rank 2 bundles up to S-equivalence, with

determinant M ⊗ωC , with the smooth open subset X◦
M⊗ωC

of stable bundles. Let MH,M⊗ωC

denote the moduli space of semistable Higgs bundles with determinant M ⊗ ωC , and let

h : MH,M⊗ωC
→ AN be its Hitchin fibration.

A general point b ∈ AN corresponds to a spectral curve C̃
π→ C provided with a tauto-

logical differential α ∈ H0(C̃, ωC̃).

Let (E,φ) be the Higgs bundle associated to Λ, with spectral covering C̃, spectral 1-form

α and spectral line bundle U . Denote by (E(m), φ(m)) the Higgs bundle associated to Λ(⊗m),

that we view as having a parabolic structure in codimension ≤ 1.

The spectral covering of (E(m), φ(m)) is described as is Symm(C̃), see Lemma 13.4 below.

If m is big enough, this is a projective space bundle over Pic0(C̃).

We assume that the point b ∈ AN corresponds to (E,φ) and hence to Λ, in that the

spectral covering of (E,φ) is C̃ and spectral 1-form of (E,φ) is α.

Let PM⊗ωC
denote the Prym variety of line bundles V on C̃ such that π∗(V ) has deter-

minant M ⊗ ωC . Equivalently it means that the norm of the divisor defining V down to C

is the divisor of M ⊗ ω⊗2
C , in particular the line bundles V have degree m+ 4g − 4.

The tautological one-form αP on PM⊗ωC
leads to a rational map PM⊗ωC

99K T ∗X◦
M⊗ωC

,

and this may be pulled back using the dominant rational map Q 99K X◦
M⊗ωC

to get a map

PM⊗ωC
×XM⊗ωC

Q 99K T ∗Q.
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Theorem 13.2. The restriction ΣRad,U ′ over U ′ ⊂ Q is isomorphic, as a variety mapping

to T ∗U ′, with the pullback PM⊗ωC
×XM⊗ωC

U ′.

Corollary 13.3. In the case when C is a curve of genus g = 2, the local system constructed

by Drinfeld-Laumon-Gaitsgory on XM⊗ωC
−WobM⊗ωC

is the same as the local system we

have constructed in the previous chapters of this paper.

The next subsections are devoted to the proofs. Some parts work for rank 2 local sys-

tems and bundles on a curve C of arbitrary genus g. For the calculations of parabolic

structures along the wobbly divisor we’ll restrict to the case of curves of genus g = 2 where

we understand well the geometry.

13.2 The incidence correspondence

We have fixed a line line bundle M of degree m on C, and defined

P := PH0(M), Q := PH1(M∗ ⊗ ωC).

These projective spaces are dual by Serre duality. We assume m ≫ 0, so they both have

dimension m+ 1− g. Let

(p, q) : I ↪→ P ×Q

be the incidence correspondence.

There is a rational map L : Q 99K BunM⊗ωC
from Q to the moduli space BunM⊗ωC

of rank 2 vector bundles L with determinant M ⊗ ωC , sending a point represented by a

nonzero class ξ ∈ H1(M∗ ⊗ ωC) = Ext1(M,ωC) to the isomorphism class of the bundle in

the extension ξ

0→ ωC → L →M → 0.

On the other hand there is a map i : P → Symm(C) sending a point represented by a

nonzero section f ∈ H0(M) to the divisor z = z1 + . . .+ zm of zeros of f . The image is the

set of points of Symm(C) mapping to [M ] ∈ Picm(C).

Let (E,φ) be a rank 2 Higgs bundle corresponding to a local system Λ. We recall that

there is a perverse sheaf denoted Λ(m) on Symm(C) obtained by descending Λ⊠m on Cm via

the action of the symmetric group.

This corresponds to a parabolic Higgs bundle that we’ll denote by (E(m), φ(m)). Since

the divisor in Symm(C) has non-normal crossings singularities, we don’t exactly know what
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a parabolic structure means, so we’ll instead say that we work with the pure twistor D-

module and look at the Higgs fiber. This has a parabolic structure given by the V -filtration

in codimension ≤ 1, and we get a parabolic Higgs bundle on an open subset Symm(C)◦

complement of a set of codimension 2.

Let C̃
π→ C be the spectral covering of (E,φ). We assume that C̃ is smooth, and since the

degree is 2 it automatically has simple ramification. Let α ∈ H0(C̃, π∗ωC) be the tautological

1-form, and let U be the spectral line bundle. Thus E ∼= π∗(U).

We have a covering

Symm(C̃)→ Symm(C)

and a tautological 1-form α(m) given as the descent from C̃m of the sum of the pullbacks of α

from the components. The covering has a line bundle U (m) descended from the line bundle

U⊠m on C̃m; it is characterized by the condition that U⊠m is the pullback of U (m).

Let E ⊂ Symm(C̃) be the divisor consisting of points t̃ such that ti = tj but t̃i ̸= t̃j,

where ti are the images in C of t̃i.

Lemma 13.4. The spectral data in codimension ≤ 1 for the parabolic Higgs bundle (E(m), φ(m))

is given by the covering Symm(C̃) with its tautological 1-form α(m) and spectral line bundle

U (m). The parabolic structure is the standard one with weights 0, 1/2 using the divisor E .

The inverse image of P in Symm(C̃) is the subvariety Symm(C̃)M consisting of divisors

whose associated line bundle has trace down to C equal to M . If m is big enough, it is

smooth, being a projective space bundle over a translate of the Prym variety that is the

kernel of Picm(C̃)→ Picm(C).

Proof. The exterior tensor product Higgs bundle E⊠m over Cm has spectral variety C̃m. On

there, the spectral one-form for the tensor product is the sum of the pullbacks of α to each

of the components, and the spectral line bundle on C̃m is U⊠m. These descend to the given

spectral data outside of codimension 2. Notice here that we might also need to remove a

codimension 2 subset bigger than just the singular locus of the parabolic divisor, in case

the image of Symm(C̃) in the logarithmic cotangent bundle has singularities at the branch

points of C̃/C along the multidiagonal (we didn’t calculate if this happens or not).

In order to understand the line bundle, we note the following remark. Let g : Cm →
Symm(C) be the projection. The level 0 piece of the parabolic structure, on the parabolic

bundle over Symm(C) obtained by descending E⊠m from Cm down to Symm(C), is equal to

the subsheaf of sections of g∗(E⊠m) invariant by the symmetric group action. This can be

seen using the metric interpretation of parabolic structures.
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Consider now the commutative (although not cartesian) diagram

C̃m → Cm

↓ ↓
Symm(C̃) → Symm(C)

.

The sheaf E⊠m is the direct image of U⊠m from C̃m. The permutation group action preserves

the diagram. We can take the direct image of U⊠m by the left vertical and then bottom

arrows, and the invariant sections therein are the direct image of the invariant sections on

Symm(C̃). This says that our sheaf of invariant sections is the direct image of U (m) from

Symm(C̃) to Symm(C), which means in turn that U (m) is the spectral line bundle. One might

have expected that there could be a correction term by some multiple of the ramification

divisor but this argument shows that that isn’t the case.

The parabolic structure is the standard one coming from reflections in the monodromy

of the local system; this happens along the divisor E in the spectral variety.

The last part comes from the standard properties of symmetric powers of curves, noting

that P is the projective space of the linear system |M |.

Let FB := Rq∗(p
∗E

(m)
B ) be the perverse sheaf on Q obtained by Radon transform. Drin-

feld’s theorem 13.1 says that this is constant on the fibers of the map L, so it descends to a

perverse sheaf on BunM⊗ωC
.

Theorem 13.5 (Deligne cf [Lau87]). The rank of this sheaf at a general point is 23g−3.

Laumon states in [Lau87, Remarque 5.5.2] that this was communicated by Deligne.

We would like to approximate the Dolbeault calculation of a Higgs bundle F on Q

corresponding to the perverse sheaf FB. We know that this exists by applying Mochizuki’s

theory, and we’ll try to calculate it over a Zariski open subset.

Let
Ĩ → P̃ → Symm(C̃)

↓ ↓ ↓
I → P → Symm(C)

be the cartesian diagram of pullbacks of the spectral variety of E(m). Thus, pulling back the

statement from Lemma 13.4, P̃ is the spectral variety of E(m)|P and Ĩ is the spectral variety

of p∗E(m).

Lemma 13.6. The spectral variety P̃ is irreducible.
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Proof. From Lemma 13.4, P̃ is the subvariety Symm(C̃)M ⊂ Symm(C̃) consisting of divisors

whose associated line bundle has trace down to C equal to M . It is a projective bundle

a translate of the kernel of Picm(C̃) → Picm(C). We need to show that this kernel is

irreducible.

The map between real tori viewed in terms of the exponential exact sequence as

H1(C̃,O)

H1(C̃,Z)
→ H1(C,O)

H1(C,Z)

may be written, using Poincaré duality, in the form

H1(C̃,R)

H1(C̃,Z)
→ H1(C,R)

H1(C,Z)
.

The map H1(C̃,Z)→ H1(C,Z) is surjective, since C̃/C is a double cover and the ramification

set is nonempty. An element of the kernel is a point in H1(C̃,R) that maps to H1(C,Z), and

by the surjectivity it can be modified by an element of H1(C̃,Z) so that it maps to zero in

H1(C,R); thus we have a point in the kernel of H1(C̃,R) → H1(C,R) and that covers the

connected component of the identity in the kernel we are looking at. This shows that our

kernel is connected.

Let q̃ : Ĩ 99K Q be the composition of the map q with the covering. The holomorphic L2

Dolbeault complex of p∗E(m) relative to the map q has a cokernel sheaf in top degree

DolL2(I
q→ Q, p∗E(m))→ G.

We can write what this is, away from the parabolic divisors. The spectral line bundle on Ĩ

is

UĨ := p̃∗(U (m)|P̃ .

There is a tautological 1-form denoted αĨ .

The relative dimension of I/Q is one less than the dimension of P or Q since I is a family

of hyperplanes; it is m− g. Consider the sequence

UĨ ⊗ Ωm−g−1

Ĩ/Q

∧α
Ĩ−→ UĨ ⊗ Ωm−g

Ĩ/Q
→ G̃ → 0

where G̃ is defined to be the cokernel. Let Γ ⊂ Ĩ be the support of G̃.

This is the relative critical locus, and one may alternatively say that Γ is the subset of

points on which the projection αrel
Ĩ

of the tautological 1-form into a section of Ω1
Ĩ/Q

vanishes.
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Lemma 13.7. Over an appropriate open subset, G is the direct image from Ĩ down to I of

G̃.

Proof. The relative Dolbeault complex DolL2(I
q→ Q, p∗E(m)) is the pushforward of the

complex [. . .→ UĨ ⊗ Ωm−g−1

Ĩ/Q
→ UĨ ⊗ Ωm−g

Ĩ/Q
] so over the open subset where Ĩ/I is finite and

flat, the cokernel G of the pushforward is the pushforward of the cokernel.

The main result we need is the following, whose proof is deferred until after the statements

of some lemmas—the lemmas in turn being proven later too.

Theorem 13.8. There is a unique irreducible component Γmain that surjects onto P . It

contains a dense Zariski open subset that maps isomorphically to an open subset of P̃ . This

irreducible component Γmain maps to Q by a generically finite map of degree 23g−3.

We are going to define a rational map v : P̃ 99K Q. Suppose z̃ ∈ P̃ . Use this to define a

line bundle

V (z̃) := π∗(ωC)⊗OC̃(z̃1 + . . . , z̃m)

on C̃, and set Lz̃ := π∗(V (z̃)).

One calculates det(Lz̃) = M⊗ωC . This uses the condition that z̃ ∈ P̃ saying in particular

that the image z ∈ Symm(C) is in the linear system |M | = P , i.e. OC(z1 + . . .+ zm) ∼= M .

Therefore V (z̃) ∈ PM⊗ωC
. The moduli point of Lz̃ in XM⊗ωC

is the image of V (z̃) under

the natural projection from the Prym. To define v(z̃) we need to specify an expression of Lz̃
in an extension.

The fact that C̃ is a spectral curve implies that there is a natural isomorphism

π∗(π
∗(ωC)) ∼= ωC ⊕OC , (58)

in particular we get a morphism ωC → Lz̃. For general z̃ (the condition being that there

aren’t opposite pairs of points), this is a subbundle. Because of the determinant calculation

we obtain an exact sequence

0→ ωC → Lz̃ →M → 0

and hence an extension v(z̃) ∈ H1(M∗ ⊗ ωC) (well-defined up to scalars). This defines our

map v : P̃ 99K Q.

Remark 13.9. It follows from the above discussion that the diagram of rational maps

P̃ → Q

↓ ↓
PM⊗ωC

→ XM⊗ωC
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is commutative, so we get a map P̃ 99K PM⊗ωC
×XM⊗ωC

Q.

Lemma 13.10. If z̃ ∈ P̃ maps to z ∈ P and to v(z̃) by the above construction then the point

(z, v(z̃)) is in I. In particular, the point (z̃, v(z̃)) defines a point of Ĩ so we get a (rationally

defined) section σ : P̃ 99K Ĩ.

Lemma 13.11. The degree of v : P̃ 99K Q is 23g−3 and indeed the fiber over a general point

ξ ∈ Q is naturally identified with the inverse image of Lξ ∈ BunM⊗ωC
in the Prym variety

that is the fiber of the Hitchin map corresponding to our given spectral curve C̃/C.

Lemma 13.12. The section σ maps P̃ into Γ.

Proof of Theorem 13.8. We claim that over a general point of P̃ there is exactly one point

of Γ. Suppose z̃ ∈ P̃ is a general point mapping to z ∈ P . Consider the subspace Ṽ ⊂ Tz̃P̃

on which the tautologial 1-form αP̃ vanishes. For z̃ general, this maps to a codimension one

subspace V ⊂ TzP . There will be a unique hyperplane of the projective space P containing

z and such that the tangent space of the hyperplane at z contains V . This hyperplane

represents a point of I, and its pair with z̃ defines a point of Ĩ. Assuming that P̃ /P is etale

at z̃, the condition on the tangent spaces is equivalent to the vanishing of the tautological

vertical one-form αrel
Ĩ

at the point. This shows the claim.

That implies that the section σ provided by Lemmas 13.10 and 13.12 is an isomorphism

of P̃ (which is irreducible by Lemma 13.6) onto the irreducible component Γmain ⊂ Γ. The

general point of this component is therefore finite over Q since they have the same dimension.

It has the required degree by Lemma 13.11. This gives the statement of the theorem.

For the proofs of the lemmas we begin with the following observation using m≫ 0.

Remark 13.13. Suppose ξ ∈ Q and Lξ is stable. Then H1(Lξ) = 0, indeed an element of

H0(L∗
ξ ⊗ ωC) would be a map Lξ → ωC contradicting stability. There is an exact sequence

0→ H0(ωC)→ H0(Lξ)→ H0(M)→ H1(ωC)→ 0.

Thus the image of H0(Lξ) is a codimension 1 subspace of H0(M) corresponding to a hyper-

plane in P . This hyperplane is Iξ = p(q−1{ξ}) = ξ⊥.

Proof of Lemma 13.10. Let ξ = v(z̃). We have Lξ ∼= π∗(V (z̃)). Recall that π∗(ωC) ⊂ V (z̃),

so the formula (58) gives a map

ωC ⊕OC = π∗(π
∗(ωC)) ↪→ Lξ.
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This gives a map OC → Lξ not factoring through ωC , so it projects to a nonzero section in

H0(M) and hence gives a point of P . The cokernel of ωC ⊕OC → Lξ is the sheaf π∗(V (z̃)z̃

which is supported on z. For the proof it suffices to assume that z̃ is general, and in this

case at least, the zero scheme of the section OC →M is z. The characterization of Remark

13.13 tells us that z ∈ ξ⊥, so (z, ξ) = (z, v(z̃)) is in I.

Proof of Lemma 13.11. In the space of Higgs bundles whose determinant is M ⊗ ωC , let P
denote the fiber of the Hitchin fibration over the point corresponding to the spectral curve

C̃/C. Let

ϖ : P 99K BunM⊗ωC

be the rationally defined map of forgetting the Higgs field. The points of P are line bundles

V on C̃ such that the determinant of π∗(V ) is M ⊗ ωC , and ϖ(V ) = π∗(V ).

Suppose ξ ∈ Q is a general point. As is well-known (cf eg Lemma 4.9), ϖ−1(Lξ) is a

finite set with 23g−3 elements.

On the other hand, v−1(ξ) ⊂ P̃ is the subset of points z̃ ∈ P̃ such that the resulting

extension v(z̃), displaying as

0→ ωC → Lz̃ →M → 0,

is equal to the extension ξ.

We are going to establish an isomorphism between these two sets, from which it follows

that v−1(ξ) ⊂ P̃ is a finite set with 23g−3 elements.

Suppose given z̃ ∈ v−1(ξ). Recall that Lz̃ := π∗(V (z̃)) and the condition z̃ ∈ v−1(ξ) says

that this bundle is isomorphic to Lξ. Therefore, V (z̃) ∈ ϖ−1(Lξ).
Suppose given V ∈ ϖ−1(Lξ). Then the map ωC → Lξ gives a nonzero map π∗(ωC)→ V ,

so there is a divisor z̃ on C̃ such that V ∼= π∗(ωC)⊗OC̃(z̃), and the extension v(z̃) is equal

to ξ. This gives a point z̃ ∈ v−1(ξ).

Let’s note that these two constructions are inverses. In the previous paragraph, recall

that by definition V (z̃) is the line bundle π∗(ωC) ⊗ OC̃(z̃) that is isomorphic to V , so the

composition

V 7→ z̃ 7→ V (z̃)

is the identity. For the composition in the other direction, notice that if given z̃ ∈ v−1(Lξ)
then since Lξ is stable (that’s the case for a general ξ) the identification Lξ ∼= π∗(V (z̃)) is

unique and gives rise to a uniquely defined (up to a scalar) map π∗(ωC) → V (z̃), which by

definition is our given one. When we make the construction of the previous paragraph we

get back to the given point z̃. This gives the required isomorphism.
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For the proof of Lemma 13.12 we are going to look at a general point z̃ ∈ P̃ . In particular,

the z̃i are distinct, not ramification points of C̃/C, and there are no opposite pairs under

the involution τ of C̃/C.

Fix ξ = v(z̃. We would like to consider a path z̃(t) with the given point as z̃(0), and

such that z(t) = π(z̃(t)) ∈ P stay in the hyperplane Iξ ⊂ P corresponding to ξ. By Remark

13.13, we obtain general such paths of points x(t) by considering a path f(t) ∈ H0(Lξ). If

we suppose f(0) is the canonical section corresponding to z̃, then as we deform f(0) we’ll

get a deformation of the points z̃(t). This projects to a general tangent vector of Iξ based at

the original point, and because of our genericity hypothesis P̃ → P is etale near our points,

so we get in this way the required general tangent vector to the fiber q−1

Ĩ
(ξ).

Let α be the tautological form on C̃, and let αV be α viewed as a section of π∗(ωC) and

then in turn viewed as a section of V := V (z̃) = π∗(ωC)(ṽ).

We have Lξ = π∗(V ) and αV , viewed now as a section of Lξ, is the same as the section

f(0).

For any connection∇ on V , holomorphic near the z̃i but possibly meromorphic elsewhere,

(∇αV )z̃i = Tz̃i(C̃)
∼=→ Vz̃i .

Letting ϵ denote an infinitesimal value of t, we get

ϵ−1f(ϵ) ∈ Vz̃i .

The zero z̃i(ϵ) of the section f(ϵ), infinitesimally near to z̃i = z̃i(0), is the displacment of z̃i

by ϵ times the tangent vector

w⃗i := [(∇αV )z̃i ]
−1(ϵ−1f(ϵ)) ∈ Tz̃i(C̃).

If we now apply α considered as a 1-form to this vector, we get a number.

Lemma 13.14. The number α(w⃗i) is equal to the residue at z̃i of

f ′(0) :=
f(ϵ)− f(0)

ϵ
∈ H0(Lξ)

where f ′(0) is viewed as a section of V and hence as a differential form on C̃ with poles at

the points of z̃.

Proof. This calculation may be done in local coordinates. Let x be the coordinate near the

point z̃i. The bundle π∗(ωC) is the same as ωC̃ near our point, so this bundle has frame (dx).
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The bundle V locally is sections having a simple pole at the origin, so it has frame x−1dx.

The section f(0) is a(x)dx and f ′(0) = b(x)x−1dx. In other words,

f(ϵ) = a(x)dx+ ϵb(x)x−1dx+ o(ϵ).

The zero of this section near the origin is given by

x(z̃i(ϵ)) = ϵb(0)/a(0) + o(ϵ).

The derivative of this in ϵ is

w⃗i = b(0)/a(0)
∂

∂x

viewed as a tangent vector at the origin using our coordinate x. The tautological 1-form

is the same as the section f(0) but viewed as a 1-form instead of a section of V . In our

notations it is still called a(x)dx. When we evaluate this on the tangent vector we get

(a(x)dx)(w⃗i) = b(0).

This is exactly the residue of f ′(0) at the origin.

Proof of Lemma 13.12. The tautological 1-form on Symm(C̃) evaluated at a tangent vector

that is composed of tangent vectors at distinct points of C̃, is the sum of the values of α

evaluated on those vectors. In the situation of the lemma, our family f(t) yields curves of

points z̃i(t) based at the z̃i, whose first derivatives give tangent vectors w⃗i based at the z̃i.

The evaluation of the tautological form on this tangent vector to the fiber q−1

Ĩ
(ξ) is therefore

the sum of the α(w⃗i). By Lemma 13.14, this is the sum of the residues of the section f ′(0),

viewed as a section of V and hence as a meromorphic section of π∗(ωC), at the z̃i. Since

these comprise all the polar locus of the section, the residue theorem says that the sum of

the residues is 0. We have now shown that the evaluation of the tautological form on a

general tangent vector to the fiber of the map q−1

Ĩ
(ξ), is zero. This is exactly the condition

for inclusion of our point (z̃, ξ) in Γ, completing the proof of the lemma.

13.3 Dolbeault part of a twistor D-module

In order to use the result of Theorem 13.8 in conjunction with Deligne’s calculation 13.5,

we need to delve into some general theory of mixed twistor D-modules [Moc07a, Moc07b,

Sab05].
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Suppose E is a pure twistor D-module on a variety X. Then there is an open subset

U ⊂ X over which E is smooth. We get a vector bundle EU on A1 × U with relative

integrable λ-connection ∇. For each λ ∈ A1 this gives a vector bundle EλU with λ-connection

∇λ.

We’ll call the fiber at λ = 0 the Dolbeault part of E . This is a vector bundle EDol,U with

Higgs field φ := ∇0. In particular, it has a spectral variety Σ ↪→ T ∗U finite and dominant

over U .

There will be a notion of extension to a parabolic bundle in codimension 1, that is to

say over X≤1 := X −Dsing where D := X − U is the complementary divisor. The parabolic

structure should be given by the V -filtration construction. We don’t discuss that here, as

we are looking at generic constructions over U .

We can define the Dolbeault complex over U :

DOL(U, EDol,U , φ) =
[
EDol,U

∧φ−→ · · · ∧φ−→ EDol,U ⊗ Ωn
U

]
.

Let G(U, EDol,U , φ) denote the cokernel of the last map.

Proposition 13.15. Assume that G(U, EDol,U , φ) has finite support, and let

d := dimH0(G(U, EDol,U , φ))

be the total length. Let Hn(E) be the cohomology of X with coefficients in the twistor D-

module. This is a twistor D-module over a point, that is to say a vector bundle over P1. If

d ≥ rkHn(E), then equality holds, and the Dolbeault fiber of Hn(E) (i.e. the fiber over λ = 0)

is naturally isomorphic to H0(G(U, EDol,U , φ)).

Proof. We don’t do this here. The idea would be to look at a fibration of X as a family

of curves, and use that to calculate the cohomology. We can then apply the calculation of

[DPS16], and be careful about the difference between the cohomology of a resolution and

the cohomology of the twistor D-module using the decomposition theorem.

We can now formulate a relative version. If f : X → Y is a map, then choose an open set

UY ⊂ Y and an open subset U ∈ f−1(UY ) over which the map is smooth of relative dimension

m and E (a twistor D-module on X) is smooth. We can form the relative Dolbeault complex

DOL(U/UY , EDol,U , φ) =
[
EDol,U

∧φX/Y−→ · · ·
∧φX/Y−→ EDol,U ⊗ Ωm

U/UY

]
.

Let G(U/UY , EDol,U , φ) be the cokernel.
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Proposition 13.16. Suppose G(U/UY , EDol,U , φ) has support that is finite over UY , and let

d := rkf∗(G(U/UY , EDol,U , φ))

be the relative length. Let F := Rmf∗(E) be the higher direct image. This is a twistor D-

module over Y . Assume that the open set UY has been chosen so that F is smooth on UY .

If d ≥ rk(F), then equality holds, and

FDol,UY
∼= f∗(G(U/UY , EDol,U , φ)).

Furthermore, the decomposition of FDol,UY
over y ∈ UY into a direct sum of pieces indexed

by the points in the support of G(U/UY , EDol,U , φ) lying over y, is the spectral decomposition

of the Higgs bundle (FDol,UY
, ϕ).

The Higgs field on FDol,UY
will be determined in the same way as in [DPS16].

We can now apply this to the Drinfeld situation.

Proof of Theorem 13.2. Comparing Deligne’s calculation in Theorem 13.5 with Theorem

13.8, the dimension of the cohomology on each geneal fiber of the map q is equal to the

number of points in the support of the upstairs cokernel sheaf G̃. It follows from Proposition

13.16 that the length of G̃ at each of these points is 1, and then that the spectral variety for

the direct image Higgs bundle is the support of G̃, which is to say Γmain.

To complete the proof of Theorem 13.2, we need to show that the map Γmain 99K T ∗Q

obtained by interpreting Γmain as the critical locus, is the same as the map P̃ → T ∗Q that is

the pullback of the map from the Hitchin fiber to the cotangent bundle of the moduli space

of bundles XM⊗ωC
.

Both maps are given, over general points of P̃ , by a spectral 1-form. In the case of the

map on the relative critical locus, this is the same as the spectral 1-form αĨ on Ĩ restricted

to Γmain that is birational to P̃ .

We have a commutative diagram

P̃ → Jacm+4g−4(C̃)

↓ ↓
Symm(C̃) → Jacm(C̃)

where the right vertical arrow is the isomorphism given by tensoring with π∗(ωC). The

spectral 1-form α on C̃ corresponds to a unique 1-form αJac whose pullback to Symm(C̃) is

the 1-form given by summing up the pullbacks of α on C̃m.
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In the case of the map from the Hitchin fiber, the spectral 1-form is given by restricting

the 1-form on Jacm+4g−4(C̃) coming from the spectral 1-form on C̃, to the Prym variety.

The top map of the above diagram factors through the projection P̃ → PM⊗ωC
, so the top

and right pullback of αJac is the 1-form corresponding to the Hitchin fiber.

The left and bottom pullback of αJac is the spectral form on P̃ that was used to define

the Higgs bundle over P . By definition the spectral form αĨ is the pullback of this form to

Ĩ. In turn, that pulls back to the spectral 1-form on Γmain. In other words, the isomorphism

Γmain → P̃

identifies the two forms. This implies that they provide the same map to T ∗Q over a Zariski

open subset, and therefore they give the same map whenever it is defined. This completes

the verification that the two isomorphic spectral varieties sit in the same way inside T ∗Q.

13.4 Uniqueness over the degree 1 space

In this subsection, we’ll prove a uniqueness result for Higgs bundles over X1 that have

Y1 as spectral variety. Let X denote X1 (the intersection of two quadrics in P5) and let Y

denote Y1. Let Wob := Wob1 be the wobbly locus.

Let X◦ be the complement of the singular locus of Wob, let Wob◦ = Wob ∩ X◦ and

let Y ◦ be the inverse image in Y . Over X◦ the tautological 1-form on Y ◦ yields a map

Y ◦ → T ∗(X◦, log Wob).

Lemma 13.17. Away from a subset of codimension 2, this map is an embedding.

Proof. It is an embedding away from the wobbly locus, since Y is isomorphic there to a fiber

of the Hitchin fibration, the total space of which is the cotangent bundle of X. In fact, that

holds true over the complement Y − E of the exceptional divisor, since the other points of

Y , over the wobbly locus but not on E, map into T ∗(X). On the wobbly locus, the first

question is whether the map separates tangent directions. The tangent directions along E

map to tangent directions along Wob. The normal directions will map to nontrivial vectors

in the logarithmic cotangent bundle, as soon as we know that the tautological 1-form on the

Prym variety P is nonzero in a general normal direction to Ĉ. This is true for a general

normal direction since α is a linear form on the abelian variety and there are two normal

directions at each point. This shows that the map Y ◦ → T ∗(X◦, log Wob) separates tangent

vectors away from a codimension 2 subset.
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To show that it is an embedding, recall that above every (general) point of Wob there

are 2 points of E. We need to show that these don’t get glued together by the map. Notice

that no other pairs of points on E, one of which is general, can be glued together since the

map from E to Wob factors through this double cover.

Two points of E mapping to the same point of Wob correspond to two points of Ĉ of the

form ã and τ ã where τ is the involution of C̃ over C; together with corresponding tangent

vectors at these points. We note that both points go to the zero-section of the residue map

T ∗(X◦, log Wob)|Wob →Wob× C.

The kernel of the residue map projects to a map to T ∗Wob. To distinguish the points we

would like to show that their images in T ∗Wob are different. The tautological form is going

to send the points into the image of

T ∗C ×C Wob→ T ∗Wob.

The condition that C̃/C is a smooth spectral curve means that the two points ã and τ ã map

to distinct (opposite) points of T ∗C, showing that they map to distinct points in T ∗Wob.

Lemma 13.18. Suppose E· is a vector bundle with a parabolic structure over Wob◦ together

with a meromorphic Higgs field that is logarithmic along Wob◦, such that the spectral variety

of the Higgs field is the image of Y ◦ in T ∗(X◦, log Wob). Suppose that it corresponds to a flat

bundle such that the cohomology of the restriction to a generic Hecke conic has dimension

16. Then the parabolic structure is obtained from a parabolic level 0 < α ≤ 1 as follows:

there is a line bundle L on Y such that Ea = π∗(L) for 0 ≤ a < α and Ea = π∗(L(E)) for

α ≤ a < 1.

Proof. If there is no parabolic structure along the exceptional divisor E, then each of the 2

points of E over a point of Wob will contribute a unipotent block of size 2 to the monodromy.

Let’s count the contributions of these to the cohomology: over the conic P1 we have a local

system of rank 8, with 16 points (the intersections of the conic with Wob) on which there

are two unipotent blocks of size 2. This gives a total contribution of −32 to the Euler

characteristic χ = h0 − h1. On the other hand, from the rank 8 local system over P1

the contribution of the Euler characteristic is 8 · 2 = 16. The sum is then −16. This

means that h1 ≥ 16. The hypothesis that h1 = 16 implies that there can’t be any further

parabolic structure. This is the case α = 1 (that is equivalent to α = 0 by an elementary

transformation; for simplicity below we prefer calling this α = 1).
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Suppose now that there is a nontrivial parabolic structure defined along E. If it has

a single parabolic level different from 0, then the calculation is the same as above giving

h1 = 16. If there were two parabolic levels at each point of E (or a single level distinct from

0 with multiplicity 2) then the h1 would be too big compared to the hypothesis. Thus, there

is only one parabolic level α different from 0 or 1, and one can see (looking at a transverse

section and thinking about parabolic structures on Higgs bundles over a curve) that the

only possibility to create the parabolic Higgs bundle is the one described at the end of the

statement.

Corollary 13.19. The parabolic level in the previous lemma is either α = 1/2 or α = 1.

Proof. The parabolic first Chern class on X̃ pushes down to a class on X, which has to

vanish for a flat bundle. The formula of [IS08] for this parabolic first Chern class on X

simplifies to a simple average over the interval [0, 1]:

chpar
1 (E·) =

∫ 1

a=0

ch1(Ea).

This should vanish. In view of the formulas for Ea in the lemma, we get

0 = chpar
1 (E·) = αch1(π∗(L)) + (1− α)ch1(π∗(L(E))).

The GRR formula gives

0 = π∗(td1(Y/X) + L+ (1− α)E).

Equivalently,

F 2 · (td1(Y/X) + L+ (1− α)E) = 0.

Recall from Proposition 4.7 that

td(Y/X) = (1− F + 5F 2/12)(1− E/2 + (E2 + EF )/9)

so td1(Y/X) = −F − E/2. If L = OY (aF + bE) with a, b ∈ Z we get

0 = F 2((−F − E/2) + aF + bE + (1− α)E) = (a− 1)F 3 + (b+ 1/2− α)F 2E.

Using the calculations of Proposition 4.8 this gives

32(a− 1) + 64(b+ 1/2− α) = 0.

It follows from the condition that a, b ∈ Z that α = 1/2 or α = 1.
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Remark 13.20. The case α = 1/2 corresponds to the case we have been treating, in which

we found our flat bundle. We claim that the numerical class of the line bundle L is uniquely

determined by the condition of ch2 being extremal.

Notice that there is a relation on the coefficients of E and F that is fixed by requiring

ch1 = 0. There is another parameter, which we can view as being the coefficient of E.

The uniquenessof the value for which ch2 is extremal may be seen by calculating the

parabolic Chern class, up to some correction terms of the kind we have seen in Chapter 4.

The correction terms are local at the non-normal crossings points of the wobbly divisor, and

don’t depend on the choice of L. The resulting function of the coefficient of E in the divisor

of L is a strictly concave quadratic function, whose maximum is at an integer value; in case

the reader is interested, the calculation is reproduced below, but the interesting point is that

this fact comes from the factor 1/2E in the relative Todd class combined with the parabolic

level α = 1/2. By the Bogomolov-Gieseker inequality, we can’t choose an integral line bundle

L such that ch2 > 0. It follows that the integral value for which ch2 = 0 is unique.

Here is an approach to the calculation referred to above. The condition ch1 = 0 tells us

that Eα may be written as π∗O((2−2b)F+bE) for 0 ≤ α ≤ 1/2 and π∗O((2−2b)F+(b+1)E)

for 1/2 ≤ α ≤ 1. Call these two bundles E(b) and E ′(b) respectively. At all steps below we’ll

allow ourselves to ignore any terms that are constant as functions of b. Set

c(b) := H · ch2(E(b)), ∆c(b) := H · (ch2(E ′(b))− ch2(E(b))).

Using the convention that we ignore terms that are constant in b, the integral formula for

the second Chern class becomes much easier in that it no longer depends on ch1:

H · chpar
2 = c(b) + ∆c(b)/2.

From the GRR formula (and dropping terms not depending on b) we have:

c(b) = F ·(1−F+5F 2/12)(1−E/2+(E2+EF )/9)(1+((2−2b)F+bE)+((2−2b)F+bE)2/2) (degree 3 terms)

F · (((2− 2b)F + bE)2/2 + ((2− 2b)F + bE)(−F − E/2))

= 2(1− b)2F 3 + 2b(1− b)F 2E + b2FE2/2− 2(1− b)F 3 − (1− b+ b)F 2E − bFE2/2

= (2b2 − 2b)F 3 + (2b− 2b2)F 2E + (b2 − b)FE2/2

= (b2 − b)(2F 3 − F 2E + FE2/2)
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= (b2 − b)(32− 64 + 16) = 16(b− b2).

The term ∆c(b) comes only from the quadratic term in the Chern characters of E(b) and

E ′(b), and these are indeed the same, so it is just

∆c(b) = c(b+ 1)− c(b) = −32b.

Now

chpar
2 = c(b) + ∆c(b)/2 + terms constant in b

= 16(b− b2)− 16b = −16b2.

This has its extremum at b = 0 as claimed. This completes our parenthetical calculation.

Moving on, in order to prove Corollary 13.3 we need to rule out the possibility that α = 1.

This case corresponds to the situation that our bundle E has no parabolic structure along

Wob◦.

Corollary 13.21. With trivial parabolic structure, for L = OY (aF + bE) and E = π∗(L) we

have

H2ch1(E) = 32(a− 1) + 64(b− 1/2).

If this vanishes then a = 2− 2b.

Proof. As in the proof of the previous corollary we get

H2ch1(E) = H2π∗(td1(Y/X)+L) = F 2((a−1)F+(b−1/2)E) = 32(a−1)+64(b−1/2) = 32(a+2b−2).

This vanishes for a = 2− 2b.

Put m := b− 1 so b = m+ 1 and a = −2m.

Lemma 13.22. Let L = OY (−2mF + (m+ 1)E) and E = π∗(L), then

H · ch2(E) = −48m2 − 48m− 8.

This value is ≤ −8 if m ∈ Z.

Proof. We have that ch2(E) is the degree 2 part of

π∗
[
(1− F + 5F 2/12)(1− E/2 + (E2 + EF )/9)(1− 2mF + (m+ 1)E + (−2mF + (m+ 1)E)2/2)

]
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which is π∗ of

5F 2/12 + (E2 +EF )/9 + (−2mF + (m+ 1)E)2/2 +EF/2− (F +E/2)(−2mF + (m+ 1)E).

We get

H·ch2(E) = F ·
[
5F 2/12 + (E2 + EF )/9 + (−2mF + (m+ 1)E)2/2 + EF/2− (F + E/2)(−2mF + (m+ 1)E)

]
.

This expands to:

F 3(5/12 + 2m2 + 2m)

+EF 2(1/9− 2m(m+ 1) + 1/2 +m− (m+ 1))

+E2F (1/9 + (m+ 1)2/2− (m+ 1)/2)

which, in view of Proposition 4.8, becomes

32(2m2 + 2m+ 5/12) + 64(−2m2 − 2m+ 1/9− 1/2) + 32(m2/2 +m/2 + 1/9)

= −48m2 − 48m+ 40/3 + 32/3− 32 = −48m2 − 48m− 8.

This is

−48m2 − 48m− 8 = −48(m+ 1/2)2 + 4.

The extremal value m = −1/2 is not allowed since m is supposed to be an integer. The

extremal values for integers m are at m = 0 and m = −1 and there the values are −8.

Let X̃ → X be a resolution of singularities of the cusps of Wob in codimension 2.

Lemma 13.23. Suppose E is a vector bundle over a surface Z. Let b : Z̃ → Z be a

birational map from another smooth surface obtained by blowing up some points. Suppose

Ẽ· is a parabolic bundle on Z̃ that is isomorphic to E over an open subset, complement of a

finite collection of points in Z, where b is an isomorphism. Suppose chpar
1 (Ẽ·) = 0. Then

chpar
2 (Ẽ·) ≤ 0

with equality only in the case where the parabolic structure is trivial and Ẽ0 = b∗(E).

Proof. The corrections due to the parabolic structure are local. If any of the corrections were

> 0 then one could fill in such structures an arbitrary number of times to a stable vector

bundle and contradict the Bogomolov-Gieseker inequality.
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If any of the corrections is = 0 then one can fill that into an irreducible flat unitary

bundle. The parabolic case of the Donaldson-Uhlenbeck-Yau theorem [SW01, Moc06, Moc09]

would imply that the resulting bundle is flat, but a flat bundle can’t have a nontrivial

parabolic structure only on an exceptional divisor, so the parabolic structure would have to

be trivial.

Corollary 13.24. If E = π∗(L) for L a line bundle on Y , then or any parabolic extension

Ẽ· of E|X◦ across the exceptional divisors in X̃ such that the parabolic first Chern class is 0,

then we have

H.chpar
2 (Ẽ·) ≤ −8.

In particular, no such Higgs bundle can correspond to a local system.

Proof of Corollary 13.3. This corollary rules out the possibility of a parabolic level α = 0,

so by Corollary 13.19 the level must be α = 1/2. The parabolic Higgs bundle therefore has

the same structure, by Lemma 13.18, as the parabolic Higgs bundle that we construct. This

proves Corollary 13.3 for the degree 1 moduli space, up to the choice of line bundle of degree

0 on Y . The Drinfeld-Laumon construction gives a Hecke eigensheaf with the original rank

2 local system as eigenvalue. We have also shown the Hecke eigensheaf property. On the

one hand, this fixes the choice of the line bundle of degree 0 on Y , and it also shows that

our construction coincides with the Drinfeld-Laumon construction on the degree 0 moduli

space.

13.5 Tensor description in the degree 1 case

The description of the spectral variety given in Theorem 13.2 is used above in the case

of m≫ 0. However, it turns out that in our special case of the moduli space X1 of bundles

of rank 2 and odd degree on a curve of genus 2, this construction almost leads directly to a

description of the Hecke eigensheaf.

As pointed out to us by Hitchin, see [Hit22], Atiyah showed in 1955 [Ati55] that the

moduli space of odd degree PGL(2)-bundles on C is a double covering of P3 = Sym3(P1).

See Proposition 13.28 and Theorem 13.30 below. Points of X1 are thus in correspondence

with unordered triples of points in the hyperelliptic P1, and up to a further covering, with

unordered triples of points of C. This allows us to use the symmetric exterior tensor product

Λ(⊠3). Because of the coverings involved, we will first look at the description over a general

line.

305



Let Λ denote the eigenvalue rank 2 local system on C. This leads to a rank 8 local

system Λ(⊠3) on the third symmetric power Sym3(C). If (E,φ) is the rank 2 Higgs bundle

associated to Λ, then the Higgs bundle associated to Λ(⊠3) is (E(3), φ(3)). By Lemma 13.4,

its spectral variety is Sym3(C̃).

Suppose ℓ ⊂ X1 is a general line, consisting of bundles E fitting into an exact sequence

0→ A→ E → A−1(p)→ 0

for a degree 0 line bundle A. Set M := A⊗−2(3p) be the resulting degree 3 line bundle, and

let |M | be the linear system of sections of M . We have |M | ∼= P1 ↪→ Sym3(C). Points of

|M | are lines in H0(Hom(A,A−1(p)⊗ ωC)) and this space is Serre dual to Ext1(A−1(p), A),

so |M | can be identified with the projectivized space of extensions, which is ℓ. Recall from

Subsection 4.5 that the elements of |M | are the fibers of the trigonal map C → P1 ∼= ℓ

associated to the line ℓ.

Theorem 13.25. The Hecke eigensheaf on X1 with eigenvalue Λ, according to Drinfeld’s

construction or our construction in of Section 4, restricted to ℓ becomes isomorphic to Λ(⊗3)|ℓ.

Proof. By Corollary 13.3, the Hecke eigensheaf on X1 we constructed in Section 4 is the same

as that of Drinfeld’s construction. By construction, the spectral variety of the associated

parabolic Higgs bundle (F1,•,Φ1) is the covering Y1 → X1. The description in Lemma 4.15

of the covering Y1 over a line yields the isomorphism

Y1 ×X1 ℓ
∼= Sym3(C̃)×Sym3(C) ℓ.

These spaces are isomorphic to the subvariety Sym3
M(C̃) of divisors on C̃ whose norm to C

is in the linear system |M |.
The parabolic structure has levels 0, 1/2 and one verifies that the parabolic structure for

E(3) is the standard one coming from the ramification points of the spectral covering, as is

the case for F1,•|ℓ.
The spectral line bundle for E(3) is pulled back from the line bundle N (3) on Sym3(C̃)

obtained using the spectral line bundle N on C̃.

Let’s check first that this has the right degree to get a degree 0 parabolic bundle of rank

8 (this will provide a check of Lemma 13.4). The spectral line bundle N has degree 2 on

C̃. The map C̃3
M → C̃ has degree 8. Indeed once we fix one of the points t̃1 with image

t1 in C, the remaining divisor t2 + t3 in C is fixed, leading two choices of ordered triple of

points; there are 4 lifts of each pair t2, t3 to t̃2, t̃3 so the fiber over t̃1 has 8 points in all. The
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pullback pr∗i (L) therefore has degree 16 on C̃3
M , and the tensor product of three of these has

degree 48.

The spectral line bundle N (3) on Sym3
M(C̃) pulls back to this bundle of degree 48 via

the 6 : 1 map C̃3
M → Sym3

M(C̃), so N (3) has degree 8.

The map Sym3
M(C̃) → ℓ ramifies at two types of points: there are the points of the

divisor Sym3
M(C̃) ∩ E 1 that are of the form t̃ where ti = tj but ĩ ̸= j̃, there are two such

points over each point of ℓ ∩Wob1. Then, there are ramification points t̃ such that one of

the t̃i is a ramification point of C̃/C. For each of the 4 ramification points of C̃/C, the

other two points in the trigonal fiber are specified and there are 4 ways of lifting these to

pairs of points in C̃, so we get 16 such ramification points. These constitute the movable

ramification locus.

The parabolic degree of a bundle created using the standard parabolic structure at some

simple ramification points, and not at others, is calculated by the same formula as the

degree of a usual direct image, but not counting the ramification points that are used for

the parabolic structure. Thus, we should count 16 ramification points instead of 32, and the

required parabolic degree is one-half of this number, that is to say 16/2 = 8. This is indeed

the degree of the bundle N (3) as is to be expected.

The pullback of the spectral line bundle from Y1 under the map Sym3
M(C̃) → Y1 also

has degree 8, since the spectral line bundle is chosen to create a parabolic structure over X1

that has vanishing ch1.

To identify the two spectral line bundles, we need to show that these two line bundles of

degree 8 are the same, when the spectral line bundle on Y1 is chosen as a function of N in

the specified way that will be described next.

We recall from Subsection 7.4 that the spectral line bundle L1 on Y1 for the Hecke

eigensheaf is related to the spectral line bundle N on C̃ for the original eigenvalue Higgs

bundle in the following way.

First, one has from Lemma 7.5 the line bundle

L = t∗N (−π∗(p))ξ ⊗ ξ−1

on the Prym variety P of degree 0 line bundles on C̃ with trivial norm down to C. This

gives by translation the line bundle

L1 = t∗O
C̃
(−p̃−π∗p)L
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on the Prym variety P3 of degree 3 line bundles with norm OC(3p). Then

L1 = ε∗1L1 ⊗ f ∗
1OX1(1)

is the spectral line bundle for the Hecke eigensheaf F1,•.

The following lemma, whose proof will be given below, shows the comparison between

the two spectral line bundles on Sym3
M(C̃).

Lemma 13.26. The pullback of L1 by the map Sym3
M(C̃)→ Y1 is isomorphic to N (3).

To finish the proof of the theorem, we leave it to the reader to check that the tautological

1-form for E(3) given in Lemma 13.4 is the same as the restriction of the tautological form on

Y1. Therefore, the parabolic Higgs bundles are isomorphic, giving the desired isomorphism

of local systems.

Proof of Lemma 13.26: Express the degree 0 line bundle as A = OC(a + b − 2p). Thus

M = OC(2a+ 2b− 2p).

A point of Sym3
M(C̃) is a divisor ỹ = ỹ1 + ỹ2 + ỹ3 on C̃, such that the image divisor

y1 + y2 + y3 is in |M |. This yields a line bundle

U3(ỹ) := π∗(A)(ỹ1 + ỹ2 + ỹ3) = OC̃(ã+ ã′ + b̃+ b̃′ + ỹ1 + ỹ2 + ỹ3 − 2p′ − 2p′′)

on C̃, whose norm to C gives the line bundle A⊗2⊗OC(y1 + y2 + y3− 2p) ∼= OC(p), so U3(t̃)

is a point of P3. This describes the map Sym3
M(C̃) → P3 that lifts in a unique way to a

map to the blow-up Y1.

The line bundle L1 extends to a line bundle L1,Jac on the Jacobian Jac3(C̃), as may be

seen by its definition. The above description gives a map

Sym3(C̃)→ Jac3(C̃).

Furthermore, compose with the translation Jac3(C) → Jac0(C) that relates L1 with L, to

get a map

UJac : Sym3(C̃)→ Jac0(C̃)

defined by

UJac(ỹ) = ã+ ã′ + b̃+ b̃′ + ỹ1 + ỹ2 + ỹ3 − 4p′ − 3p′′.

The pullback of L by this map is the tensor product of the values of L on each of the points

translated back to Jac0(C̃). All the points except those of ỹ are constant, so tensoring with

those values leads to just tensoring with constant lines.

308



Let s : C̃3 → Sym3(C̃) be the projection, and let N 0 := j∗L denote the pullback of L to

C̃ along the map j : C̃ → Jac0(C̃) that sends t̃ to OC̃(t̃− p′).

We conclude that

s∗U∗
Jac(L) ∼= pr∗1(N 0)⊗ pr∗2(N 0)⊗ pr∗3(N 0).

This in turn implies that

U∗
Jac(L) ∼= (N 0)

(3).

Therefore, the restriction of L1 to Sym3
M(C̃) is the same as the restriction of (N 0)

(3).

The restriction of the spectral line bundle L1 to Sym3
M(C̃) is thus (N 0)

(3) ⊗Oℓ(1).

We have N = N 0 ⊗OC̃(p′ + p′′).

The line bundle OC̃(p′ +p′′)(3) on Sym3(C̃) is given by a divisor whose pullback to C̃3 is

the set of points (t̃1, t̃2, t̃3) such that one of the coordinates is either p′ or p′′. The divisor in

Sym3(C̃) is the set of sums t̃1+ t̃2+ t̃3 containing either p′ or p′′. This condition is equivalent

to the condition that the sum t1+ t2+ t3 contains p. Restrict now to Sym3
M(C̃). For A hence

M general, there is a unique sum that may be written as p + t2 + t3, so our divisor consists

of all the lifts of these points to C̃. That, in turn, is the fiber of Sym3
M(C̃)→ ℓ = |M | over

the point p + t2 + t3 ∈ |M | that is also described as the image of p under the trigonal map.

We have now shown that the restriction of OC̃(p′ + p′′)(3) to Sym3
M(C̃) is isomorphic to the

pullback of Oℓ(1).

Now, the restriction of L1 to Sym3
M(C̃) is

(N 0)
(3) ⊗Oℓ(1) = (N 0)

(3) ⊗OC̃(p′ + p′′)(3) = N (3).

This completes the proof of Lemma 13.26, tying up what was needed for the proof of Theorem

13.25.

We now sketch how to go from here to a global description over X1. The proofs are left

to the reader.

Let P → X1 be the degree 4 map whose fiber over x ∈ X1 is the set of four points

corresponding to four lines through x. Thus P → Jac(C) is a P1-bundle.

Lemma 13.27. Given any pair of two lines ℓ1, ℓ2 passing through x, we obtain a point of

C. If ℓ3, ℓ4 is the opposite pair of lines (so that altogether these are the four lines through x)

then the corresponding point of C is the conjugate by the hyperelliptic involution ιC.
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Given a point of P lying over x ∈ X1 it is one of the lines, so there are three pairs of lines

containing that one; this gives a point of Sym3(C). Choosing a different point over x results

in changing two of these three by the hyperelliptic involution, and altogether the four lines

yield three pairs of pairs of points, hence three pairs of conjugate points in C, hence three

points of P1. We get a diagram

P → Sym3(C)

↓ ↓
X1 → Sym3(P1).

The hyperelliptic involution ιC acts on Sym3(C) by acting on all three of these points, so

we can factor and obtain a diagram:

P → Sym3(C)/ιC

↓ ↓
X1 → Sym3(P1).

Here the vertical maps have degree 4 and the horizontal maps have degree 32.

Proposition 13.28. The bottom map is the map given by squaring coordinates in P5, from

X1 to P3 = Sym3(P1). There are 6 planes in P3 corresponding to the six Weierstrass points

of C, and the map X1 → P3 has ramification of order 2 along these. In particular it maps

to a covering X ′ → P3 of degree 2 ramified on these 6 planes.

?? changed a question mark to the following remark :

Remark 13.29. It would be good to look more closely at the various group actions of (Z/2)n

for n = 4, 5, 6 as well as the Heisenberg group. This isn’t done in the current version.

Theorem 13.30. The space X ′ is the moduli space of PGL2 bundles of odd degree. Let

∆ ⊂ P3 be the discriminant. Then the pullback of ∆ to X ′ and X1 are the wobbly loci of

those spaces respectively.

We can form the local system Λ(⊠3) on Sym3(C). There are two ways of descending Λ to

a local system ΛP1 on P1 with order two monodromy at the 6 points. For each of these we

get local systems Λ
(⊠3)

P1 .

The rank 8 local system Λ(⊠3) has singularities on the big diagonal of Sym3(C).

The rank 8 local system Λ
(⊠3)

P1 has singularities on the discriminant and the six planes in

P3, and its pullbacks to X ′ and X1 have singularities (generically finite of order 2) on the

wobbly loci.
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Theorem 13.31. The pullback of our Hecke eigenvector local system of X1 to P is isomor-

phic to the pullback of Λ(⊠3) to P . The pullbacks of Λ
(⊠3)

P1 to X ′ or X1 are isomorphic to our

Hecke eigenvector local system.

We note that the discriminant ∆ has a cuspidal locus along the small diagonal; the

pullback will give the cuspidal locus of the wobbly locus.
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[GH94] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics

Library. John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.

[GM88] W. Goldman and J. Millson. The deformation theory of representations of

fundamental groups of compact kähler manifolds. Publications Mathématiques
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