Math 103: The Fundamental Theorem of Calculus

Ron Donagi
University of Pennsylvania
Tuesday April 3, 2012

Outline

(1) Review

(2) The Fundamental Theorem of Calculus

Definition

The area A of a region S that lies under the graph of a continuous function f is the limit of the sum of areas of the approximating rectangles:

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Theorem

If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and the c_{i} are a collection of sample points.

Properties of Integrals

(1) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(2) $\int_{a}^{a} f(x) d x=0$
(3) $\int_{a}^{b} c d x=c(b-a)$ where c is any constant.
(9) $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(5) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$ where c is a constant.
(6) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ if $a \leq c \leq b$.

Theorem

(Fundamental Theorem of Calculus, Part 1) If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.

Theorem

(Fundamental Theorem of Calculus, Part 1) If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.

Theorem

(Fundamental Theorem of Calculus, Part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Where F is any antiderivative of f, that is, a function such that $F^{\prime}=f$.

Net Change

Theorem

The net change of a function $F(x)$ over an interval $[a, b]$ is the integral of its rate of change:

$$
F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x
$$

Net Change

Theorem

The net change of a function $F(x)$ over an interval $[a, b]$ is the integral of its rate of change:

$$
F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x
$$

Exercise Water flows from the bottom of a storage tank at a rate of $r(t)=200-4 t$ liters per minute, where $0 \leq t \leq 50$. Find the amount of water that flows from the tank during the first 10 minutes.

Area under the curve

To find the area between the graph $y=f(x)$ and the x-axis on the interval $[a, b]$:
(1) Subdivide $[a, b]$ at the zeros of $f(x)$.
(2) Integrate f over each interval.
(3) Add the absolute value of the intervals.

