Math 103: Limits of Finite Sums and the Definite Integral

Ron Donagi

University of Pennsylvania
Thursday March 29, 2012

Outline

(1) Review

(2) Finite Sums
(3) The Definite Integral

The general form of area estimates

If we want to estimate the area under the curve $y=f(x)$ on the interval $[a, b]$, we divide the interval up into n subintervals of length $\Delta x=\frac{b-a}{n}$.

The general form of area estimates

If we want to estimate the area under the curve $y=f(x)$ on the interval $[a, b]$, we divide the interval up into n subintervals of length $\Delta x=\frac{b-a}{n}$.
Then we pick a point c_{k} in the k-th subinterval and estimate the hight of the rectangle as $f\left(c_{k}\right)$.

The general form of area estimates

If we want to estimate the area under the curve $y=f(x)$ on the interval $[a, b]$, we divide the interval up into n subintervals of length $\Delta x=\frac{b-a}{n}$.
Then we pick a point c_{k} in the k-th subinterval and estimate the hight of the rectangle as $f\left(c_{k}\right)$.
Then an estimate of the area is given by the following sum

$$
f\left(c_{1}\right) \cdot \Delta x+f\left(c_{2}\right) \cdot \Delta x+\ldots+f\left(c_{n}\right) \cdot \Delta x
$$

A quick review of summation notation

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

A quick review of summation notation

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

Rules for finite sums, c is a constant.
(1) $\sum_{k=1}^{n} a_{k}+b_{k}=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
(2) $\sum_{k=1}^{n} c \cdot a_{k}=c \sum_{k=1}^{n} a_{k}$
(3) $\sum_{k=1}^{n} c=c \cdot n$

Useful Formulas

$$
\begin{gathered}
1+2+3+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
\end{gathered}
$$

n	L_{n}	U_{n}
10	.285	.385
20	.308	.358
30	.316	.350
50	.323	.343
100	.328	.338
1000	.333	.334

Definition

The area A of a region S that lies under the graph of a continuous function f is the limit of the sum of areas of the approximating rectangles:

$$
A=\lim _{n \rightarrow \infty}\left[f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\ldots+f\left(c_{n}\right) \Delta x\right]
$$

Definition

The area A of a region S that lies under the graph of a continuous function f is the limit of the sum of areas of the approximating rectangles:

$$
A=\lim _{n \rightarrow \infty}\left[f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\ldots+f\left(c_{n}\right) \Delta x\right]
$$

Where c_{i} is any value between x_{i-1} and x_{i}. A collection of such points are called sample points.

Definition

(Definite Integral)If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$.

Definition

(Definite Integral)If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let
$x_{0}(=a), x_{1}, x_{2}, \ldots, x_{n}(=b)$ be the endpoints of these subintervals and we let $c_{1}, c_{2}, \ldots, c_{n}$ be any sample points in these subintervals.

Definition

(Definite Integral)If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let $x_{0}(=a), x_{1}, x_{2}, \ldots, x_{n}(=b)$ be the endpoints of these subintervals and we let $c_{1}, c_{2}, \ldots, c_{n}$ be any sample points in these subintervals. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

provided that this limit exists.

Definition

(Definite Integral)If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let $x_{0}(=a), x_{1}, x_{2}, \ldots, x_{n}(=b)$ be the endpoints of these subintervals and we let $c_{1}, c_{2}, \ldots, c_{n}$ be any sample points in these subintervals. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

provided that this limit exists. If it does exist, we say that f is integrable on $[a, b]$.

Theorem

If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) d x$ exists.

Theorem

If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) d x$ exists.

Theorem

If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $c_{i}=a+i \Delta x$.

