Math 103: Antiderivatives and the Area Under a Curve

Ron Donagi

University of Pennsylvania

Tuesday March 27, 2012

イロト イポト イヨト イヨト

E

Definition

A function F is called the **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

イロト イポト イヨト イヨト

Definition

A function F is called the **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Theorem

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C

where C is an arbitrary constant.

(E) < E)</p>

Given F' = f and G' = g

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n n \neq 1$	$\frac{x^{n+1}}{n+1}$
cos(x)	sin(x)
sin(x)	-cos(x)
$sec^{2}(x)$	tan(x)
sec(x)tan(x)	sec(x)

990

Indefinite Integral

Definition

The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x, and is denoted by

$$\int f(x)dx$$

Ron Donagi (U Penn) Math 103: Antiderivatives and the Area Unde Tuesday March 27, 2012 5 / 9

Э

Example

.

Show that for motion in a straight line with constant acceleration a, initial velocity v_0 and and initial displacement s_0 , the displacement after time t is given by

$$S(t)=\frac{1}{2}at^2+v_0t+s_0$$

イロト 不得下 イヨト イヨト

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の Q @

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

If we choose the height of each rectangle to be the largest value of f(x) for a point x in the base interval of the rectangle, the estimate is an upper sum

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

- If we choose the height of each rectangle to be the largest value of f(x) for a point x in the base interval of the rectangle, the estimate is an upper sum
- If we choose the height of each rectangle to be the smallest value of f(x) for a point x in the base interval of the rectangle, the estimate is a lower sum

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

- If we choose the height of each rectangle to be the largest value of f(x) for a point x in the base interval of the rectangle, the estimate is an upper sum
- If we choose the height of each rectangle to be the smallest value of f(x) for a point x in the base interval of the rectangle, the estimate is a lower sum
- If we choose the height of each rectangle to be the value of f(x) at the midpoint of the base interval, the estimate is an midpoint sum

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

n	L _n	Un
10	.285	.385
20	.308	.358
30	.316	.350
50	.323	.343
100	.328	.338
1000	.333	.334

996

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣

The general form of area estimates

If we want to estimate the area under the curve y = f(x)on the interval [a, b], we divide the interval up into nsubintervals of length $\Delta x = \frac{b-a}{n}$.

The general form of area estimates

If we want to estimate the area under the curve y = f(x)on the interval [a, b], we divide the interval up into nsubintervals of length $\Delta x = \frac{b-a}{n}$. Then we pick a point c_k in the k-th subinterval and estimate the height of the rectangle as $f(c_k)$.

The general form of area estimates

If we want to estimate the area under the curve y = f(x)on the interval [a, b], we divide the interval up into nsubintervals of length $\Delta x = \frac{b-a}{n}$. Then we pick a point c_k in the k-th subinterval and estimate the height of the rectangle as $f(c_k)$. Then an estimate of the area is given by the following sum

$$f(c_1) \cdot \Delta x + f(c_2) \cdot \Delta x + \ldots + f(c_n) \cdot \Delta x$$